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Abstract

We present a bijection between 321- and 132-avoiding permutations that preserves the
number of fixed points and the number of excedances. This gives a simple combinatorial
proof of recent results of Robertson, Saracino and Zeilberger [10], and the first author [4].
We also show that our bijection preserves additional statistics, which extends the previous
results.

1. Introduction

The subject of pattern avoiding permutations, also called restricted permutations, has blossomed
in the past decade. A number of enumerative results have been proved, new bijections found, and
connections to other fields established. Despite recent progress, the so called Stanley-Wilf conjecture
giving an exponential upper bound on the number of pattern avoiding permutations remains open,
and much of the ongoing research is related to the conjecture.

An unexpected recent result of Robertson, Saracino and Zeilberger [10] gives a new and exciting
extension to what is now regarded as a classical result that the number of 321-avoiding permutations
equals the number of 132-avoiding permutations. They show that one can “refine” this result by
taking into account the number of fixed points in a permutation. In fact, they study all 6 patterns
in S3 which produce different “refined” statistics, with the above mentioned result having a highly
nontrivial and technically involved proof. The story continued in a recent paper of the first author [4]
where an additional statistic, “the number of excedances”, was added. The proof uses some nontrivial
generating function machinery and is also quite involved.

In this paper we present a bijective proof of the “refined” results on 321- and 132-avoiding
permutations, resolving the problem which was left open in [10, 4]. In fact, our bijection is a
composition of two (slightly modified) known bijections into Dyck paths, and the result follows
from a new analysis of these bijections. The Robinson-Schensted-Knuth (RSK) correspondence is a
part of one of them, and the difficulty of the analysis stems from the complexity of this celebrated
correspondence. As a new application of our bijections, we show that the length of the longest
increasing subsequence in 321-avoiding permutations corresponds to a certain statistic (that we call
rank) in 132-avoiding permutations, which further refines the previous results. We also apply our
bijections to “refined restricted involutions” (see Section 6).

Let n, m be two positive integers with m ≤ n, and let σ = (σ(1), σ(2), . . . , σ(n)) ∈ Sn and
π = (π(1), π(2), . . . , π(m)) ∈ Sm. We say that σ contains π if there exist indices i1 < i2 < · · · < im
such that (σ(i1), σ(i2), . . . , σ(im)) is in the same relative order as (π(1), π(2), . . . , π(m)). If σ does not
contain π, we say that σ is π-avoiding. For example, if π = 132, then σ = (2, 4, 5, 3, 1) contains 132,
because the subsequence (σ(1), σ(3), σ(4)) = (2, 5, 3) has the same relative order as (1, 3, 2). However,
σ = (4, 2, 3, 5, 1) is 132-avoiding.

We say that i is a fixed point of a permutation σ if σ(i) = i. Similarly, i is an excedance of σ
if σ(i) > i. Denote by fp(σ) and exc(σ) the number of fixed points and the number of excedances
of σ, respectively.

Denote by Sn(π) the set of π-avoiding permutations in Sn. For the case of patterns of length 3, it is
known [6] that regardless of the pattern π ∈ S3, |Sn(π)| = Cn = 1

n+1

(
2n
n

)
, the n-th Catalan number.

While the equalities |Sn(132)| = |Sn(231)| = |Sn(312)| = |Sn(213)| and |Sn(321)| = |Sn(123)| are
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straightforward, the equality |Sn(321)| = |Sn(132)| is more difficult to establish. Bijective proofs of
this fact are given in [7, 9, 12, 14]. However, none of these bijections preserves either of the statistics
fp(·) or exc(·).

Theorem 1. [10, 4] The number of 321-avoiding permutations σ ∈ Sn with fp(σ) = i and exc(σ) =
j equals the number of 132-avoiding permutations σ ∈ Sn with fp(σ) = i and exc(σ) = j, for any
0 ≤ i, j ≤ n.

A special case of the theorem, which ignores the number of excedances, was given in [10]. In full,
the theorem was shown in [4]. As we mentioned above, both proofs are non-bijective and technically
involved. The main result of this paper is a bijective proof of the following extension of Theorem 1.

