NON-COMMUTATIVE EXTENSIONS OF THE MACMAHON
MASTER THEOREM
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ABSTRACT. We present several non-commutative extensions of the MacMahon Mas-
ter Theorem, further extending the results of Cartier-Foata and Garoufalidis-Lé-
Zeilberger. The proofs are combinatorial and new even in the classical cases. We
also give applications to the f-extension and Krattenthaler-Schlosser’s g-analogue.

INTRODUCTION

The MacMahon Master Theorem is one of the jewels in enumerative combinatorics,
and it is as famous and useful as it is mysterious. Most recently, a new type of
algebraic generalization was proposed in [GLZ] and was further studied in [FH1, FH2,
FH3, HL]. In this paper we present further generalizations of the MacMahon Master
Theorem and several other related results. While our generalizations are algebraic in
statement, the heart of our proofs is completely bijective, unifying all generalizations.
In fact, we give a new bijective proof of the (usual) MacMahon Master Theorem,
modulo some elementary linear algebra. Our approach seems to be robust enough to
allow further generalizations in this direction.

Let us begin with a brief outline of the history of the subject. The Master Theo-
rem was discovered in 1915 by Percy MacMahon in his landmark two-volume “Com-
binatory Analysis”, where he called it “a Master Theorem in the Theory of Parti-
tions” [MM, page 98]. Much later, in the early sixties, the real power of the Master
Theorem was discovered, especially as a simple tool for proving binomial identities
(see [GJ]). The proof of the MacMahon Master Theorem using Lagrange inversion is
now standard, and the result is often viewed in the analytic context [Go, GJ].

An algebraic approach to the MacMahon Master Theorem goes back to Foata’s
thesis [F1], parts of which were later expanded in [CF] (see also [L]). The idea was
to view the theorem as a result on “words” over a (partially commutative) alphabet,
so one can prove it and generalize it by means of simple combinatorial and algebraic
considerations. This approach became highly influential and led to a number of new
related results (see e.g. [K, Mi, V, Z]).

While the Master Theorem continued to be extended in several directions (see [FZ,
KS]), the “right” ¢- and non-commutative analogues of the results evaded discovery
until recently. This was in sharp contrast with the Lagrange inversion, whose ¢- and
non-commutative analogues were understood fairly well [Ga, GaR, Ge, GS, Kr, PPR,
Si]. Unfortunately, no reasonable generalizations of the Master Theorem followed
from these results.
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An important breakthrough was made by Garoufalidis, Lé and Zeilberger (GLZ),
who introduced a new type of g-analogue, with a puzzling algebraic statement and
a technical proof [GLZ]. In a series of papers, Foata and Han first modified and
extended the Cartier-Foata combinatorial approach to work in this algebraic setting,
obtaining a new (involutive) proof of the GLZ-theorem [FH1]. Then they developed
a beautiful “1 = q” principle which gives perhaps the most elegant explanation of the
results [FH2]. They also analyze a number of specializations in [FH3]. Most recently,
Hai and Lorenz gave an interesting algebraic proof of the GLZ-theorem, opening yet
another direction for exploration (see Section 13).

This paper presents a number of generalizations of the MacMahon Master Theorem
in the style of Cartier-Foata and Garoufalidis-Lé-Zeilberger. Our approach is bijective
and is new even in the classical cases, where it is easier to understand. This is reflected
in the structure of the paper: we present generalizations one by one, gradually moving
from well-known results to new ones. The paper is largely self-contained and no
background is assumed.

We begin with basic definitions, notations and statements of the main results in
Section 1. The proof of the (usual) MacMahon Master Theorem is given in Section 2.
While the proof here is elementary, it is the basis for our approach. A straightforward
extension to the Cartier-Foata case is given in Section 3. The right-quantum case is
presented in Section 4. This is a special case of the GLZ-theorem, when ¢ = 1. Then
we give a g-analogue of the Cartier-Foata case (Section 5), and the GLZ-theorem
(Section 6). The subsequent results are our own and can be summarized as follows:

The Cartier-Foata (g;;)-analogue (Section 7).

The right-quantum (g;;)-analogue (Section 8).
e The super-analogue (Section 9).
e The [-extension (Section 10).

The (g;;)-analogues are our main result; one of them specializes to the GLZ-theorem
when all ¢;; = ¢. The super-analogue is a direct extension of the classical MacMahon
Master Theorem to commuting and anti-commuting variables. Having been over-
looked in previous investigations, it is a special case of the (¢;;)-analogue, with some
¢i; = 1 and others = —1. Our final extension is somewhat tangential to the main
direction, but is similar in philosophy. We show that our proof of the MacMahon
Master Theorem can be easily modified to give a non-commutative generalization of
the so called (-extension, due to Foata and Zeilberger [FZ].

In Section 11 we present one additional observation on the subject. In [KS], Krat-
tenthaler and Schlosser obtained an intriguing g-analogue of the MacMahon Master
Theorem, a result which on the surface does not seem to fit the above scheme. We
prove that in fact it follows from the classical Cartier-Foata generalization.

As the reader shall see, an important technical part of our proof is converting the
results we obtain into traditional form. This is basic linear algebra in the classical case,
but in non-commutative cases the corresponding determinant identities are either less
known or new. For the sake of completeness, we present concise proofs of all of them
in Section 12. We conclude the paper with final remarks and open problems.
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1. BAsic DEFINITIONS, NOTATIONS AND MAIN RESULTS

1.1. Classical Master Theorem. We begin by stating the Master Theorem in the
classical form:

Theorem 1.1. (MacMahon Master Theorem) Let A = (a;;)mxm be a complex matriz,

and let 1, ...,z be a set of variables. Denote by G(ky,..., kn) the coefficient of
k1 km

it ximoin

(1.1) H(aﬂxl +...+ aimxm)ki.
i=1
Let ty, ..., t, be another set of variables, and T = (§;jt;)mxm- Then
1
1.2 Ghy, ... k) th e thn = —— —
( ) Z (17 ) ) 1 m det(]—TA)’
(k1)
where the summation is over all nonnegative integer vectors (ki, ..., kny).
By taking t, = ... =1t,, = 1 we get

1

1.3 Glky,....kp) = ———,

whenever both sides of the equation are well defined, for example when all a;; are
formal variables. Moreover, replacing a;; in (1.3) with a;; ¢; shows that (1.3) is actually
equivalent to (1.2). We will use this observation throughout the paper.

1.2. Non-commuting variables. Consider the following algebraic setting. Denote
by A the algebra (over C) of formal power series with non-commuting variables a;;,
1 <i,7 < m. Elements of A are infinite linear combinations of words in variables
a;; (with coefficients in C). In most cases we will take elements of A modulo some
ideal Z generated by a finite number of relations. For example, if 7 is generated by
ai;ap = agagj for all i, j, k, [, then A/7 is the symmetric algebra (the free commutative
algebra with m? variables a;;, 1 < 14,7 < m).

