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Abstract. Let G be a finite group, and let φk(G) be the probability that k random
group elements generate G. Denote by ϑ(G) the smallest k such that φk(G) > 1/e.
In this paper we analyze quantity ϑ(G) for different classes of groups. We prove that

ϑ(G) ≤ κ(G)+ 1 when G is nilpotent and κ(G) is the minimal number of generators
of G. When G is solvable we show that ϑ(G) ≤ 3.25κ(G) + 107. We also show that
ϑ(G) < C log log |G|, where G is a direct product of simple nonabelian groups, and
C is a universal constant.

The work is motivated by the applications to the “product replacement algorithm”
(see [CLMNO,P4]). This algorithm is an important recent innovation, designed to
efficiently generate (nearly) uniform random group elements. Recent work by Babai

and the author [BaP] showed that the output of the algorithm must have a strong
bias in certain cases. The precise probabilistic estimates we obtain here, combined
with a work [P3], give a positive result, proving that no bias exists for several families
of groups and certain parameters in the algorithm.

Introduction

Let G be a finite group. A sequence of k group elements (g1, . . . , gk) is called a
generating k-tuple of G if ⟨g1, . . . , gk⟩ = G. Let Nk(G) be a set of all generating
k-tuples of G, and let Nk(G) = |Nk(G)|.

The problem of evaluating Nk(G) goes back to Philip Hall, who expressed Nk(G)
as a Möbius type summation of Nk(H) over all maximal subgroups H ⊂ G (see
[H1]). In the paper Hall referred to Nk(G) as an Eulerian function of a group since
in a special case of a cyclic group we have N1(Zm) = ϕ(m). The problem was
further investigated by Gaschütz (see [Ga]) who studied a problem of when two
solvable groups have the same Eulerian function.

The probabilistic approach of Erdős and Turán to what they called “statistical
group theory” gave a different view on the problem. It led to a proof by Dixon that
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two random permutation generate the symmetric or the alternating group with
probability approaching 1. The problem of estimating the probability

φk(G) =
Nk(G)

|G|k

that k random group elements generate the whole group became of wide interest
in both algebra and combinatorics. Our first result deals with the behavior of
this probability for general groups. Namely, we show that for all groups of size
|G| ≤ 2m we have φk(G) ≥ φk(Zm

2 ), i.e. groups Zm
2 are the ”worst” group for

random generation.
In the recent time, after completion of the classification of finite simple group

(CFSG), the problem received another push. For special classes of groups a re-
markable progress has been made (see e.g. [Sh]). It was shown first by Kantor and
Lubotzky for classical simple groups of Lie type, and then by Liebeck and Shalev for
the remaining series that the probability φ2(G) → 1 as |G| → ∞ (see [KL,LS1]).
Now a detailed knowledge about the behavior of the probabilities φ2(G) is known
for large simple groups (see [B1,BaP,LS2,Sh]).

Denote by κ(G) the minimal number of generators of G. By ϑ(G) denote the
smallest k such that the probability φk(G) > 1/e. We show that ϑ(G) has a
probabilistic interpretation as an expectation of the following random process. Start
with an empty set and add uniform random elements of G one by one until they
generate the whole group. By τ denote the stopping time of this process. We prove
that c1 · E(τ) ≤ ϑ(G) ≤ c2 · E(τ), where c1, c2 are certain universal constants.

The rest of the paper deals with the ratio ϑ(G)/κ(G). We conjecture that for
any G we have

ϑ(G) ≤ C κ(G) log log |G|

where C is a universal constant. We present a ”supporting evidence” in favor of
the conjecture, and give some applications to the product replacement algorithm
(see below).

First, we show that for any nilpotent group G we have ϑ(G) ≤ κ(G) + 1, which
improves other known similar bounds (cf. [Ac,DSC2]). The proof is based on
explicit calculations.

When G is solvable, we prove that ϑ(G) ≤ 3.25κ+107. This is related to recent
results of A. Mann in [M]. While stated in a different way for prosolvable groups,
when translated, his results imply that φk(G) > c, where k ≥ 3.25κ + C. This, in
turn, implies that ϑ(G) ≤ C κ(G) for a universal constant C. While one can make
an effort to translate and improve Mann’s results, we chose to give an independent
proof, based on the results of Gaschütz, and by using results of Pálfy, Pyber and
Wolf, as well as some Mann’s ideas (see [Ga,M,Pa,Py,Wo].)

As we mentioned above, when G is a large enough simple group we have κ(G) =
ϑ(G) = 2. We prove a general upper bound ϑ(G) ≤ C logm when G = F1×· · ·×FN ,
where where Fi are simple groups and each nonisomorphic copy occurs at most m
times. In a different direction, Kantor and Lubotzky in [KL] found a a sequence of
groups {Gi} such that ϑ(Gi)/κ(Gi) → ∞ as i → ∞. Namely, they showed that

for large n we have κ(An!/8
n ) = 2, and ϑ(A

n!/8
n ) ≥ c n for some universal constant

c > 0 and n large enough. Note here that log(n!/8) ∼ n logn, so our upper bound
is virtually tight.
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Finally, the interest to the structure of Nk(G) has intensified in the last few years
due to the so called product replacement algorithm for generating (nearly) uniform
random elements. Incidentally, this was our original motivation for studying φk(G).

The algorithm was introduced in [CLMNO] Celler et al. and was further inves-
tigated in [B3,BaP,CG,DS2,DS3,P3,PB]. It is currently implemented in all major
group algebra packages and is often used as a routine for many randomized group
algorithms. We refer to the last section and review article [P4] for the references
and details.

The idea of the product replacement algorithm is based on running a Markov
chain with on a set of states Nk(G) and a uniform stationary distribution. After
running the Markov chain for a large number of steps, the algorithms returns a
random component. At the moment the rapid mixing of the Markov chain is still
in question. It was shown in [BaP], however, that the probability distribution of
components of Nk(G) can have a strong bias in both probabilistic and computation
senses. This becomes a difficult obstacle for the work of the algorithm.