Let lis(σ) be the length of the longest increasing subsequence of σ, i.e., the largest m for which
there exist indices i1 < i2 < · · · < im such that σ(i1) < σ(i2) < · · · < σ(im). Define the rank of σ,
denoted rank(σ), to be the largest k such that σ(i) > k for all i ≤ k. For example, if σ = 63528174,
then fp(σ) = 1, exc(σ) = 4, lis(σ) = 3 and rank(σ) = 2.

Theorem 2. The number of 321-avoiding permutations σ ∈ Sn with fp(σ) = i, exc(σ) = j and
lis(σ) = k equals the number of 132-avoiding permutations σ ∈ Sn with fp(σ) = i, exc(σ) = j and
rank(σ) = n− k, for any 0 ≤ i, j, k ≤ n.

To prove this theorem, we establish a bijection Θ between Sn(321) and Sn(132), which respects
the statistics as above. While Θ is not hard to define, its analysis is less straightforward and will
occupy much of the paper.

The rest of the paper is structured as follows. In Section 2 we define Dyck paths and several
new statistics on them. The description of the main bijection is done in Section 3, and is divided
into two parts. First we give a bijection from 321-avoiding permutations to Dyck paths, and then
another one from Dyck paths to 132-avoiding permutations. In Section 4 we establish properties of
these bijections which imply Theorem 2. Section 5 contains proofs of two technical lemmas. We
conclude with extensions of our results to refined restricted involutions, and other applications.

Let us mention here that whenever possible we refer to the celebrated monograph [13] rather than
to the original source. The interested reader is advised to consult [13] for the details, history, and
further references on the subject.

2. Statistics on Dyck paths

Recall that a Dyck path of length 2n is a lattice path in Z2 between (0, 0) and (2n, 0) consisting
of up-steps (1, 1) and down-steps (1,−1) which never goes below the x-axis. Sometimes it will be
convenient to encode each up-step by a letter u and each down-step by d, obtaining an encoding of
the Dyck path as a Dyck word. We shall denote by Dn the set of Dyck paths of length 2n, and by
D =

⋃
n≥0Dn the class of all Dyck paths.

For any D ∈ D, we define a tunnel of D to be a horizontal segment between two lattice points
of D that intersects D only in these two points, and stays always below D. Tunnels are in obvious
one-to-one correspondence with decompositions of the Dyck word D = AuBdC, where B ∈ D (no
restrictions on A and C). In the decomposition, the tunnel is the segment that goes from the
beginning of u to the end of d. If D ∈ Dn, then D has exactly n tunnels, since such a decomposition
can be given for each up-step of D.

A tunnel of D ∈ Dn is called a centered tunnel if the x-coordinate of its midpoint (as a segment) is
n, that is, the tunnel is centered with respect to the vertical line through the middle of D. In terms
of the decomposition of the Dyck word D = AuBdC, this is equivalent to A and C having the same
length |A| = |C|. Alternatively, this can be taken as a definition of centered tunnel. Throughout
the paper we denote by ct(D) the number of centered tunnels of D.

A tunnel of D ∈ Dn is called a right tunnel if the x-coordinate of its midpoint is strictly greater
than n, that is, the midpoint of the tunnel is to the right of the vertical line through the middle of D.
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In terms of the decomposition D = AuBdC, this is equivalent to saying that |A| > |C|. Denote by
rt(D) the number of right tunnels of D. In Figure 1, there is one centered tunnel drawn with a solid
line, and four right tunnels drawn with dotted lines. Similarly, a tunnel is called a left tunnel if the
x-coordinate of its midpoint is strictly less than n. Denote by lt(D) the number of left tunnels of
D. Clearly, lt(D) + rt(D) + ct(D) = n for any D ∈ Dn.

Figure 1. One centered and four right tunnels.