Throughout the paper we assume that z, ..., z, commute with a;;, and that z;
and x; commute up to some nonzero complex weight, i.e. that

T;T; = (35 TiTj, for all <]

with ¢;; € C, g;; # 0. We can then expand the expression

(1.4) H (ailxl + ...+ aimgjm)ki’
i=1..m

move all z;’s to the right and order them. Along the way, we will exchange pairs of
variables z; and z;, producing a product of ¢;;’s. We can then extract the coefficient
at 2" ...k As before, we will denote this coefficient by G(ky, ..., kn). Each such
coefficient will be a finite sum of products of a monomial in ¢;;’s, 1 < i < 7 < m,
and a word a;,;, ... a;,,, such that ¢y < ... <14y, the number of variables q; . is equal
to k;, and the number of variables a, ; is equal to k;.
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To make sense of the right-hand side of (1.3) in the non-commutative case, we need
to generalize the determinant. Let B = (b;;)mxm be a square matrix with entries in
A, i.e. b;;’s are linear combinations of words in A. To define the determinant of B,
expand the terms of

Z <_1)inV(U)ba’11 e bomm7

o€Sm
and weight a word a,, with a certain weight w(A, ). The resulting expression will
be called the determinant of B (with respect to A). In the usual commutative case
(as well as in the Cartier-Foata and right-quantum cases, see Sections 3 and 4), all
weights are equal to 1.

In all cases we consider we have w(&, @) = 1. Therefore

1 1
= =14+X+22+...,
det(I — A) 1-%
where ¥ is a certain finite sum of words in a,; and both the left and the right inverse
of det(/ — A) are equal to the infinite sum on the right. We can use the fraction
notation as above in non-commutative situations.

In summary, we just showed that both

1
ki,..., kn d ———
2. Glhiookn) an det(I — A)
(k1 ..... km)

are well-defined elements of A. The generalizations of the Master Theorem we present
in this paper will state that these two expressions are equal modulo a certain ideal Z.
In the classical case, the MacMahon Master Theorem gives this equality modulo the
ideal Zoomm generated by a;jar = apay;, for all 1 <4, j,k, 1 < m.

1.3. Main theorem. Fix complex numbers ¢;; # 0, where 1 < ¢ < j < m. Suppose
that the variables z1,...,z,, are g-commuting:

(15) TjTi = Qi TiTj, for all ¢ < j,

and that they commute with all a;;. Suppose also that the variables a;; q-commute
within columns:

(1.6) @k Qi = Qij ik @k, for all i < j,

and in addition satisfy the following quadratic equations:

(1.7) Qjk Qi — Qij Qik Qi + Qi G Qi — QuiQij @ aje =0, forall i < j, k<Ll
We call A = (a;;) with entries satisfying (1.6) and (1.7) a right-quantum q-matriz.

In Section 7, we define the concept of the g-determinant of a matrix B = (bi;)mxm
with entries in A. With that definition, we have

detq(I — A) = Y (—1)"IdetqA,,

JC[m]
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where
-1
detqAy = Z H Drjp | Co(i)in * " Ao (Gr)ik
€Sy \p<r: jp>jr
fOI"J:{jl <Ja < <jk}
Theorem 1.2. Let A = (aij)mxm be a right-quantum q-matriz. Denote the coefficient

of 2. zkm in

H (aﬂlj + ...+ aim$m)ki.
i=1..m
by G(k1,...,km). Then
1
1.8 G(ki,...,kp) = ——F——o,
( ) Z ( 1, ) ) detq(I _ A)
(k1 ek
where the summation is over all nonnegative integer vectors (ki, ..., kny).

Theorem 1.2 is the ultimate extension of the classical MacMahon Master Theorem.
Our proof of the theorem uses a number of technical improvements which become
apparent in special cases. While the proof is given in Section 8, it is based on all
previous sections.

2. A COMBINATORIAL PROOF OF THE MACMAHON MASTER THEOREM

2.1. Determinant as a product. Let B = (b;;) be an invertible m x m matrix
over C. Denote by B! the matrix B without the first row and the first column, by
B'12 the matrix B without the first two rows and the first two columns, etc. For
the entries of the inverse matrix we have:

_ det B!
(2.1) (B =g

Substituting B = I — A and iterating (2.1), we obtain:

(), ), (),
T—A) \T—an) \1=ae2) """ 1—q,.

det (I — A™) det (I — A™>12)  det (I — A'?3123) 1
~ det(I — A) det(I — A1) det(I — A1212) l—a,
1
~ det(I — A)’

provided that all minors are invertible. Now let a;; be commuting variables as in
Subsection 1.1. We obtain that the right-hand side of equation (1.3) is the product
of entries in the inverses of matrices, and we need to prove the following identity:

1 1 1 1
(2.2) G(kl,...,m—( ) ( ) (7) SURNE
Z I—A) \T—A1) \T—-AR212) 1 — aym,
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Since (I — A)™' =T+ A+ A?+ ..., we get a combinatorial interpretation of the
(11)-entry:

1
(2.3) (m) = > a5, a0,
11

where the summation is over all finite sequences (ji, ..., j¢), where j,. € {1,...,m},
1 < r < /. A combinatorial interpretation of the other product terms is analogous.
Recall that we already have a combinatorial interpretation of G(ki,..., k) as a
summation of words. Therefore, we have reduced the Master Theorem to an equality
between two summations of words (1.3), where all the summands have a positive sign.
To finish the proof we construct an explicit bijection between the families of words
corresponding to both sides.

2.2. The bijection. Throughout the paper we consider lattice steps of the form
(z,i) — (z+1,7) for some z,i,j € Z, 1 < i,j < m. We think of x being drawn along
the z-axis, increasing from left to right, and refer to ¢« and j as the starting height
and ending height, respectively.

From here on, we represent the step (z,7) — (z+1, j) by the variable a;;. Similarly,
we represent a finite sequence of steps by a word in the alphabet {a;;}, 1 <i,5 <m,
i.e. by an element of algebra A. If each step in a sequence starts at the ending point
of the previous step, we call such a sequence a lattice path.

Define a balanced sequence (b-sequence) to be a finite sequence of steps

(2.4) a = {(0,i1) = (L,1), (Ldi2) = (2,52), ..., ((—=1,40) — (£, o) },

such that the number of steps starting at height ¢ is equal to the number of steps
ending at height 4, for all i. We denote this number by k;, and call (kq, ..., k,,) the type
of the b-sequence. Clearly, the total number of steps in the pathis ¢ = ki +... 4+ k,,.

Define an ordered sequence (o-sequence) to be a b-sequence where the steps starting
at smaller height always precede steps starting at larger heights. In other words,
an o-sequence of type (ki,...,k,) is a sequence of k; steps starting at height 1,
then ko steps starting at height 2, etc., so that k; steps end at height i. Denote by
O(ky, ..., kn) the set of all o-sequences of type (ki, ..., kny).

Now consider a lattice path from (0,1) to (z1,1) that never goes below y = 1 or
above y = m, then a lattice path from (x1,2) to (z3,2) that never goes below y = 2
or above y = m, etc.; in the end, take a straight path from (x,,_1,m) to (z,,, m). We
will call this a path sequence (p-sequence). Observe that every p-sequence is also a
b-sequence. Denote by P(ky, ..., k) the set of all p-sequences of type (ki, ..., kn).