In a recent paper [P3] the author observed that given φk(Gi) → 0 for a sequence
of groups Gi and k = ki, then the bias becomes small for large i. This gives a
motivation for our careful bounds on φk for various families of groups. In the last
section we present several corollaries which directly translate into performance of
the algorithm.

Let us conclude by saying that the problem of estimating φk(G) seem of uni-
versal nature. Another application is the algorithm of Acciaro and Atkinson (see
[AA,Ac]), whose performance also depends on the above probabilities.

1. Definitions and main results

Let G be a finite group. By |G| denote the order of G. As in the introduction,
let Nk(G) = |Nk(G)| be the number of generating k-tuples ⟨g1, . . . , gk⟩ = G, and
let φk(G) be the probability φk(G) that k uniform independent group elements
generate G :

φk(G) =
Nk(G)

|G|k

Theorem 1.1 For any finite group G, 1 > ϵ > 0, we have

φk(G) > 1− ϵ

given k > log2 |G|+ 2 + log2 1/ϵ. Further,

φm(G) >
1

4
and φm+1(G) ≥ 1

2
,

where m = ⌈log2 |G|⌉.

This is a slight improvement over a more general classical result by Erdős and
Rényi in [ER] (see also [P3]). The proof is based on the following lemma, perhaps,
of independent interest.

Lemma 1.2 For any finite group G, |G| ≤ 2m we have

φk(G) ≥ φk

(
Zm
2

)
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Define κ(G) to be the minimal possible number of generators of G. In other
words,

κ(G) = min{k |Nk(G) > 0}

The problem of evaluating κ(G) has been of intense interest for classes of groups
as well as for individual groups (see [CM]).

It is known that κ(G) = 2 for all simple, nonabelian groups, and that κ(G) ≤
n/2 for G ⊂ Sn, with equality achieved when G ≃ Zn/2

2 , and n is even. Also, it is
easy to see that κ ≤ log2 |G|, with equality for G ≃ Zm

2 . Note that Lemma 1.2 is
trivial for κ ≤ k < m.

Define ϑ(G) to be the smallest k such that at least 1/e of the random k-tuples
(g1, . . . , gk) generate the whole group. In other words,

ϑ(G) = min

{
k |φk(G) >

1

e

}
The significance of the constant 1/e is minimal, and is chosen for convenience.

Note that Theorem 1.1 immediately implies that

ϑ(G) ≤ log2 |G|+ 1

By definition ϑ(G)/κ(G) ≥ 1. It is unclear, however, how big this ratio can be (see
Conjecture 1.6 below).

Here are few known results. When G is simple, it is known that φ2(G) → 1
as |G| → ∞ (see [Sh]). For G = An, this is a famous result of Dixon (see [Dx]).
For classical simple groups of Lie type the result was conjectured by Kantor and
Lubotzky (see [KL]). In full generality it was recently proved by Liebeck and Shalev
(see [LS1,LS2]). This immediately implies that ϑ(G) < C for any simple group G
and some universal constant C.

The case when G is a direct product of simple group again goes back to Hall
(see [H1]). He showed that

A direct product of m copies of a simple nonabelian groups can be generated by
k generators if and only if m ≤ dk(G),

where dk(G) = Nk(G)/|Aut(G)| is the number of orbits of diagonal action of Aut(G)
on Nk(G). Using Hall’s example, A19

5 (product of 19 copies of icosahedral group)
can be generated by two elements, while A20

5 cannot. A different proof was given
in [KL], where the authors conclude that the probability that k random elements
of Ad

n, d = d2(An) generate the whole group becomes small when k = o(n)1. In our
notation, they show

φn(Wn) → 0 as n → ∞ ,

where Wn = A
d2(An)
n . Note that n = O(log log |Wn|). Here we prove an inverse

result.

1Actually the authors in [KL] use k = O(
√
n). The analysis, however, can be extended to

k = o(n) case.



ON PROBABILITY OF GENERATING A FINITE GROUP 5

Theorem 1.3 If G is a direct product of simple groups, then ϑ(G) ≤ C logm,
where m is the maximal number of isomorphic copies of each group and C is a
universal constant.

The proof is based on explicit calculations based on the known bounds for φ2(G).
The constant C is expected to be relatively small. If only alternating groups are
allowed, we show that C can be taken 5. We use sharp bounds of Babai given in
[B1]. On the other hand, since our calculations for Chevalley groups use bounds
in [KL,LS1,LS2] with unspecified constants, we do not attempt to establish C in
these cases.

The case when G is abelian or nilpotent in different versions has been ana-
lyzed earlier (see [DS2,NP,PB]. We prove the following result which improves earlier
bounds.

Theorem 1.4 Let G be a finite nilpotent group. Then ϑ(G) ≤ κ(G) + 1.

When G is solvable, the first result in computing φk(G) were obtained by
Gaschütz, who gave in [Ga] a multiplicative formula for Nk(G). Here we prove
the following result.

Theorem 1.5 Let G be a finite solvable group. Then ϑ(G) ≤ 3.25κ(G) + 107.

This result is an application of the Gaschütz technique, together with Mann’s
observation (see [M]). Mann went further, and showed that the constant 3.25 cannot
be significantly improved. The constant 107 is probably unrealistic and can be
lowered if care is applied.

We would like to conclude with a the following conjecture which we believe may
be of wide interest and importance.

Conjecture 1.6 For any finite group G we have

ϑ(G) < C · κ(G) · log log |G|

where C is a universal constant.

An application of this conjecture is given in the last section on the product
replacement algorithm (see above). Given special interest in the subject, we hope
to return to the subject in the future.