We will distinguish between right tunnels of D ∈ Dn that are entirely contained in the half plane
x ≥ n and those that cross the vertical line x = n. These will be called right-side tunnels and right-
across tunnels, respectively. In terms of Dyck words, a decomposition D = AuBdC corresponds to
a right-side tunnel if |A| ≥ n, and to a right-across tunnel if |C| < |A| < n. In Figure 1 there are
three right-side tunnels and one right-across tunnel. Left-side tunnels and left-across tunnels are
defined analogously.

Finally, for any D ∈ Dn, define ν(D) to be the height of the middle point of D, that is, the
y-coordinate of the intersection of the vertical line x = n with the path. For the path in Figure 1,
ν(D) = 2.

We say that i is an antiexcedance of σ if σ(i) < i. Sometimes it will be convenient to represent
a permutation σ ∈ Sn as an n × n array with a cross on the squares (i, σ(i)). Note that fixed
points, excedances, and antiexcedances correspond respectively to crosses on, strictly to the right,
and strictly to the left of the main diagonal of the array.

3. Two bijections into Dyck paths

The bijection Θ : Sn(321) −→ Sn(132) that we present will be the composition of two bijections,
one from Sn(321) to Dn, and another one from Dn to Sn(132).

The first bijection Ψ : Sn(321) −→ Dn is defined in two steps. Given σ ∈ Sn(321), we start
by applying the Robinson-Schensted-Knuth correspondence to σ [13, Section 7.11] (see also [6]).
This correspondence gives a bijection between the symmetric group Sn and pairs (P,Q) of standard
Young tableaux of the same shape λ ` n. For σ ∈ Sn(321) the algorithm is particularly easy because
in this case the tableaux P and Q have at most two rows. The insertion tableau P is obtained by
reading σ from left to right and, at each step, inserting σ(i) to the partial tableau obtained so far.
Assume that σ(1), . . . , σ(i− 1) have already been inserted. If σ(i) is larger than all the elements on
the first row of the current tableau, place σ(i) at the end of the first row. Otherwise, let m be the
leftmost element on the first row that is larger than σ(i). Place σ(i) in the square that m occupied,
and place m at the end of the second row (in this case we say that σ(i) bumps m). The recording
tableau Q has the same shape as P and is obtained by placing i in the position of the square that
was created at step i (when σ(i) was inserted) in the construction of P , for all i from 1 to n. We
write RSK(σ) = (P, Q).

Now, the first half of the Dyck path Ψ(σ) is obtained by adjoining, for i from 1 to n, an up-step
if i is on the first row of P , and a down-step if it is on the second row. Let A be the corresponding
word of u’s and d’s. Similarly, let B be the word obtained from Q in the same way. We define
Ψ(σ) to be the Dyck path obtained by the concatenation of the word A and the word B written
backwards. For example, from the tableaux P and Q as in Figure 2 we get the Dyck path shown in
Figure 1. The following proposition summarizes properties of this bijection Ψ:
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Figure 2. Construction of the RSK correspondence RSK(σ) = (P, Q) for σ = (2, 3, 5, 1, 4, 6, 8, 7).

Proposition 3. The bijection Ψ : Sn(321) −→ Dn satisfies fp(σ) = ct(Ψ(σ)), exc(σ) = rt(Ψ(σ)),
and lis(σ) = 1

2

(
n + ν(Ψ(σ))

)
, for all σ ∈ Sn(321).

Suppose RSK(σ) = (P, Q) for any σ ∈ Sn. A fundamental and highly nontrivial property of the
RSK correspondence is the duality: RSK(σ−1) = (Q,P ) [13, Section 7.13]. The classical Schensted’s
Theorem states that lis(σ) is equal to the length of the first row of the tableau P (and Q). Both
results are used in the proof of Proposition 3.