Example 2.1. Figure 1 presents the o-sequence associated with the word

A13011A12013A22023022021A23022023032431A31A33032032033A33

and the p-sequence associated with

13A320U22023031411A12022021A13031A23A33032A22023032033033.
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FIGURE 1. An o-sequence and a p-sequence of type (4,7, 8)

We are now ready to establish a connection between balanced sequences and the
equation (2.2). First, observe that choosing a term of

m

H(ailxl + . + aimxm)ki

i=1
means choosing a term ai,.z, ki times, then choosing a term as,x, ko times, etc.,
and then multiplying all these terms. In other words, each term on the left-hand side

of (2.2) corresponds to an o-sequence in O(ky, ..., k) for a unique vector (ki, ..., ky).
Similarly, by (2.3), a term on the right-hand side of (2.2) corresponds to a p-sequence,
i.e. to an element of P(ky, ..., k,,) for a unique vector (ki,..., k).

Let us define a bijection
0 O(ky,... ky) — Pky, ... kn)

with the property that the word ¢(a) is a rearrangement of the word «, for every
o-sequence .

Take an o-sequence «, and let [0, x] be the maximal interval on which it is part of a
p-sequence, i.e. the maximal interval [0, 2] on which the o-sequence has the property
that if a step ends at level i, and the following step starts at level j > i, the o-
sequence stays on or above height j afterwards. Let ¢ be the height at x. Choose the
step (2/,i) — (2’ +1,4') in the o-sequence that is the first to the right of x that starts
at level ¢ (such a step exists because an o-sequence is a balanced sequence). Continue
switching this step with the one to the left until it becomes the step (z,i) — (x+1,1').
The new object is part of a p-sequence at least on the interval [0,z 4+ 1]. Continuing
this procedure we get a p-sequence p(«).

For example, for the o-sequence given in Figure 1 we have x = 1 and ¢ = 3. The
step we choose then is (12,3) — (13,1), i.e. 2’ = 12.

Lemma 2.2. The map ¢ : O(ky,...,kyn) — P(ki, ..., kn) constructed above is a
bijection.

Proof. Since the above procedure never switches two steps that begin at the same
height, there is exactly one o-sequence that maps into a given b-sequence: take all
steps starting at height 1 in the b-sequence in the order they appear, then all the
steps starting at height 2 in the p-sequence in the order they appear, etc. Clearly,
this map preserves the type of a b-sequence. O]
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Example 2.3. Figure 2 shows the switches for an o-sequence of type (3,1,1), and
the p-sequence in Figure 1 is the result of applying this procedure to the o-sequence
in the same figure (we need 33 switches).

s NN \N— N —
FiGURE 2. Transforming an o-sequence into a p-sequence.

In summary, Lemma 2.2 establishes the desired bijection between the two sides of
equation (2.2). This completes the proof of the theorem. O

2.3. Refining the bijection. Although we already established the MacMahon Mas-
ter Theorem, in the next two subsections we will refine and then elaborate on the
proof. This will be useful when we consider various generalizations and modifications
of the theorem.

First, let us define ¢-sequences to be the b-sequences we get in the transformation of
an o-sequence into a p-sequence with the above procedure (including the o-sequence
and the p-sequence). Examples of g-sequences can be seen in Figure 2, where an
o-sequence is transformed into a p-sequence via the intermediate g-sequences.

Formally, a g-sequence is a b-sequence with the following properties: it is part of
a p-sequence on some interval [0, z] (and this part ends at some height 7); the rest of
the sequence has non-decreasing starting heights, with the exception of the first step
to the right of x that starts at height ¢, which can come before some steps starting at
lower levels. For a g-sequence «, denote by 1 («) the g-sequence we get by performing
the switch defined above; for a p-sequence v (where no more switches are needed),
¥(a) = a. By construction, the map v always switches steps that start on different
heights.

For a balanced sequence (2.4), define the rank r as follows:

ro=|{(s,t) + iy >0, 1<s <t <},

Clearly, o-sequences are exactly the balanced sequences of rank 0. Note also that the
map ¢ defined above increases by 1 the rank of sequences that are not p-sequences.

Write Q,,(k1, ..., k) for the union of two sets of b-sequences of type (ki, ..., ky):
the set of all g-sequences with rank n and the set of p-sequences with rank < n; in
particular, O(ky, ..., kn) = Qo(k1, ..., kn) and P(ky, ..., kyn) = Qn(ky, ..., k) for
N large enough (say, N > (g) will work).

Lemma 2.4. The map ¢ : Qu(k1,... . km) — Qui1(k1,...,km) is a bijection for
all n.

Proof. A g-sequence of rank n which is not a p-sequence is mapped into a g-sequence
of rank n+ 1, and 1 is the identity map on p-sequences. This proves that ¢ is indeed
a map from Q,(ki,...,kn) to Qui1(k1,..., ky). It is easy to see that v is injective
and surjective. O
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The lemma gives another proof that ¢ = ¥ : O(ky, ..., ky) — P(ki,... , ky) is a
bijection. This is the crucial observation which will be used repeatedly in the later
sections.

Let us emphasize the importance of the bijections ¢ and ¢ in the language of ideals.
Obviously we have ¢(a) = o modulo Zcomm for every g-sequence . Consequently,
(o) = o modulo Zeompm for every o-sequence, and we have

Z pla) = Z o  mod Zeomm

where the sum is over all o-sequences a.. From above, this can be viewed as a restate-
ment of the MacMahon Master Theorem 1.1.

2.4. Meditation on the proof. The proof we presented above splits into two
(unequal) parts: combinatorial and linear algebraic. The combinatorial part (the
construction of the bijection ¢) is the heart of the proof and will give analogues
of (2.2) in non-commutative cases as well. While it is fair to view the equation (2.2)
as the “right” generalization of the Master Theorem, it is preferable if the right-
hand side is the inverse of some version of the determinant, for both aesthetic and
traditional reasons. This is also how our Main Theorem 1.2 is stated.

The linear algebraic part, essentially the equation (2.1), is trivial in the commuta-
tive (classical) case. The non-commutative analogues we consider are much less triv-
ial, but largely known. In the most general case considered in the Main Theorem the
formula follows easily from the results of Manin on quantum determinants [M2, M3]
and advanced technical results of Etingof and Retakh who proved (2.1) for quantum
determinants [ER] in a more general setting (see further details in Section 13).

To avoid referring the technicalities to other people’s work and deriving these basic
linear algebra facts from much more general results, we include our own proofs of the
analogues of (2.1). These proofs are moved to Section 12 and we try to keep them as
concise and elementary as possible.

3. THE CARTIER-FOATA CASE

In this section, we will assume that the variables x4, ..., x,, commute with each
other and with all a;;, and that
(3.1) aap = aga; forall i # k.

The matrix A = (a;;) which satisfies the conditions above is called a Cartier-Foata
matriz.

For any matrix B = (b;;)mxm (With non-commutative entries) define the Cartier-
Foata determinant:

det B = Z (_1>inV(0) b011 to bamm .
UESm

Note that the order of terms in the product is important in general, though not for a
Cartier-Foata matrix.