2. Random group process

Let G be a finite group, and let A ⊆ G be any generating subset of G. Define a
random group process {Bt}, t = 0, 1, 2, . . . as follows. Let

B0 = {id} , Bt+1 = ⟨Bt, at⟩ ,

where at, t ≥ 0 are chosen uniformly and independently from A. Denote this
random process B = B(G,A).
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Clearly, if Bt = G, then Bk = G for all k ≥ t. Therefore it is natural to stop
the process B the first time Bt = G. Denote by τ the stopping time of the process.
Think of τ as of random variable. Since ⟨A⟩ = G, τ is finite with probability 1. By
analogy with the separation distance for random walks (see e.g. [AD,D,P1]), define
a generation distance d(T ) as follows:

d(t) = P(τ > t)

where t = 0, 1, 2, . . . .

Proposition 2.1 Let A ⊂ G such that ⟨A⟩ = G, and let d(·) be the generation
distance for a random process B(G,A). We have

1) d(0) = 1, d(t) → 0 as t → ∞,

2) d(t+ 1) ≤ d(t) for any t ≥ 0,

3) d(t+ s) ≤ d(t) · d(s) for any t, t ≥ 0.

Proof. Clear. �

Proposition 2.1 is completely analogous to the corresponding results for the sep-
aration distance (see [AD,P1]).

Example 2.2 Let G = Zn
2 , and let A consist of n basis elements. Then d(t) is

given by coupon collector’s problem (see e.g. [F,D,P1]). Indeed, τ in this case is
the first time we obtain all the elements in A. Thus we obtain

d(n log n+ c n) → exp
(
−e−c

)
as n → ∞

for any fixed c ∈ R.

Example 2.3 Let G = Zn
p , A ⊂ G. Assume A is affine : with each a ∈ A it

also contains m ·a, for all m ∈ Zp. In this case d(t) is given by the random matroid
process, a generalization of the random graph process. We refer to [P1,PV] for
details.

Let A = G. In this case we drop one G and write B(G) for the random group
process B(G,G). Note that B(G) has particularly simple interpretation. We start
with an empty setB0 and add random group elements one by one until they generate
the whole group. As before, let τ be the stopping time and let d(t) = P(τ > t).
We will show that in this case E(τ) satisfies:

c1 ϑ(G) ≤ E(τ) ≤ c2 ϑ(G)

for some universal constants c1, c2.

Theorem 2.4 Let d(t) be the generation distance of the random group process
B(G). Then for any k > 0 we have

φk(G) = 1− d(k)
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Proof. Observe that 1− d(k) = P(τ ≤ k). We have

φk(G) = P(⟨g1, . . . , gk⟩ = G)

=

k∑
i=1

P
(
⟨g1, . . . , gi⟩ = G, ⟨g1, . . . , gi−1⟩ ̸= G

)
=

k∑
i=1

P(τ = k) = P(τ ≤ k)

This completes the proof. �

Theorem 2.5 Let d(t) be the generation distance of the random group process
B(G). We have:

1)
∑

t≥0

(
1− d(t)

)
= E(τ)

2) 1
e E(τ) ≤ ϑ(G) ≤ e

e−1 E(τ).

Proof. For the first part we have∑
t≥0

(
1− d(t)

)
=
∑
t≥0

P(τ ≤ t) =
∑
t≥0

t ·P(τ = t) = E(τ)

The second inequality in part two follows from the Markov inequality

P
(
τ > c · E(τ)

)
<

1

c

Indeed, take c = e/(e− 1) and k = c · E(τ). We have

φk(G) = P(τ ≤ k) > 1− 1

c
=

1

e

and therefore k ≥ ϑ(G).

The first inequality follows from Proposition 2.1. For any integer k > 0 we have

E(τ) ≤ k + k · d(k) + k ·
(
d(k)

)2
+ · · · = k

1− d(k)
=

k

φk(G)

Now take k = E(τ)/e. We get φk(G) ≤ 1/e and therefore k ≤ ϑ(G). This completes
the proof. �

Proof of Lemma 1.2. Let G be a finite group, |G| ≤ 2r. Let τ be the
stopping time for the random matroid process B(G). Denote by τ ′ the stopping
time for B(Zr

2). We claim that for all t the probability P(τ ≤ t) minimizes when
G ≃ Zr

2. In other words, we claim that

P(τ ≤ t) ≥ P(τ ′ ≤ t)

for all G and t ≥ 0. We prove the claim by induction. For r = 0 we have G = {id}
and there is nothing to prove.
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Now assume that |G| ≤ 2r, r ≥ 1. Denote by Hi = ⟨Bi⟩ the subgroup we obtain
after i steps of the random group process. Regardless of the group structure, the
probability that Hi ̸= Hi+1 for any i is equal to

(
1 − |Hi|/|G|

)
. Note that when

Hi ̸= Hi+1 we have |Hi+1|/|Hi| ≥ 2, with the equality always achieved when
G ≃ Zr

2. Denote by τ1, τ2, . . . the times when we have Hτi ̸= Hτi−1 in random
process for group G. Analogously, for the group Zr

2 define times τ ′1, τ
′
2, . . . when

the generated subgroups are Z2, Z2
2, . . .

Denote ℓ = ℓ(τ) the first time i when Hτi = G. Clearly, ℓ ≤ log2 |G| ≤ r. We
have then τ = τℓ. We think of τ , τi, ℓ as of random variables depending of the
random group process. Denote m = τℓ−1. Working backwards, for every proper
subgroup H ( G we have:

(◦) P
(
τℓ − τℓ−1 ≤ k |Hm = H

)
≥ P

(
τ ′r − τ ′r−1 ≤ k

)
.

To prove (◦), fix τℓ−1 = m, and recall that

P
(
τℓ − τℓ−1 = k | τℓ−1 = m,Hm = H

)
= p (1− p)k−1,

where p = 1 − |H|/|G| ≥ 1 − |Zr−1
2 |/|Zr

2| = 1/2. The inequality (◦) follows after
summation over all k, m, and then comparison with the case p = 1/2.

Now use inductive assumption for H, |H| ≤ 2r−1:

(◦◦) P
(
τℓ−1 ≤ k |Hm = H

)
≥ P

(
τ ′r−1 ≤ k

)
.