Let us now define the second bijection Φ : Sn(132) −→ Dn as follows. Any permutation σ ∈ Sn

can be represented as an n× n array with crosses in positions (i, σ(i)). From this array of crosses,
we obtain the diagram of σ as follows. For each cross, shade the cell containing it and the squares
that are due south and due east of it. The diagram is the region that is left unshaded. It is
shown in [8] that this gives a bijection between Sn(132) and Young diagrams that fit in the shape
(n− 1, n− 2, . . . , 1). Consider now the path determined by the border of the diagram of σ, that is,
the path with up and right steps that goes from the lower-left corner to the upper-right corner of
the array, leaving all the crosses to the right, and staying always as close to the diagonal connecting
these two corners as possible. Define Φ(σ) to be the Dyck path obtained from this path by reading
an up-step every time it goes up and a down-step every time it goes right. Since the path in the
array does not go below the diagonal, Φ(σ) does not go below the x-axis.
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Figure 3. The bijection Φ : (6, 7, 4, 3, 5, 2, 8, 1) 7→ uduuduududduuddd.

The bijection Φ is essentially the same bijection between Sn(132) and Dn given by Kratten-
thaler [7] (see also [5]), up to reflection of the path from a vertical line.

Proposition 4. The bijection Φ : Sn(132) −→ Dn satisfies fp(σ) = ct(Φ(σ)), exc(σ) = rt(Φ(σ)),
and rank(σ) = 1

2

(
n− ν(Φ(σ))

)
, for all σ ∈ Sn(132).

Proof. Let us show using the diagram representation that Φ maps fixed points to centered tunnels
and excedances to right tunnels. To do that we define the inverse map Φ−1 : Dn −→ Sn(132). Given
a Dyck path D ∈ Dn, the first step needed to reverse the above procedure is to transform D into a
path U from the lower-left corner to the upper-right corner of an n × n array, not going below the
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diagonal connecting these two corners. Then, the squares to the left of this path form a diagram,
and we can shade all the remaining squares. From this diagram, the permutation σ ∈ Sn(132) can
be recovered as follows: row by row, put a cross in the leftmost shaded square such that there is
exactly one cross in each column. Start from the top and continue downward until all crosses are
placed.

For the proof of this proposition, instead of using D = Φ(σ), it will be convenient to consider the
path U from the lower-left corner to the upper-right corner of the array of σ. We will talk about
tunnels of U to refer to the corresponding tunnels of D under this trivial transformation.

Consider the arrangement of crosses of σ as defined earlier. We now show how to associate a
unique tunnel of D to each cross of this array. Observe that given a cross in position (i, j), U has a
vertical step in row i and a horizontal step in column j. In D, these two steps correspond to steps
u and d respectively, so they determine a decomposition D = AuBdC (see Figure 4), and therefore
a tunnel of D. According to whether the cross was to the left of, to the right of, or on the main
diagonal, the associated tunnel will be respectively a left, right, or centered tunnel of D. Thus, fixed
points give centered tunnels and excedances give right tunnels.

u d
B

A

C

D

U

Figure 4. A cross and the corresponing tunnel.

To prove the last equality of the proposition, notice that rank(σ) is the largest m such that an
m×m square fits in the upper-left corner of the diagram of σ. Therefore, the height of Φ(σ) at the
middle is exactly ν(Φ(σ)) = n− 2 rank(σ). ¤

The main result of the paper follows now easily from these two propositions.

Proof of Theorem 2. Propositions 3 and 4 imply that Θ = Φ−1 ◦ Ψ is a bijection from Sn(321) to
Sn(132) which satisfies fp(Θ(σ)) = ct(Ψ(σ)) = fp(σ), exc(Θ(σ)) = rt(Ψ(σ)) = exc(σ), and

rank(Θ(σ)) =
1
2
(
n− ν(Ψ(σ))

)
= n− 1

2
(
n + ν(Ψ(σ))

)
= n− lis(σ) .

This implies the result. ¤

4. Proof of Proposition 3

Let us first consider only fixed points in a permutation σ ∈ Sn. Observe that if σ ∈ Sn(321) and
σ(i) = i, then (σ(1), σ(2), . . . , σ(i − 1)) is a permutation of {1, 2, . . . , i − 1}, and (σ(i + 1), σ(i +
2), . . . , σ(n)) is a permutation of {i + 1, i + 2, . . . , n}. Indeed, if σ(j) > i for some j < i, then
necessarily σ(k) < i for some k > i, and (σ(j), σ(i), σ(k)) would be an occurrence of 321.