10 MATJAZ KONVALINKA AND IGOR PAK

Theorem 3.1 (Cartier-Foata). Let A = (aij)mxm be a Cartier-Foata matriz. Denote
by G(ky, ..., k) the coefficient of 2 - zFm in the product

H (ailm + ...+ aimxm)ki.
i=1..m
Then
1
3.2 Gk,...,ky) = ———,
(K1, skm)
where the summation is over all nonnegative integer vectors (ky, ..., ky), and det(-)

1s the Cartier-Foata determinant.

Clearly, Theorem 3.1 is a generalization of the MacMahon Master Theorem 1.1.
Let us show that our proof of the Master Theorem easily extends to this case. We
start with the following well known technical result (see e.g. [F2]).

Proposition 3.2. If A = (aij)mxm s a Cartier-Foata matriz, then

1 1
- - - . J— All
(I—A)H det(I — A) det ( )

where det(-) is the Cartier-Foata determinant.

For completeness, we include a straightforward proof of the proposition in Sec-
tion 12.

Proof of Theorem 3.1. Denote by Z. the ideal generated by relations a;jar = apa;;
for all 1 < 4,5, k,1 < m, with ¢ # k. Observe that the terms of the left-hand side
of (3.2) correspond to o-sequences. Similarly, by Proposition 3.2 and equation (2.3),
the terms on the right-hand side correspond to p-sequences. Therefore, to prove the
theorem it suffices to show that

(3.3) Y a=> ¢la) mod I,

where the sum is over all o-sequences of a fixed type (ki, ..., kn).
As mentioned earlier, all switches we used in the construction of 1 involve steps
starting at different heights. This means that for a g-sequence «, we have

Y(a) = @ mod Zg,
which implies (3.3). This completes the proof of the theorem. O

4. THE RIGHT-QUANTUM CASE

In this section, we will assume that the variables z1,..., x, commute with each
other and with all a;;, and that we have
(4.1) ik ik = Qik Ajk,
(4.2) Qi Q1 — Qe Qi = Qi Qi — Qi Qjp,

for all 1 <4,5,k,1 <m. We call A= (a;;)mxm Whose entries satisfy these relations a
right-quantum matriz.
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Note that a Cartier-Foata matrix is a right-quantum matrix. The following result
is an important special case of the GLZ-theorem (Theorem 6) and a generalization of
Theorem 3.1.

Theorem 4.1. Let A = (aij)mxm be a right-quantum matriz. Denote by G(kq, ..., k)
the coefficient of x5 - - zFm in the product

H (aﬂxl + ...+ aimxm) ki.
i=1.m
Then
1
4.3 Gk, ky) = ——r,
( ) Z ( 1 ) ) det([ _ A)
(k1,-..skm)
where the summation is over all nonnegative integer vectors (ky, ..., ky), and det(-)

1s the Cartier-Foata determinant.

Let us show that our proof of the Master Theorem extends to this case as well, with
some minor modifications. We start with the following technical result generalizing
Proposition 3.2.

Proposition 4.2. If A = (a;;) is a right-quantum matriz, then

1 1
) = . I— A%,
<I—A)H dor— Ay et )

For completeness, we include a proof of the proposition in Section 12.

Proof of Theorem 4.1. Denote by Z,, the ideal of A generated by the relations (4.1)
and (4.2). As before, the proposition implies that the right-hand side of (4.3) enumer-
ates all p-sequences, and it is again obvious that the left-hand side of (4.3) enumerates
all o-sequences. Note that it is no longer true that for an o-sequence «, () = «
modulo Z,,. However, it suffices to prove that

(4.4) d ela) =) a mod I

where the sum runs over all o-sequences « € O(ky, ..., ky). We show this by making
switches in the construction of ¢ simultaneously.

Take a g-sequence a. If « is a p-sequence, then ¥ (a) = a. Otherwise, assume
that (x — 1,7) — (z,k) and (z,5) — (z + 1,1) are the steps to be switched in order
to get Y(«o). If & = [, then ¢(a) = « modulo Z,q by (4.1). Otherwise, denote
by 3 the sequence we get by replacing these two steps with (x — 1,7) — (z,[) and
(x,j) — (x + 1,k). The crucial observation is that /3 is also a g-sequence, and that
its rank is equal to the rank of o. Furthermore, a + 8 = ¢ (a) + ¥(8) mod Z,,
because of (4.2). This implies that ) ¢ (a) = > a mod Z,, with the sum over all
sequences in Q,(k1,..., k). From here we obtain (4.4) and conclude the proof of
the theorem. 0
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FiGURE 3. Transforming o-sequences into p-sequences via a series of
simultaneous switches.

Example 4.3. Figure 3 provides a graphical illustration for k; = 3, ko = 1, k3 = 1;
here p-sequences are drawn in bold, an arrow from a g- sequence a of rank n to a
g-sequence of rank n 4+ 1 o' means that o/ = ¢(«) and o = a mod Z,,, and arrows
from g-sequences «, 3 of rank n to g-sequences o, 3’ of rank n + 1 whose intersection

is marked by a dot mean that o/ = ¢(«), ' = ¢(5), and &' + ' = a +  mod Z,,.
5. THE CARTIER-FOATA ¢-CASE
In this section, we assume that variables x, ..., x,, satisfy
(5.1) rjr; = qrix; for @< j,

where ¢ € C, q # 0, is a fixed complex number. Suppose also that xi,...,x,, they
commute with all a;; and that we have:

(5.2) aja;, = agpay for i <j k<lI,
(5.3) aj = q2aikaﬂ, for i <j, k>1,
(5.4) k@i, = Qqaipajg, for 1< j.

Let us call such a matrix A = (a;;) a Cartier-Foata q-matriz. As the name suggests,
when ¢ = 1 the Cartier-Foata ¢-matrix becomes a Cartier-Foata matrix.

We begin with some helpful notation which will be used throughout the remainder
of the paper. We abbreviate the product ay,,, ---ax,pu, to ay, for A = A;--- A, and
[ = piy -+ fn, where X and p are regarded as words in the alphabet {1,...,m}. For
any such word v = vy - - - v, define the set of inversions

I(V) = {<Z7j) i <jayi > Vj}7
and let invv = |Z(v)].
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For a matrix B = (b;j)mxm with entries in A, define a quantum determinant (q-
determinant) with respect to A as follows. Expand the terms of

detyB = > (=1)™byy - by m
0ESm
and weight a word ay , by
WA, 1) = g rTInvA,
The resulting expression is then the ¢-determinant of B.

The following result is another important special case of the GLZ-theorem and a
generalization of the Cartier-Foata Theorem 3.1.

Theorem 5.1. Let A = (aij)mxm be a Cartier-Foata g-matriz. Let G(ky,..., k)
denote the coefficient of x’fl coexhmogn

H (ailxl + ...+ aimxm)ki.
i=1..m
Then
1
5.5 Gk, ... kp) = ———,
(5:5) 2, Gk ) dety (I — A)
(K1 e )
where the summation is over all nonnegative integer vectors (ki, ..., ky).

The proof of the theorem is a weighted analogue of the proof of Theorem 3.1. The
main technical difference is essentially bookkeeping of the powers of ¢ which appear
after switching the letters a;; (equivalently, the lattice steps in the g-sequences).