Combining inequalities (◦) and (◦◦), summing over all proper subgroups H of G,
we obtain:

P(τ ≤ k) ≥ P(τ ′) ≤ k).

This proves the step of induction and implies the claim. Since φk(G) = P(τ ≤ k)
and φk(Zr

2) ≤ P(τ ′ ≤ k), this also implies the result. �

Let us note that equality in Lemma 1.2 can occur if and only if G ≃ Zm. Indeed,
from the proof above we must require that κ(G) = m, and that |G| = 2m. Now use
induction on m. This is a simple exercise in group theory we leave to the reader.

3. p-groups

Let G be a nilpotent group, and let Φ be its Frattini subgroup. We have

φk(G) = φk(G/Φ)

and the problem of computing the generation probability is reduced to abelian
groups.

Let G be an abelian p-group,

G ≃ Zα1
p ⊕ Zα2

p2 ⊕ . . .

Let κ = κ(G) = α1 + α2 + . . . be the minimum number of generators. We have
G/Φ ≃ Zκ

p and

φk(G) = φk(G/Φ) =
κ∏

i=1

(
1− 1

pi−κ+k

)
≥

∞∏
i=k−κ+1

(
1− 1

pi

)
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Let z = 1/p. By Euler’s pentagonal theorem we have:

(∗)
∞∏
i=1

(1− zi) = 1+

∞∑
m=1

(−1)m z
m (3m±1)

2 = 1− z− z2+ z5+ z7− . . . ≥ 1− z− z2

(see e.g. [An], Corollary 1.7.) Therefore for k = κ(G) we have

φk(Fp) ≥ 1− 1

p
− 1

p2
≥ 1− 1

2
− 1

4
=

1

4

Analogously, for k = κ(G) + 1 we have

φk(Fp) ≥ φκ+1(Fp) =
∞∏
i=2

(
1− 1

pi

)
≥

1− 1
p − 1

p2

1− 1
p

= 1− 1

p (p− 1)

Recall another Euler’s formula:
∞∏
i=0

1

1− t zi
= 1 +

∞∑
n=1

tn

(1− z)(1− z2) · · · (1− zn)

(see e.g. [An], Corollary 2.2.) Take k = κ + r − 1, z = 1/p, t = 1/pr. We get

φ−1
k (G) ≤

∞∏
i=r

(
1− 1

pi

)
= 1 +

∞∑
n=1

(
1
pr

)n
(
1− 1

p

)(
1− 1

p2

)
· · ·
(
1− 1

pn

)
Using (∗) for the denominator of the last fraction we get

φ−1
k (G) ≤ 1 +

∞∑
n=1

(
1
pr

)n
(
1− 1

p − 1
p2

) = 1 +
1(

1− 1
p − 1

p2

) · 1(
1− 1

pr

) · 1

pr

Finally, we obtain

φk(G) ≥ 1− 1

pr (1− 1/p− 1/p2) (1− 1/pr)
≥ 1− 8/pr

Let us summarize the results.

Theorem 3.1 Let G be a finite p-group, and let κ = κ(G). We have

1) φκ(G) > 1− 1/p− 1/p2,

2) φκ+1(G) > 1− 1/p(p− 1),

3) φκ+r−1(G) > 1− 1/(pr − 1)(1− 1/p− 1/p2), where r ≥ 1.

A similar result was proved in [DS2] by a different approach. For part 1) see also
[Ac]. Now we can complete the proof of Theorem 1.1.

Proof of Theorem 1.1. By Lemma 1.2 we have φk(G) ≥ φk(Zk
2) if k ≥ log2 |G|.

Part three of Theorem 3.1 implies that

φk

(
Zm
2

)
> 1− 4

2k−m+1 − 1
> 1− 22+m−k

Thereforeφk(G) > (1 − ϵ) given k > log2 |G| + log2 1/ϵ + 2. This completes the
proof. �



10 IGOR PAK

4. Nilpotent groups

Let G be a nilpotent group, p1, . . . , pm are distinct primes, and

G = Fp1 ⊕ . . .⊕ Fpm ,

where Fp is the Sylow p-subgroup of G. Assume |Fpi | = pλi
i . It is easy to see that

φk(G) =
m∏
i=1

φk

(
Fpi

)
(see e.g. [H1,KL]). We will use the results of the previous section to obtain general
bounds.

When k ≥ κ(G) + 1 Theorem 3.1 gives us

φk(G) ≥
∞∏
p=2

(
1− 1

p (p− 1)

)
> .373 > 1/e

where the product is over all primes p. This immediately implies that ϑ(G) ≤
κ(G) + 1. The lower bound .373 follows from the following observation:

χ =

∞∏
p=2

(
1− 1

p (p− 1)

)
≥

∏
p≤300,000

(
1− 1

p (p− 1)

)
·

∏
j≥300,001

(
1− 1

j (j − 1)

)

Direct computation shows that the first product is .3739561835 while the second
product satisfies

∞∏
j=300,001

(
1− 1

j (j − 1)

)
>

∏
j≥300,000

(j − 1)(j + 1)

j2
= 1− 1

300, 000
= .999996666(6)

This gives χ > .373 and proves the claim.

Now use the first part of Theorem 3.1, when k ≥ κ(G). We claim that

φk(G) >
m∏
i=1

(
1− 1

pi
− 1

p2i

)
≥ C

1

log log |G|

where C = .2099612456 is a universal constant. Indeed, observe that 1 − 1/p −
1/p2 = (1− 1/p)(1− 1/p(p− 1) and thus the infinite product can be presented as
two infinite products, the first equal to χ and the second given by the the Mertens
formula

lim
n→∞

log log n ·
∏
p≤n

(
1− 1

p

)
= e−γ

where γ = 0.5772156649 is the Euler-Mascheroni constant (see [HW,WW].