Therefore, when we apply RSK to σ, the elements σ(i), σ(i + 1), . . . , σ(n) will never bump any
of the elements σ(1), σ(2), . . . , σ(i − 1). In particular, the subtableaux of P and Q determined by
the entries that are smaller than i will have the same shape. Furthermore, when the elements
greater than i are placed in P and Q, the rows in which they are placed are independent of the
subpermutation (σ(1), σ(2), . . . , σ(i− 1)). Note also that σ(i) will never be bumped.
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When the Dyck path Ψ(σ) is built from P and Q, this translates into the fact that the steps
corresponding to σ(i) in P and to i in Q will be respectively an up-step in the first half and a
down-step in the second half, both at the same height and at the same distance from the center of
the path. Besides, the part of the path between them will be itself the Dyck path corresponding to
(σ(i + 1) − i, σ(i + 2) − i, . . . , σ(n) − i). So, the fixed point σ(i) = i determines a centered tunnel
in Ψ(σ). It is clear that the converse is also true, that is, every centered tunnel comes from a fixed
point. This shows that fp(σ) = ct(Ψ(σ)), proving the first part of Proposition 3.

Let us now consider excedances in a permutation σ ∈ Sn(321). Our goal is to show that the
excedances of σ correspond to right tunnels of Ψ(σ). The first observation is that we can assume
without loss of generality that σ has no fixed points. Indeed, if σ(i) = i is a fixed point of σ, then
the above reasoning shows that we can decompose Ψ(σ) = AuBdC, where AC is the Dyck path
Ψ((σ(1), σ(2), . . . , σ(i− 1))) and B is a translation of the Dyck path Ψ((σ(i + 1)− i, . . . , σ(n)− i)).
But we have that exc(σ) = exc((σ(1), σ(2), . . . , σ(i − 1))) + exc((σ(i + 1) − i, . . . , σ(n) − i)) and
rt(AuBdC) = rt(AC) + rt(B), so in this case the result holds by induction on the number of fixed
points. Note also that the above argument showed that fp(σ) = fp((σ(1), σ(2), . . . , σ(i − 1))) +
fp((σ(i + 1)− i, . . . , σ(n)− i)) + 1 and ct(AuBdC) = ct(AC) + ct(B) + 1.

Suppose that σ ∈ Sn(321) has no fixed points. It is known that a permutation is 321-avoiding
if and only if both the subsequence determined by its excedances and the one determined by the
remaining elements (in this case, the antiexcedances) are increasing (see e.g. [8]). Denote by Xi :=
(i, σ(i)) the crosses of the array representation of σ. To simplify the presentation, we will refer
indistinctively to i or Xi, hoping this does not lead to a confusion. For example, we will say “Xi is
an excedance”, etc.

Define a matching between excedances and antiexcedances of σ by the following algorithm. Let
σ(i1) < σ(i2) < · · · < σ(ik) be the excedances of σ and let σ(j1) < σ(j2) < · · · < σ(jn−k) be the
antiexcedances.

Matching Algorithm
(1) Initialize a := 1, b := 1.
(2) Repeat until a > k or b > n− k:

(a) If ia > jb, then b := b + 1. (Xjb
is not matched.)

(b) Else if σ(ia) < σ(jb), then a := a + 1. (Xia is not matched.)
(c) Else, match Xia with Xjb

; a := a + 1, b := b + 1.
(3) Output the matching sequence.