Proof of Theorem 5.1. Denote by Z,_.s the ideal of A generated by relations (5.2) —
(5.4). When we expand the product

—

H (ai15171 +...+ aimxm)kia

i=1..m

move the z;’s to the right and order them, the coefficient at ay, is ¢™*. This
means that Y G(kq,...,k,) is a weighted sum of o-sequences, with an o-sequence
A Welghted by quVN — qinv ,ufinv)\'

Choose a g-sequence o = ay, and let ¢)(a) = ay . Assume that the switch we
perform is between steps (z — 1,7) — (z,k) and (z,5) — (z + 1,1); write A = \1ijAe,
= prklps, N = Ajido, g/ = pilkps. If ¢ < j and k < [, we have inv N = inv A + 1,
invy' =invyu + 1. By (5.2), ¥(a) = o modulo Z,_s and

(56) qinv w —inv XQ/J(O() _ qinv,ufinv AO[ mod Iq—cf )
Similarly, if i < j and k& > [, we have inv A’ = inv A+ 1, inv ¢/ = inv u— 1. By (5.3),
we have ¢(a) = ¢*« modulo Z,_., which implies equation (5.6). If i < j and k = [,

we have inv \' = inv A+ 1, inv ¢/ = inv p. By (5.4), we have ¢)(a) = gae modulo Z,,_,
which implies (5.6) again. Other cases are analogous.
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Iterating equation (5.6), we conclude that if & = a, , is an o-sequence and (o) =
ay s is the corresponding p-sequence, then

qinv‘ulfinv)\’gD(a) _ qinv,ufinv)\a mod qucf-
Therefore,
(5.7) Z Gk, ..., kn) = Z ¢ ™A mod T, o,
(k1 e k)

where the sum on the right-hand side runs over all p-sequences a = ay .

Let us call a p-sequence primitive if it starts at some height y and stays strictly
above y until the last step (when it returns to y). For example, the p-sequence in
Figure 4 is a product of four primitive p-sequences. For a primitive p-sequence ay ,
of length ¢, inv u —inv A = £ —1, and for an arbitrary p-sequence a, , of length ¢ that
decomposes into n primitive p-sequences, inv yu —inv A = ¢ — n.

Consider a matrix

a11 a2 - A1m

_ qaz1 Qqazz - (A2,

(5.8) A= ]49a1 qazx - qa3y
qami1 qQp2 - qQmm

Clearly (26)11 enumerates paths starting and ending at height 1 weighted by ¢‘~",
where n is the number of steps starting at height 1. At this point we need the following
generalization of Proposition 3.2.

Proposition 5.2. If A = (aij)mxm s a Cartier-Foata g-matriz, then

1 1
— = —— . det, (I — A1) .
<]—A)11 dety (I — A) q< )

The proposition implies that the right-hand side of (5.5) in the theorem enumerates
all p-sequences, with o = a,, weighted by g™ HIvA - The equation (5.7) above
shows that this is also the left-hand side of (5.5). This completes the proof of the
theorem. O

Example 5.3. For the p-sequence
QO = (13032024043031011022034044043
shown in Figure 4, we have
inv(1324312344) =04+3+1+4+2+0+0+0+0+0= 10

and
inv(3243112443) =4+ 2+ 5+3+0+0+0+1+140=16.

Therefore, the p-sequence o is weighted by ¢°.
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7N

*—e

FIGURE 4. A p-sequence with weight ¢5.

6. THE RIGHT-QUANTUM ¢-CASE

As in the previous section, we assume that the variables x1,.. ., x,, satisfy
(6.1) rjr; = qu;r; for i < j,
where g € C, ¢ # 0 is a fixed complex number. Suppose also that x4, ..., x,, commute
with all a;; and that we have:
(6.2) ajkai, = qaga, forall i <j,
(6.3) Qi Qg — q_lajkail = ajia;, —qaga;; forall < jk<lI.

We call such a matrix A = (a;;) a right-quantum g-matriz. 1t is easy to see that when
q = 1 we get a right-quantum matrix defined in Section 4. In a different direction,
every Cartier-Foata g-matrix is also a right-quantum g¢-matrix. The following result
of Garoufalidis, Lé and Zeilberger [GLZ] generalizes Theorems 4.1 and 5.1.

Theorem 6.1 (GLZ-theorem). Let A = (a;j)mxm be a right-quantum q-matriz. De-
note by G(ky, ..., k) the coefficient of x¥* - zkm in

—

H (aﬂxl + ...+ aimxm) ki.
i=1..m
Then
1
6.4 G(ki,....kp) = ————,
( ) Z ( 1, ) ) detq(] _ A)
(kl,...,km)
where the summation is over all nonnegative integer vectors (ki, ..., kny).

The proof of the theorem is almost identical to the one given in the previous section,
with some modifications similar to those in the proof of Theorem 4.1.

Proof of Theorem 6.1. Denote by Z,_,, the ideal of A generated by relations (6.2)
and (6.3). Now, when we expand the product

— b

H (aﬂxl + ...+ aimxm) ,

i=1..m

move the z;’s to the right and order them, the coefficient at ay, is ¢™*. Therefore,
> G(ki,..., ky) is a weighted sum of o-sequences, with an o-sequence a, , weighted
by ¢"V# = VA=A Similar arguments as before, now using (6.2) and (6.3) instead
of (5.2) — (5.4), show that

(6.5) Z G(ky,... kn) = Zqim’”_inv’\aAM mod Z, .,
(k1y-eeskm)
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where the sum on the right-hand side is over all p-sequences a = ay ;. The following
proposition generalizes Propositions 4.2 and 5.2.

Proposition 6.2. If A = (a;;)mxm 15 a right-quantum q-matriz, then

1 1
— = ——— . det, (I — AY),
<I—A)11 dety (I — A) q< )

where A is defined by (5.8).

The proposition is proved in Section 12. Now Theorem 6.1 follows from the propo-
sition and equation (6.5). O

7. THE CARTIER-FOATA ¢;;-CASE

We can extend the results of the previous sections to the multiparameter case.
Assume that variables zq, ..., x,, satisfy

(7.1) rjr; = q;riv; for 1<y,

where ¢;; € C, ¢;; # 0 are fixed complex numbers, 1 <7 < j < m. Suppose also that
Z1,..., Ty commute with all a;; and that we have:

(7.2) Qe @ Qi =  Qjaipa; for i < gk <lI,

(7.3) aji@ik, = GijQu Gk aj for @ < jk>1,

(7.4) ajrix = Qi QkQjp, for i< j.

We call A = (a;j)mxm Whose entries satisfy these relations a Cartier-Foata q-matriz.
When all ¢;; = ¢ we obtain a Cartier-Foata g-matrix. Thus the following theorem is
a generalization of Theorem 5.1 and is a corollary of our Main Theorem 1.2.

For a matrix B = (b;;)mxm With entries in A, define the q-determinant with respect
to A as follows. Expand the terms of

Z (=)™ by s by,
gESH
and weight a word ay , by
w(A, p) = H Duijps H q)TJIAZ
(.3)€Z(u) (i.9)€Z(N)
The resulting expression is then the g-determinant of B.