Combining these results into a theorem, we obtain:
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Theorem 4.1 Let G be a nilpotent group, and let κ = κ(G) be the minimum
number of generators. Then

1) φκ(G) > 1/(5 log log |G|),
2) φκ+1(G) > 1/e,

3) φκ+r−1 > 1− 8 · 1/(12r/4), where r ≥ 1.

Proof. Parts 1, 2 were proved earlier. For the last part we have :

φκ+r−1 ≥
∏
p

(
1− 8

pr

)
> 1−

∑
p

8

pr
> 1− 8 ·

(∑
p

1

p4

)r/4

> 1− 8 ·

( ∞∑
n=2

1

n4

)r/4

The latter sum can be computed directly as in the previous section. We have∑
n>2 1/n4 = .082323234 > 1/12, and

φκ+r−1 > 1− 8 · 1

12r/4

This completes the proof. �

Note that part 2) of the Theorem implies Theorem 1.4 (cf. [DS2], Remark after
Lemma 6.3.) Part 3 shows an exponential decay of the generation distance for
k > κ(G).

5. Solvable groups

Let us recall several definitions (see [J]). Let H be a group (not necessarily
abelian), and let the group G act on H so that the conditions (1), (2), (3), (4) hold:

(1) (h1h2)
g = hg

1h
g
2

(2) hg1g2 = (hg1)g2

(3) h1 = h

for all h, h1, h2 ∈ H, g, g1, g2 ∈ G. In other words, G is homomorphic to a
subgroup of the automorphism group of H.

(4) The image of the above homomorphism includes all the inner automorphisms
of H.

Under these conditions H is called a G-group. One can think of G-groups as of
a generalization of linear representations. One can also define G-homomorphism,
G-isomorphism, G-endomorphism, G-subgroup, and G-composition series. The
condition (4) ensures the validity of elementary group theoretical statements used
below extends also to G-groups. We refer to [J], Chapter 3, for details.

Let G be a finite solvable group, and let

G = G0 ⊃ G1 ⊃ . . . Gr−1 ⊃ Gr ⊃ 1

be a chief series of G going through Gr. The factors Hi = Ni/Ni+1 are abelian
as groups, and simple as G-groups. In other words, they don’t have proper G-
subgroups. Therefore Hi ≃ Zm

p for some integer m and prime p. Also, by Schur’s
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Lemma, endomorphisms of Hi form a field Fq, where q = pr, 1 ≤ r ≤ m. We say
that a subgroup K ⊂ G is a complement of a normal subgroup N of G if NK = G
and N ∩K = 1.

Following [Ga], denote by F1, . . . , Fh the different (up to G-isomorphisms) types
of simple G-groups that occur among the composition factors Hi. Let αi be the
number of factors of type Fi that have a complement, and βi be the number of those
of type Fi that do not possess a complement. Let Ei be the field of endomorphisms
of Fi. Assume |Fi| = pλi

i , pi prime, and ωi is the degree of the endomorphism field
Ei. Also, let

ζi =

{
0, if Fi is fixed element-wise by G

1, otherwise

Then Theorem 5 in [Ga] gives

Nk(G) =

h∏
i=1

pλiβik
i ·

h∏
i=1

(
pλik
i − pλiζi

i

)
·
(
pλik
i − pλiζi+ωi

i

)
· . . . ·

(
pλik
i − p

λiζi+(αi−1)ωi

i

)
We obtain

κ(G) = max
i

⌊
(αi − 1)ωi

λi
+ ζi + 1

⌋
We have

φk(G) =

h∏
i=1

αi−1∏
j=0

(
1− p

λi(ζi−k)+jωi

i

)
Denote by w(p, λ) the number of Fi ≃ Zλ

p , and let W (p, λ) be the maximal

possible number of groups F ≃ Zλ
p , which are different as G-groups (as we shall

see, this number is bounded). When k = κ(G) + 1 we have

φκ+l+1 ≥
h∏

i=1

(
1− 1

p1+l λi
i

)w(pi,λi)

≥
∏
p

∞∏
n=1

(
1− 1

p1+l n

)W (p,n)

where the product is taken over all primes p.
Let us give a bound on W (p, n). Let κ = κ(G), F = Zn

p . Then Aut(F ) ≃
GL(n, p). By definition, the image of G is an irreducible solvable subgroup H ⊂
Aut(F ). By Ĥ denote a maximal subgroup which contains H. Observe that the

number of homomorphisms of G intoH is at most |Ĥ|κ . Therefore the total number

W (p, n) of different G-groups is at most |Ĥ|κ times the number of conjugacy classes
of maximal subgroups. Following [Pa,Wo], we have∣∣∣Ĥ∣∣∣ ≤ |F |β

(24)1/3
,

where β = (3 · ln 48 + ln 24)/(3 · ln 9) ≈ 2.243991050 is a Pálfy–Wolf constant.
By [Py] (see Lemma 3.4.iii), the number of conjugacy classes of maximal solvable

subgroups of GL(n, p) is at most 2n−1 · n20 (log2 n)3+5. Combining these together,
we obtain:

W (p, n) ≤ pβ κ n

(24)1/3
· 220 (log2 n)4+5 log2 n+n−1 .
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Then for k = κ + l + 1 we have

φk ≥
∏
p

∞∏
n=1

(
1− 1

p1+n

)
>

1

e

given pl n > pn+1 ·W (p, n) for all p, n (for the last inequality see above). Solve the
latter inequality directly. The worst case being p = 2, it follows from :

(l − β κ) · n >
(
20 (log2 n)

4 + 5 log2 n+ 2n
)

Solving this inequality numerically, we obtain (l − β κ) > .48 · 107. Recall that
Therefore φk(G) > 1/e given k > (1 + β)κ + 107. This completes the proof of
Theorem 1.5. �

Theorem 5.1 There exists a universal constant C < 107 such that for any
solvable group G, κ = κ(G), and r > 0 we have

φ(β+1)κ+C+r <
1

12r/4

Proof. The proof follows easily from the computations above and part 3 of the
Theorem 4.1. We skip the details. �

Remark 5.2. Roughly, Theorem 5.1 says that the the generation distance
decreases exponentially after (β + 1)κ + C steps.