Example. Let σ = (4, 1, 2, 5, 7, 8, 3, 6, 11, 9, 10) as in Figure 5 below. We have i1 = 1, i2 = 4, i3 = 5,
i4 = 6, i5 = 9, and j1 = 2, j2 = 3, j3 = 7, j4 = 8, j5 = 10, j6 = 11. In the first execution of
the loop in step (2) of the algorithm, neither i1 > j1 nor σ(i1) < σ(j1) hold, so Xi1 = (1, 4) and
Xj1 = (2, 1) are matched. Now we repeat the loop with a = b = 2, and since i2 > j2, we are in
the case given by (2a) (Xj2 = (3, 2) is not matched). In the next iteration, a = 2 and b = 3, so we
match Xi2 = (4, 5) and Xj3 = (7, 3). Now we have a = 3 and b = 4, so we match Xi3 = (5, 7) and
Xj4 = (8, 6). The values of a and b in the next iteration are 4 and 5 respectively, so we are in the
case of (2b), σ(i4) = 8 < 9 = σ(j5), and Xi4 = (6, 8) is unmatched. Now a = b = 5, and we match
Xi5 = (9, 11) and Xj5 = (10, 9). The matching algorithm ends here because now a = 6 > 5 = k.

An informal, more geometrical description of the matching algorithm is the following. For each
pair of crosses of the array (seen as embedded in the plane), consider the line that they determine. If
one of these lines has positive slope and leaves all the remaining crosses to the right, match the two
crosses that determine it, and delete them from the array. If there is no line with these properties,
delete the cross that is closer to the upper-left corner of the array (it is unmatched). Repeat the
process until no crosses are left.

Now we consider the matched excedances on one hand and the unmatched ones on the other. We
summarize rather technical results in the following two lemmas, which are proved in Section 5.
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Figure 5. Example of the matching for σ = (4, 1, 2, 5, 7, 8, 3, 6, 11, 9, 10), and Ψ(σ).

Lemma 5. The following quantities are equal:
(1) the number of matched pairs (Xi, Xj), where Xi is an excedance and Xj an antiexcedance;
(2) the length of the second row of P (or Q);
(3) the number of right-side tunnels of Ψ(σ);
(4) the number of left-side tunnels of Ψ(σ);
(5) 1

2

(
n− ν(Ψ(σ))

)
;

(6) n− lis(σ).

Note that (5)=(6) implies that lis(σ) = 1
2

(
n + ν(Ψ(σ))

)
, which is the third part of Proposition 3.

Lemma 6. The number of unmatched excedances (resp. antiexcedances) of σ equals the number of
right-across (resp. left-across) tunnels of Ψ(σ).

Since each excedance of σ either is part of a matched pair (Xi, Xj) or is unmatched, Lemmas 5
and 6 imply that the total number exc(σ) of excedances equals the number of right-side tunnels of
Ψ(σ) plus the number of right-across tunnels, which is rt(Ψ(σ)). This implies the second part of
Proposition 3.

To summarize, we have shown that the bijection Ψ satisfies all three properties described in the
proposition. This completes the proof. ¤

5. Proofs of the lemmas

Proof of Lemma 5. From the descriptions of the RSK algorithm and the matching, it follows that
an excedance Xi and an antiexcedance Xj are matched with each other precisely when σ(j) bumps
σ(i) when RSK is performed on σ, and that these are the only bumpings that take place. Indeed,
an excedance never bumps anything because it is larger than the elements inserted before. On the
other hand, when an antiexcedance Xj is inserted, it bumps the smallest element larger than σ(j)
which has not been bumped yet (which corresponds to an excedance that has not been matched
yet), if such an element exists. This proves the equality (1)=(2).

To see that (2)=(3), observe that right-side tunnels correspond to up-steps in the right half of
Ψ(σ), which by the construction of the bijection Ψ correspond to elements on the second row of Q.
The equality (3)=(5) follows easily by counting the number of up-steps and down-steps of the right
half of the path. The equality (4)=(5) is analogous.