Theorem 7.1. Assume that A = (a;j)mxm 1S a Cartier-Foata q-matriz. Denote by
G(ky, ..., k) the coefficient of z¥* - - zkm in

H (ailxl + ...+ azmxm)kl
i=1.m
Then
1
(75) Z G(klaakm) = m7

(k17---7km)
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where the summation is over all nonnegative integer vectors (ki, ..., kny).

Remark 7.2. If we define ¢;; = 1 and ¢;; = ngl for i < j, we can write the conditions
(7.2) — (7.4) more concisely as
(7-6) Gkl Q51 Qi = G55 Ak Qji,
for all 7,5, k, [, and i # j.
We can repeat the proof of Theorem 5.1 almost verbatim. This only requires a

more careful “bookkeeping” as we need to keep track of the set of inversions, not just
its cardinality (the number of inversions).

Proof of Theorem 7.1. Denote by Zy_¢ the ideal of A generated by the relations (7.2)
— (7.4). When we expand the product

—

H (anz1+ ...+ Qumm) ki

i=1.m
move the z;’s to the right and order them, the coefficient at a, , is equal to
H Qi -
(.3)€Z (1)

This means that > G(ky,...,kn) is a weighted sum of o-sequences, with an o-
sequence ay , weighted by

H qMJlMZ H Qi H q
(4.5)EZ(n (6,3)€Z(p) (G.3)ET(M

Now, the equation (7.6) implies that for every o-sequence o = ay , and p(a) = ay v,
we have

H Qs H Q,:g_l,\; pla) = H Qujp; H q a  mod Zy .

(4,7)€T(p') (i,7)€T(N) (4,5)€T(p) (1,)€T(N)

On the other hand, for a primitive p-sequence a,, starting and ending at 1 we

have:
H Qu;ps H q)\ N Dy ips Qlpp—y-
(4,5)€l(p) (B,5)eI(X

This shows that all weighted p-sequences starting and ending at 1 are enumerated by

ai 12 T A1m
1 _ 12021  Qq12G22 - (Q1202m
(7.7) ( ~) , where A= | @3az q3a32 - q1303m
I-A : : .. :
d1mm1 qimam2 - d1mAmm

We need the following generalization of Proposition 5.2.
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Proposition 7.3. If A = (aij)mxm s a Cartier-Foata q-matriz, then

1 1
_— = — . dety (I — A" .
([— A)ll detq(I — A) q( )

The proposition is proved in Section 12. From here, by the same logic as in the proofs
above we obtain the result. 0

8. THE RIGHT-QUANTUM @;;~CASE (PROOF OF MAIN THEOREM 1.2)

First, by taking ¢;; = 1 and ¢j; = qi;1 for j < 7, we can assume that (1.5) holds for
all 1 <i,7 <m. Now equations (1.6) and (1.7) can be more succinctly written as
(8.1) ik, A — %-;1 kUi = (ki (%}1 Ay i, — Qg ajk:)
for all 4,4, k,l, such that i # j. Note that in this form equation (8.1) is a direct
generalization of equation (6.3) on the one hand, with the ¢;;’s arranged as in equa-
tions (7.2)—(7.4) on the other hand.

We also need the following (straightforward) generalization of Propositions 6.2
and 7.3.

Proposition 8.1. If A = (aij)mxm is a right-quantum q-matriz, then

1 1
— = ——— . dety (I — AY),
(I— A)n detq (I — A) q( )

where A is given in (7.7).

The proof of the proposition is in Section 12. From here, the proof of the Main
Theorem follows verbatim the proof of Theorem 7.1. We omit the details. ([l

9. THE SUPER-CASE

In this section we present an especially interesting corollary of Theorem 7.1.
Fix a vector v = (y1,...,7vm) € Z5 and write ¢ for ;. If 7 = 0, index ¢ is called

even, otherwise it is called odd. We will assume that the variables x4, ..., x,, satisfy
(9.1) ziv; = (=) x;z; for i # j

In other words, the variables x; and x; commute unless they are both odd: ~; = «; = 1,
in which case they anti-commute. As before, suppose that z,...,z, commute with
all a;;’s, and that we have

(9.2) airazy = (—=DYaj ag,  forall i j,

(9.3) apay = (—1)ij+kl ajia;, forall i#j, k#1.

We call A = (a;;) as above a Cartier-Foata super-matriz. Clearly, when v = (0, ...,0),
we get the (usual) Cartier-Foata matrix (see Section 3).

For a matrix B = (b;;j)mxm with entries in A, define the super-determinant with
respect to A as follows. Expand the terms of

Z (_1)inv(0') ball . bgmm

O'ESm
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and weight a word ay , by
w()\,u) — (_1)0inv)\+oinvu’

where oinv A = [{(¢,7): 72 = j = 1,i < j,1; > v;}|. The resulting expression is then
the super-determinant of B.

For example, if v = (1,...,1), then det A is the permanent perm A.
Theorem 9.1. (Super Master Theorem) Let A = (a;;)mxm be a Cartier-Foata super-

matriz, and let 1, ...,z be as above. Denote by G(ky,..., k) the coefficient of
k1 km o
it xymoin
H (aﬂxl + ...+ azmxm)kz
i=1..m
Then
1
94 Gk, ..., kyp) = ———,
( ) Z ( 1 ) ) Sd@t([ _ A)
(k1 yenskm)
where the summation is over all nonnegative integer vectors (ky, ..., kp).

Proof. This is a special case of Theorem 7.1 for ¢;; = (—1)”. The rest is a straight-
forward verification. O

10. THE [-EXTENSION

In this section we first present an extension of MacMahon Master Theorem due
to Foata and Zeilberger. Their theorem does not generalize to our non-commutative
settings, but we find a variant that does.

10.1. Foata-Zeilberger’s (-extension. First, assume that a;; are commutative
variables and let 5 € N be a non-negative integer. For k = (ki,..., k), let X(k)
denote the set of all permutations of the set

(11 (LD (20), e (20 k) s (my 1), (k) )

For a permutation 7 € ¥(k), we define m;; := ¢’ whenever (i, j) = (¢, j'). Define the

weight v(m) by the word
U(ﬂ-) = H H a'i,wij

i=l.m j=1.k
and the (-weight vg(m) by the product

vp(m) = BT u(m),
where cyc 7 is the number of cycles of the permutation .

By definition, the word v(m) is always an o-sequence of type (ki, ..., k,,). Note now
that the word a € O(ky, ..., k) does not determine the permutation 7 uniquely, since
the second coordinate j’ in (¢’, j') = (7, j) can take any value between 1 and k;. From
here it follows that there are exactly k;!- - - k,,! permutations = € ¥(k) corresponding
to a given o-sequence o € O(ky, ..., kp).
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The (usual) MacMahon Master Theorem can be restated as
1 1
MMT _ = -

where the summation is over all non-negative integer vectors k = (kq, ..., k,,). Foata
and Zeilberger proved in [FZ] the following extension of (MMT):

1 A 1
(FZ) (det(]—A)) = 2 mrEa 2w
Ke(k1yoikm) O moes(k)

Take a word p in the alphabet {1,...,m}, and let A\ denote its non-decreasing
rearrangement. Define

1 CyC(T

where (k1,. .., kp) is the type of the o-sequence ay , (i.e. k; is the number of ¢’s in )
and the sum runs over all 7 € P(k) with v(m) = a,,. Another way to phrase (FZ) is

to say that
1 B
(@) ~Zote
o

where p runs over all words in the alphabet {1,...,m} and X is the non-decreasing
rearrangement of .
Example 10.1. Take aj1a12a91a92 (80 k1 = ky = 2). The relevant permutations are

LY (12 1) 22) (L) (1L2) 1) (22

(1L1) (21 (1,2) 22)) \(L1) (2,2) (1,2) (1))’

(L) (L2) (1) (2,2) (L) (L2) (1) (2,2)

(1,2) 1) (L) 22) (1,2 22 L) 21))

and therefore
ci212(6) = (6% +26% + B) /4.