The result of Mann (see [M]) shows that after (β+1)κ+C steps the probability
of generation of G becomes bounded away from 0. Also, for all d, Mann constructs
a family of d-generated solvable groups {Gi} such that limϑ(Gi) ≥ β d − 1. This
shows that one can never obtain results for solvable groups similar to those in the
nilpotent group case.

Let us mention that the result of Pálfy in [Pa] (see also [Se]) contains for each
p the best possible bounds on the number of conjugacy classes of maximal solvable
subgroups (which agree with ours for p = 3). Unfortunately they seem to lead to
improvement in our bounds only in very special cases of solvable groups.

Finally, few words about random generation in profinite groups. Beside a pioneer
paper [M], a significant progress has been made in the understanding of the so called
positively finite generated groups. Many of the results are yet to be translated and
understood in the finite group setting. We would like to especially note the main
result in [BPS], which seems of particular importance. We refer to [Sh] for the
review and references.

6. Powers of simple groups

Let G be a nonabelian simple group, and let

Gm = G×G× · · · ×G (m times)
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be a power of G. Clearly, Denote by dk(G) the maximal m such that GN can be
generated by k elements. Recall from section 1 the result of Philip Hall :

dk(G) =
Nk(G)

|Aut(G)|
,

where Aut(G) is the group of automorphism of G. It was observed by Kantor and
Lubotzky (see [KL], Proposition 9) that in this case one can obtain an explicit
multiplicative formula for the number of generating k-tuples:

φk(G
m) =

Nk(G)

|G|k(m−1)

m−1∏
i=1

(
φk(G) |G|k − i |Aut(G)|

)
Rewriting this differently gives us

φk(G
m) = φm

k (G)
m−1∏
i=1

(
1− i

dk(G)

)
We will use this formula to obtain a bound ϑ(G) < C logm for a universal constant
C > 0.

Recall the classification of finite simple group (CFSG). It is known that beside
the alternating groups An, n ≥ 5, and simple groups of Lie type there exist only a
finite number of sporadic simple groups (see [Go]).

We start with the case when G ≃ An. Then |Aut(An)| = |Sn| = n! Denote by
M the order of An: M = n!/2. Recall that in this case we have

φ2(n) = 1− 1

n
+O

(
1

n2

)
(see [B1]). Thus for n large enough, say for all n ≥ n0, we have ϑ(An) = 2. Then
for all n ≥ n0, k ≥ 2 we have

dk(An) =
φk(An) |An|k

|Aut(An)|
≥ 1/2 (n!/2)k

n!
=

Mk−1

4

By submulticativity of d(k) = 1− φk(G) we have

φk(An) ≥ 1− (1− φ2(An))
k/2

= 1− 1

nk/2
+O

(
1

nk/2+1

)
where k is even and n → ∞. Now take k = c logn m. For n large enough we have

φk(A
m
n ) = φm

k (An)
m−1∏
i=1

(
1− i

dk(An)

)
>

(
1− 1

2nk/2

)m m−1∏
i=1

(
1− i

Mk/4

)

>

(
1− 1

nc/2 logn m

)m(
1− 4m

nc logn m

)m−1

>

(
1− 1

mc/2

)m(
1− 4

mc−1

)m

It is easy to see that when c = 5 the right hand side is > 1/e given m ≥ 2, k ≥ 2
and n large enough. We obtain the following result.
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Theorem 6.1 For any m ≥ 1, and any n large enough we have

ϑ(Ak
n) ≤ max{2, 5 logn m} .

Now let G be a simple group of Lie type over the field Fq, where q = pr. By n
denote the rank of G. It was shown in [KL,LS2] that

φ2(G) = 1−O

(
n3(log q)2

qn

)
Therefore

φ2k(G) ≥ 1− (1− φ2)
k ≥ 1−

(
c n3(log q)2

qn

)k

for some universal constant c. Observe that

φ2k(G) → 1 as |G| → ∞

(see e.g. [Go], Table 6 in [CCNPW]).

For the order of the automorphism group Aut(G) we have the following crude
bound

|Aut(G)| < C |G| log2 |G|

for some universal constant C. To obtain this bound one has to consider groups
An(q) and

2An(q) separately from the rest. For the remaining groups we have

|Aut(G)|/|G| ≤ 6 · r ≤ c · log q ≤ c · log |G|

For G = An(q) or G = 2An(q), n ≥ 2 we have

|Aut(G)|/|G| ≤ 6 · r · (n+ 1, q ± 1) ≤ c · log q · log |G| ≤ c · log2 |G|

We refer to [CCNPW] for the explicit formulas. We conclude

dk(G) =
φk(G) · |G|k

|Aut(G)|
≥ c |G|k−1

log2 |G|

We can now obtain a generalization of Theorem 6.1 for every nonabelian simple
group Lie of Lie type. We have

φ2k(G
m) =

(
φ2k(G)

)m ·
m−1∏
i=1

(
1− i

d2k(G)

)
For the product on the right we have

m−1∏
i=1

(
1− i

d2k(G)

)
>

(
1− m

c |G|k−1/ log2 |G|

)m

>

(
1− m2

|G|k−2

)
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when |G| is large enough. Thus for m ≤ |G|k/2−2 and |G| large enough we have∏
> 1− 1/|G|. Analogously, we get

(
φ2k(G)

)m
> 1−

cm
(
n3(log q)2

)k
qkn

> 1− 1

qn

where k > C logm, and C is a universal constant. One can also improve this to

φ2k(G
m) > 1− 1

qn

since the product above is small. This implies the following result.

Theorem 6.2 Let {Gn} be any sequence of Chevalley groups |Gn| → ∞ as
n → ∞. Then for all m ≥ 1 we have

φk(G
m) → 1 as n → ∞

where k > C logm, and C is a universal constant.