Finally, Schensted’s Theorem states that the size of the first row of P equals the length of a
longest increasing subsequence of σ (see [11] or [13, Section 7.23]). This implies that (2)=(6), which
completes the proof. ¤

The reasoning used in the above proof gives a nice equivalent description of the recording tableau
Q in terms of the array and the matching. Read the rows of the array from top to bottom. For
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i from 1 to n, place i on the first row of Q if Xi is an excedance or it is unmatched, and place i
on the second row if Xi is a matched antiexcedance. In the construction of the right half of Ψ(σ),
this translates into drawing the path from right to left while reading the array from top to bottom,
adjoining an up-step for each matched antiexcedance and a down-step for each other kind of cross.

To get a similar description of the tableau P , we use duality. By construction of the matching
algorithm, the matching in the output is invariant under transposition of the array (reflection along
the main diagonal). Recall the duality of the RSK correspondence: if RSK(σ) = (P, Q), then
RSK(σ−1) = (Q, P ) (see e.g. [13, Section 7.13]). Therefore, the tableau P can be obtained by
reading the columns of the array of σ from left to right and placing integers in P according to
the following rule. For each column j, place j on the first row of P if the cross in column j is an
antiexcedance or it is unmatched. Similarly, place j on the second row if the cross is a matched
excedance. Equivalently, the left half of Ψ(σ), from left to right, is obtained by reading the array
from left to right and adjoining a down-step for each matched excedance, and an up-step for each
of the remaining crosses.

In particular, when the left half of the path is constructed in this way, every matched pair
(Xi, Xj) produces an up-step and a down-step, giving the latter a left-side tunnel. Similarly, in the
construction of the right half of the path, a matched pair gives a right-side tunnel.

Proof of Lemma 6. It is enough to prove it only for the case of excedances. The case of antiex-
cedances follows from it considering σ−1 and noticing that the path Ψ(σ−1) is obtained by reflecting
Ψ(σ) in a vertical axis through the middle of the path (this follows immediately from the duality
of RSK). Let Xk be an unmatched excedance of σ. We use the above description of Ψ(σ) in terms
of the array and the matching. Each cross Xi produces a step ri in the right half of the Dyck path
and another step `i in the left half. Crosses above Xk produce steps to the right of rk, and crosses
to the left of Xk produce steps to the left of `k. In particular, there are k − 1 steps to the right of
rk, and σ(k) − 1 steps to the left of `k. Note that since Xk is an excedance and σ is 321-avoiding,
all the crosses above it are also to the left of it. Consider the crosses that lie to the left of Xk. They
can be of the following four kinds:

• Unmatched excedances Xi. They will necessarily lie above Xk, because the subsequence of
excedances of σ is decreasing. Each one of these crosses contributes an up-step to the left of `k

and down-step to the right of rk.

• Unmatched antiexcedances Xj . They also have to lie above Xk, otherwise Xk would be matched
with one of them. So, each such Xj contributes an up-step to the left of `k and down-step to
the right of rk.

• Matched pairs (Xi, Xj) (i.e. Xi is an excedance and Xj an antiexcedance), where both Xi and
Xj lie above Xk. Both crosses together will contribute an up-step and a down-step to the left
of `k, and an up-step and a down-step to the right of rk.

• Matched pairs (Xi, Xj) (i.e. Xi is an excedance and Xj an antiexcedance), where Xj lies below
Xk. The pair will contribute an up-step and a down-step to the left of `k. However, to the
right of rk, the only contribution will be a down-step produced by Xi.

Note that there cannot be an antiexcedance Xj to the left of Xk matched with an excedance to the
right of Xk, because in this case Xj would have been matched with Xk by the algorithm. In the
first three cases, the contribution to both sides of the Dyck path is the same, so that the heights of
rk and `k are equally affected. But since σ(k) > k, at least one of the crosses to the left of Xk must
be below it, and this must be a matched antiexcedance as in the fourth case. This implies that the
step rk is at a higher y-coordinate than `k. Let hk be the height of `k. We now show that Ψ(σ) has
a right-across tunnel at height hk.