Denote by Sk the natural embedding of Sg, x --- x Sk, in Sk,+. 4k, . Since the
variables a;; commute, ay, remains the same if we apply m € Sk to u. For example,
a12011G22021 = A11G12021022. Furthermore, it is easy to see that ¢, is also invariant
with respect to the action of Sy.

10.2. The Cartier-Foata case. Assume that the matrix A is Cartier-Foata. Choos-
ing a term of (det(I—A))~” means choosing 3 terms in (det(/—A))~! and multiplying
them from left to right. Since the variables with different left indices commute, we can
write each term of (det(/ —A))~? as an o-sequence, and there must exist non-negative

integers d, () so that
1 8
(W—A)) - z/; du(B)ax,
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where p runs over all words in the alphabet {1,...,m} and X is the non-decreasing
rearrangement of .

Even though commutative variables are also Cartier-Foata, that does not mean
that ¢, = d,, for all p — in fact, ¢, () is not always an integer. For example, we have

01212(2) = 01221(2) = 02112(2) = 02121(2) = 9/27
while
d1212(2) = d2121(2) = 4,  d1221(2) = d2112(2) = 5.
Note, however, that we do have

€1212(2) + €1221(2) + €2112(2) + €2121(2) = d1212(2) + do2121(2) + d1201(2) + d2112(2)

since the values on both sides represent the coefficient of a1;ai2a91 a9 in (det(I—A))~2
when we rearrange commuting variables a;; in lexicographic order (i.e. so that a;;
never appears before a;, for j > k). In general, we have

(10.1) Y alB) =) du(0),

where both sums run over the orbit of a word of type k under the action of Sy.

Let us find a combinatorial interpretation of d,. For an o-sequence a,,, take
the corresponding p-sequence ay ,» = ¢(ay,) (see Section 2), and interpret it as a
sequence of steps.

In what follows, we will call a lattice path from ¢ to ¢ with each height appearing
at most once as the starting height a disjoint cycle. For example, ajsas5as3a3; is a
disjoint cycle while ajoas3a33a31 is not.

If the first repeated height in ay , is the starting height of the sequence, the
sequence starts with a disjoint cycle; remove it and repeat the algorithm. If the
first repeated height in ay ,s is not the starting height of the sequence, we have X
starting with dyis - - - ipipr19ps0 - - - Ippr—1 and ' starting with igis - - - iy 19,40 - - - 4, for
different indices i1, ...,%p4,—1. Then we can move the disjoint cycle i, — i,41 —

. — iptr—1 — % to the beginning, remove it, and repeat the algorithm with the rest
of the sequence. The resulting sequence is a concatenation of disjoint cycles, and we
will call it the disjoint cycle decomposition of the o-sequence ay .

Example 10.2. Take the o-sequence

113011A12013022023022021A23022023032431A31A33032032033133

from Example 2.1. The corresponding disjoint cycle decomposition is

(22032023013031411022012021A13031433023032022023032433A33-

and has 13 cycles.

Remark 10.3. Note that the word “disjoint” means that the starting heights in each
cycle are different, not that the starting heights of different cycles are disjoint as sets.
If 1 is a permutation of {1,2,...,m}, the disjoint cycle decomposition of aia._, , is
a canonically chosen disjoint cycle decomposition of the permutation pu.
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Recall that we are trying to calculate the $-th power of the sum of all o-sequences.
Imagine we have 3 (linearly ordered) slots, and that we are given a word p and its
non-decreasing rearrangement \. The number of ways of putting each step \; — u;
in one of the slots so that the steps within each slot form an o-sequence, and so that
the resulting sequence is ay ,, is precisely the coefficient d,, (/).

The following lemma will reduce the calculation of d, to a simple combinatorial
argument.

Lemma 10.4. All the steps in a cycle of the disjoint cycle decomposition must be
placed in the same slot.

Proof. Assume by induction that we have proved this for the first p — 1 cycles, with
the base of induction being p = 1. Take the p-th cycle i1 — is — ... — iy — 71, If
[ = 1, there is nothing to prove, otherwise assume that i; — 5 is placed in slot r and
that i — i3 is placed in slot ' > r. The step i; — iy in slot r ends with 75, and
since the sequence in each slot is balanced, there must be a step with starting height
i9 in slot r. If this step is in one of the first p — 1 cycles, there is another step with
ending height 75 in slot r by the induction hypothesis. This would mean that in slot r
there is a step with starting height 75 that belongs to one of the cycles p+1,p+2,...,
which is a contradiction since this step should be to the right of 75 — 3.

The contradiction proves that i — i3 must be in a slot ' < r. But if v’ < r, the
same reasoning as above shows that i3 — i4, 74 — 15 etc. are in a slot strictly to the
left of r. In particular, this would hold for the step 7; — 45, which is a contradiction.
This shows that i, — i3 is in the same slot as i; — i, and the same proof shows that
the whole cycle i1 — iy — ... — 4; — 41 is in the same slot. O

We will say that two cycles in the disjoint cycle decomposition are disjoint if the
sets of their starting heights are disjoint. Futhermore, let d(7) denote the number of
descents of a permutation 7, i.e. the cardinality of the set {i: m(i) > 7(i + 1)}.

Theorem 10.5. Assume A = (a;j)mxm 15 a Cartier-Foata matriz. For a word p in
the alphabet {1, ... ,m}, denote by X its non-decreasing rearrangement, and denote by
d.(B) the coefficient of ay,, in (det(I — A))=7.

Let uyug - - - uy, be the disjoint cycle decomposition of the o-sequence ay,. Then

(10.2) du(B) =) (5 o _kl - d<7r)>,

™

where the sum is over all permutations m € Sy such that i < j,m(i) > w(j) implies
that wuyy, ur@) are disjoint.

Example 10.6. The sequence ajjai2a21a99 is already written as a product of three
disjoint cycles, u; = a1, us = a12a21, Uz = as9, SO uy has to appear before usy, and
us has to appear before us. The only permutation in the sum (10.2) is therefore the
identity, and

di212(8) = (5;2> _ BB+ 16)5(6+ 2)
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The disjoint cycle decomposition of aq1a12a92a91 is (a11)(ag2)(a12a91), so u; and uy
have to appear before uz. The permutations in the sum (10.2) are 123 and 213, and

= ()17 222103

We also get d2112(6> = d1221 (ﬁ) and d2121 (ﬁ) = dlglg(ﬁ>. Note that indeed

c1212(B) + c1221(B) + c2112(B) + c2121(B) = dr212(8) + d2121(B) + di221(8) + da112(53),
as predicted by (10.1).