7. Direct products of simple groups

Let G = Hm1
1 × · · · ×Hml

l , where Hi are distinct simple nonabelian groups. It
is easy to see that

φk(G) = φk

(
Hm1

1

)
· . . . · φk

(
Hml

l

)
(see e.g. Lemma 5 in [KL].) Thus we can use the estimates from the previous section
to estimate φk(G). Namely, we will prove the following result.

Theorem 7.1 Let G be as above. Then for all k > Cmax{logmi} we have

φk(G) ≥ 1

e

where C is a universal constant.

Observe that Theorem 7.1 is equivalent to Theorem 1.3. This also shows that
Conjecture 1.6 holds in this case. Indeed, note that

log log |Hm| = log(m · log |Hi|) > logmi

for all i. Therefore log log |G| > max{logmi}, which implies the claim.

Before we prove the theorem we need the following technical Lemma.

Lemma 7.2 For any n ≥ 2 we have

∞∏
q=2

(
1− 1

qn

)
> exp

(
− 3

2n

)
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Proof. Observe that log(1− x) > −x− x2 for 0 < x < 1/2. We have

∞∏
q=2

(
1− 1

qn

)
= exp

( ∞∑
q=2

log

(
1− 1

qn

))
> exp

( ∞∑
q=2

− 1

qn
− 1

q2n

)

On the other hand

∞∑
q=2

1

qn
=

1

2n

(
1 +

∞∑
q=3

2n

qn

)
≤ 1

2n

(
1 + 4

∞∑
q=3

1

q2

)
=

1

2n

(
2π2

3
− 4

)
<

2.58

2n

Analogously

∞∑
q=2

1

q2n
=

1

22n

(
1 +

∞∑
q=3

22n

q2n

)
≤ 1

22n

(
1 + 16

∞∑
q=3

1

q4

)
≤ 1

2n
·1
4

(
−16 +

8π4

45

)
<

0.33

2n

Combining the results we obtain

∞∏
q=2

(
1− 1

qn

)
> exp

(
−2.58

2n
− 0.33

2n

)
> exp

(
− 3

2n

)

This completes proof of the lemma. �

Proof of Theorem 7.1. We proved in the previous section that there exist a
universal constant C such that

φk (H
mi
i ) > 1− 1

qn

given k > C logmi and |Hi| > N , where N is some universal constant.
Now recall classification of finite simple nonabelian groups. There are only six

series where n grows: An(q),
2An(q) Bn(q), Cn(q), Dn(q), and 2Dn(q) (see e.g.

[Go,CCNPW]). Here q = pr is the size of finite field.
By the lemma, when k as in the theorem, we have

∏
q

φk ((Rn(q))
m) >

∏
q

1

(
− 1

qn

)
> exp

(
− 3

2n

)

where Rn is the name of the series An . . . 2F4. This shows that
∏

q φk(·) > c > 0
for all series with bounded n. For the six series as above we have∏

n

∏
q

φk ((Rn(q))
m) >

∏
n

exp

(
− 3

2n

)
> exp(−3) > 0

This gives us ∏
i

φk(H
mi
i ) > c1,

where c1 > 0 is a universal constant and |Hi| > N .
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Now consider all simple groups Hi, |Hi| ≤ N . There is a finite number of them.
However, the powers mi can be large, so we have to treat these groups accordingly.

Recall that φk(Hi) > 1/2 suffices to hold for the argument in the previous
section. On the other hand, by Theorem 1.1, this is satisfied given k > logN +3 ≥
logHi+3. Now, the condition k ≥ max{logmi, logN +3} implies that φk(H

mi
i ) >

c > 0 for all i. Since the number of simple groups Hi ≤ N is finite, we obtain∏
i

φk(H
mi
i ) > c2,

where c2 > 0 is a universal constant and |Hi| ≤ N . We conclude

φk(G) =
∏
i

φk(H
mi
i ) > c1 · c2

This completes the proof. �

8. Applications : Product replacement algorithm

The product replacement algorithm is an important recent advancement in sym-
bolic algebra (see [CLMNO], also [B3,BaP,P4,P5,PB]). It was designed by Leedham–
Green and Soicher to generate efficiently (nearly) uniform group elements ([LG]).
It is by far the most popular ”practical” generator of random group elements, im-
plemented in bothGAP (see [Sc] andMagma (see [BCP]) group algebra packages.
In this section we describe problems related to the algorithm in connection with
the results in the previous section.

In a pioneer paper [CLMNO] Celler et al. defined a Markov chain M = {Xt}
on Nk(G) as follows. Let Xt = (g1, . . . , gk) ∈ Nk(G). Define

Xt+1 = (g1, . . . , hj , . . . , gk),

where hj = gjg
±1
i or hj = g±1

i gj , where the pair (i, j), 1 ≤ i, j ≤ k, i ̸= j is
chosen uniformly; the multiplication order and the ±1 degree are determined by
independent flips of a fair coin. The algorithm runs the Markov chain for a time T ,
starting at a given set of generators. Then it outputs a random component g = gi
of the group elements in a generating k-tuple XT . It is known that g is distributed
(nearly) uniformly given k = Ω(log |G|) and T is large enough.

Observe that there can be two types of error when we generate a (nearly) uniform
group element as above. The first type comes from the distribution of XT ∈ Nk(G)
being far from the uniform distribution U on Nk(G). The second one comes from
having group elements in generating k-tuples distributed not uniformly. Let us
concentrate here on the second type of error leaving aside the issue of determining
the mixing time of the Markov chain M.

