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Ribbon tiles are connected polyominos which have at most one lattice
square per diagonal x+y =const. This paper concerns tiling problems
with sets of ribbon tiles: What regions can be tiled with (translated)
copies of tiles from a fixed set of ribbon tiles? A number of invariants
are constructed to answer this problem, in particular, invariants
which define linear relations between the number of tiles of each type
necessary for a tiling. These invariants are shown to be stronger than
the classical coloring invariants which are of the form “a tile covers
one square of each color, therefore a tileable region has the same
number of squares of each color”.

The proof of existence of these tile-counting invariants involves
showing that one can get from any tiling of a region to another tiling
of the same region by a sequence of local rearrangements; each local
rearrangement gives a linear tile-counting relation. The proof uses the
so-called “rim-hook bijection” (from the theory of integer partitions),
which is a bijection between collections of Young tableaux and “rim-
hook tableaux”, which resemble Young tableaux with ribbon tiles
instead of squares. Richard Kenyon (F-PARIS11-M)
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