Observe that hk is the number of unmatched crosses to the left of Xk, and that the height of
rk is the number of unmatched crosses above Xk (which equals hk) plus the number of excedances
above Xk matched with antiexcedances below Xk. The part of the path between `k and the middle
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always remains at a height greater than hk. This is because the only possible down-steps in this part
can come from matched excedances Xi to the right of Xk, but then such a Xi is matched with an
antiexcedance Xj to the right of Xk but to the left of Xi, which produces an up-step compensating
the down-step associated to Xi. Similarly, the part of the path between rk and the middle remains
at a height greater than hk. This is because the hk down-steps to the right of rk that come from
unmatched crosses above Xk do not have a corresponding up-step in the part of the path between rk

and the middle. Hence, `k is the left end of a right-across tunnel, since the right end of this tunnel
is to the right of rk, which in turn is closer to the right end of Ψ(σ) than `k is to its left end.

It can easily be checked that the converse is also true, namely that in every right-across tunnel
of Ψ(σ), the step at its left end corresponds to an unmatched excedance of σ. ¤

6. Further applications

6.1. Recall the result in [10] that the number of permutations σ ∈ Sn(132) (or σ ∈ Sn(321)) with
no fixed points is the Fine number Fn. This sequence is most easily defined by its relation to Catalan
numbers:

Cn = 2 Fn + Fn−1 for n ≥ 2, and F1 = 0, F2 = 1.

Although defined awhile ago, Fine numbers have received much attention in recent years (see a
survey [3]). Special cases of our results give simple bijections between these two combinatorial
interpretations of Fine numbers and a new one: the set of Dyck paths without centered tunnels. In
particular, we obtain a bijective proof of the following result.

Corollary 7. The number of Dyck paths D ∈ Dn without centered tunnels is equal to Fn.

An analytical proof of this corollary can be easily deduced by combining results on Dyck paths
in [4] with a combinatorial interpretation of Fine numbers given in [10]. However, ours is the first
bijective proof of Corollary 7.

6.2. We can also extend Propositions 3 and 4 to statistics νc(D) defined as the height at x = n− c
of the Dyck path D ∈ Dn, for any c ∈ {0,±1,±2, . . . ,±(n − 1)}. The corresponding statistics
in Sn(132) and in Sn(321) are generalizations of the rank of a permutation and the length of the
longest increasing subsequence in a certain subpermutation of σ. The corresponding generalization
of Theorem 2 is straightforward and is left to the reader.

6.3. Let us also note that the limiting distribution of lis(·) on Sn(321) has been studied in [1]. From
Theorem 2, the results in [1] can be translated into results on the limiting distribution of rank(·)
on Sn(132).

6.4. Our final application has appeared unexpectedly after the results of this paper have been
obtained. We say that a permutation σ ∈ Sn is an involution if σ = σ−1. In a recent paper [2]
the authors introduce a notion of refined restricted involutions by considering the “number of fixed
points” statistic on involutions avoiding different patterns π ∈ S3. They prove the following result:

Theorem 8. [2] The number of 321-avoiding involutions σ ∈ Sn with fp(σ) = i equals the number
of 132-avoiding involutions σ ∈ Sn with fp(σ) = i, for any 0 ≤ i ≤ n.

Let us show that Theorem 8 follows easily from our investigation. Indeed, for every Dyck path
D ∈ Dn denote by D∗ the path obtained by reflection of D from a vertical line x = n. Now observe
that if Φ(σ) = D, then Φ(σ−1) = D∗. Similarly, if Ψ(σ) = D, then Ψ(σ−1) = D∗ (by the duality
of RSK). Therefore, σ ∈ Sn(321) is an involution if and only if so is Θ(σ) ∈ Sn(132), which implies
the result. Furthermore, we obtain the following extension of Theorem 8:

Theorem 9. The number of 321-avoiding involutions σ ∈ Sn with fp(σ) = i, exc(σ) = j and
lis(σ) = k equals the number of 132-avoiding involutions σ ∈ Sn with fp(σ) = i, exc(σ) = j and
rank(σ) = n− k, for any 0 ≤ i, j, k ≤ n.



10 SERGI ELIZALDE AND IGOR PAK

We leave the easy details of the proof to the reader.
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