Consider a graph Γ = Γ(G, k) with a set of vertices Nk(G) and edges correspond-
ing to Markov chain moves. Assume that the graph Γ is connected, so that the
stationary distribution is indeed uniform on Nk(G). Denote by Qk the probability
distribution of the random component of uniform elements in Nk(G). Thus Qk is
a limiting distribution of the algorithm output (as time T → ∞). We measure how
far Qk from the uniform distribution U on G by the total variation distance:

ξk(G) = ∥Qk − U∥tv = max
B⊂G

|Qk(B)− U(B)| = 1

2

∑
g∈G

∣∣∣∣Qk(g)−
1

|G|

∣∣∣∣
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In [BaP] Babai and the author showed that for groups G = A
n!/8
n and k =

o(n) we have ξk(G) → 1 as n → ∞.2 We also show in [BaP] that the error is large
enough to be detected by a short straight line program. Practical experiments seem
to support the theoretical conclusion ([LG]).

In [P5] the author observed that there can be no bias in the distribution Qk

given k is at least ϑ(G). Formally, we prove the following result:

Theorem 8.1 (see [P5]) Let {Gi} be a sequence of groups, κi = κ(Gi), and
let ki be a sequence such that

φki(Gi) → 0 as i → ∞

Then
ξki+κi(Gi) → 0 as i → ∞

Therefore one can apply sharp bound for φk to to obtain the following corollaries.
By ω(n) denote any increasing function with w(n) → ∞ as n → ∞ (e.g. ω(n) =
log log n will work).

Corollary 8.2 Let Gi be a sequence of nilpotent groups, κi = κ(Gi) and ω(i)
be as above. Then

ξ(Gk) → 0 as i → ∞ ,

given k = ki > 2κi + ω(i).

Corollary 8.3 Let Gi be a sequence of solvable groups, κi = κ(Gi) and ω(i) be
as above. By β denote Pálfy–Wolf constant, 2.24 < β < 2.25. Then

ξ(Gk) → 0 as i → ∞ ,

given k = ki > (2 + β)κi + ω(i).

Corollary 8.4 Let Gi be a sequence of direct products of simple groups, mi be
the maximum number of times a copy is contained in Gi, and let ω(i) be as above.
Then

ξ(Gk) → 0 as i → ∞ ,

given k = ki > log(mi) · ω(i).

Corollary 8.5 Let Gi be any sequence of groups, and let ω(i) be as above. Then

ξ(Gk) → 0 as i → ∞ ,

given k = ki > 2 log2 |G|+ ω(i).

The result of Corollaries should be compared with the connectivity results for
Γ(G, k). Namely it was shown by Dunwoody [Du] (see also [P4,P5]) that for all

2This was announced earlier by the author in [PB].
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finite solvable groups G the graph Γ(G,κ(G)) is connected. It is conjectured that
Γ(G, k) is connected when k ≥ 3 and G is simple (see [P4,P5]). It is known that
this conjecture implies that Γ(Gm, k) is also connected given m < dk−1(G) (see
[P4] for references and details.

Proof The corollaries follow immediately from Theorem 8.1 and Theorems 4.1.3,
5.1, 7.1 and 1.1 respectively. �

Remark 8.6 Observe that Corollary 8.5 implies that for general group take k to
be log2 |G|+C rather than 2 log2 |G|+C, as presumed in [B3,DS2]. Note also that
if conjecture 1.6 holds, this would imply that k should be roughly C κ log log |G|.
If true, this would have immediate implications on use and design of the algorithm.
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[ASE] N. Alon, J.H. Spencer, P. Erdős, The Probabilistic Method, Wiley, New York, 1992.

[An] G. Andrews, The Theory of Partitions, Addison-Wesley, New York, 1976.

[B1] L. Babai, The probability of generating the symmetric group, J. Comb. Th. Ser. A 52
(1989), 148–153.

[B2] L. Babai, Automorphism groups, isomorphism, reconstruction, in Handbook of Com-
binatorics (R. L. Graham, M. Groetschel, and L. Lovasz, eds.) (1996), Elsevier.

[B3] L. Babai, Randomization in group algorithms: Conceptual questions, in Groups and

Computation II (L. Finkelstein, W.M. Kantor, eds.) DIMACS Workshops on Groups
and Computation (1997), AMS, Providence.

[BaP] L. Babai, I. Pak, in preparation (1999).

[BCP] W. Bosma, J. Cannon, C. Playoust, The Magma algebra system in ”Computational
algebra and number theory (London, 1993)”, J. Symbolic Comput. 24 (1997), 235–265.

[BPS] A.V. Borovik, L. Pyber, A. Shalev, Maximal subgroups in finite and profinite groups,
Trans. Amer. Math. Soc. 348 (1996), 3745–3761.

[Ca] R. Carter, Simple Groups of Lie Type, Wiley, New York, 1972.

[CLMNO] F. Celler, C.R. Leedham-Green, S. Murray, A. Niemeyer, and E.A. Obrien, Generating
random elements of a finite group, Comm. Alg. 23 (1995), 4931–4948.

[CG] F.R.K. Chung, R.L. Graham, Random walks on generating sets for finite groups, The
Electronic J. of Comb. 4 No 2. (1997), #R7.

[CCNPW] J.H. Conway, R.T. Curtis, S.P. Norton, R.A. Parker, R.A. Wilson, Atlas of Finite

Simple Groups, Claredon Press, Oxford, 1985.

[CM] H.S.M. Coxeter, W.O.J. Moser, Generators and relations for discrete groups (third

edition), Springer, Berlin, 1972.

[D] P. Diaconis, Group Representations in Probability and Statistics, IMS, Hayward, Cal-
ifornia, 1988.

[DS1] P. Diaconis, L. Saloff-Coste, Walks on generating sets of abelian groups, Prob. Th.
Rel. Fields 105 (1996), 393–421.

[DS2] P. Diaconis, L. Saloff-Coste, Walks on generating sets of groups, Invent. Math. 134
(1998), 251–299.

[Dx] J.D. Dixon,, The probability of generating the symmetric group, Math. Z. 110 (1969),

199–205.

[Du] M.J. Dunwoody, Nielsen Transformations, in Computational Problems in Abstract
Algebra (Proc. Conf., Oxford, 1967) (1970), Pergamon, Oxford, 45–46.
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