Proof (of Theorem 10.5). By the lemma, each cycle has to lie in one of the slots.
So we have to find the number of ways to place the k cycles in ( slots so that their
product is ay .

Note that two cycles commute if and only if they are either the same or disjoint. That
means that a permutation 7 of the cycles gives a, , if and only if the inversions of 7
correspond to pairs of disjoint cycles.

Take the identity permutation, which does not have inversions and therefore certainly
satisfies this condition. We have to find the number of ways of placing these k linearly
ordered cycles in 3 linearly ordered slots. Of course, there are

")

ways to do that. Now assume that the first two cycles are disjoint, so that the
permutation 2134 ... k satisfies the condition. There are again (’8 +Z_1) ways to place
the cycles in the slots, but since the first two cycles commute, placing them in the
same slot would give the same term as the corresponding placement for the identity
permutation. Basic enumeration shows that the number of ways to place k linearly
ordered cycles in [ linearly ordered slots so that the first two cycles are in different

slots is
B+k—2
f .

Similarly, for any permutation 7 whose inversions correspond to pairs of disjoint
cycles, a descent i of m corresponds to commuting cycles (), Ur(i+1), S0 we should
not place 7(i) and m(i+ 1) in the same slot to avoid double counting. In other words,

i =y (TR,

™

where the sum is over all permutations m € Sy such that ¢ < j,7(i) > 7(j) implies
that the cycles ur(;), ur(; are disjoint. 0

10.3. Other non-commutative extensions. Assume that A is right-quantum. By
the right-quantum MacMahon theorem (Theorem 4.1), each of the (3 factors of (det(/—
A))7P is a sum of o-sequences. After multiplication, we get a sum over all concatena-
tions of 3 o-sequences. However, this cannot be transformed into a sum of o-sequences,
as shown by the following.



24 MATJAZ KONVALINKA AND IGOR PAK

Example 10.7. The sum over all sequences of type (1,1) in (det(/ — A))~2 is
ai1a92-1+ar-ag+ag-an+1-aj1a+azas1 -1+ 1-a12a01 = 3ar1aze+azar; +2a2as1,
which is not equal to a weighted sum of o-sequences.

Extensions to weighted cases in the spirit of Sections 5 and 7 are possible. We leave
this as an exercise for the reader.

11. KRATTENTHALER-SCHLOSSER’S ¢-ANALOGUE

In the context of multidimensional g-series an interesting g-analogue of the MacMa-
hon Master Theorem was obtained in [KS, Theorem 9.2]. In this section we place the
result in our non-commutative framework and quickly deduce it from Theorem 3.1.

We start with some basic definitions and notations. Let z;,b;;, 1 < 4,7 < m, be
commutative variables, and let ¢i1,...,q, € C be fixed complex numbers. Denote
by &; the ¢;-shift operator

& Clzr,y. .y zm) — Clz, ..o, 2m)
that replaces each occurrence of z; by ¢;z;. We assume that &, commutes with b;;, for
all 1 <4, 4,7 < m. For a nonnegative integer vector k = (ky, ..., k), denote by [zX] F

the coefficient of 2% - z¥m in the series F. Denote by 1 the constant polynomial 1.
Finally, let

(a;0)k = (1—a)(1—aq) -+ (1—ag"").

Theorem 11.1 (Krattenthaler-Schlosser). Let A = (@ij)mxm, where
Q5 = 2252J — Z; bij gi7 for all 1 S Z,j S m.

Then, for non-negative integer vector k = (ky, ..., ky,) we have:
m m 1

(11.1) HH(Z m/w) ] (=)
1= = kz

where det(-) is the Cartier-Foata determinant.

Note that the right-hand side of (11.1) is non-commutative and (as stated) does
not contain ¢;’s, while the left-hand side contains only commutative variables and ¢;’s.
It is not immediately obvious and was shown in [KS] that the theorem reduces to the
MacMahon Master Theorem. Here we give a new proof of the result.

Proof of Theorem 11.1. Think of variables z; and b;; as operators acting on polyno-
mials by multiplication. Then a matrix entry a;; is an operator as well. Note that
multiplication by z; and the operator &£ commute for 7 # j. This implies that the
equation (3.1) holds, i.e. that A is a Cartier-Foata matrix. Let z1,...,x,, be formal
variables that commute with each other and with a;;’s. By Theorem 3.1, for the
operator on the right-hand side of (11.1) we have:

1
m = Z G,y Tm),

r=(r1,....7m)
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where

G(ri,...,rm) = [X'] H (aﬂxl +...+ aimxm)”.
i=1..m
Recall that a;; = 2;(0;; —b;; ;). Now observe that every coefficient G(ry,...,r;,) 1 is
equal to z" times a polynomial in b;; and ¢;. Therefore, the right-hand side of (11.1)
is equal to

2] (m-l) - (Z G(rl,...,rm)-l) — [ (Glhkr, . k) - 1),

This is, of course, a sum of [zX](a - 1) over all o-sequences « of type k. Define

ko k-1 ko k-1
Cij = Zz(Sz] — Zibiqu' and dij = Zjéij — Zjbijqz‘
It is easy to prove by induction that
0 4—1 1
@ixy Wing * * * Wix, * 1 = Ci)\1ci)\2 ”'Ci)\g'
Therefore, for every o-sequence
(11.2) Q= Gaafang © s daag @ax3doag = o Gaxg o Gmap Gmage - Amagn
we have:
_ k1 ki1 1 ko ko—1 1 km km—1 1
a1 =rc IS NG I IS NG e I NS
IDYRSPY; 1AL, T2337263 227, mAP “mAL mAp
ki gki—1 1 ko gka—1 1 k K —1 1
N 2 L Sl S L LI o S | e dfm gm0 g
1A IAS 1AL 722037203 2%, mAP YmAn mAp

where the second equality holds because « is a balanced sequence. On the other hand,
m

[ZO} H (Z bijzj/zi; Qi) = [Zk] H l_i[(dzl 4+ dgm)

i=1 7j=1 i=1 j=1

7

is equal to the sum of

k k1 kl—l_.. 1 ko kg—lu‘ 1 km kmfl‘__ 1
[Z ] <d1)\% dl)\% dl)\}cl d2)\% d2>\% dQAiQ dm)\{”dmz\gn dmAZlm>

over all o-sequences « of form (11.2). This completes the proof. O

12. PROOFS OF LINEAR ALGEBRA PROPOSITIONS

12.1. Proof of Proposition 3.2. The proof imitates the standard linear algebra
proof in the commutative case. We start with the following easy result.

Lemma 12.1. Let B = (bij)mxm-
(1) If B satisfies (3.1) and if B" denotes the matriz we get by interchanging ad-
jacent columns of B, then det B’ = — det B.
(2) If B satisfies (3.1) and has two columns equal, then det B = 0.
(3) If BY denotes the matriz obtained from B by deleting the i-th row and the j-th
column, then

det B = (—1)""(det B™)bi.
=1
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The proof of the lemma is completely straightforward. Now take B = [ — A and
recall that B is invertible. The j-th coordinate of the matrix product

et , —det N .
d Bll d BZl 1 mBml B
is Y7 (—1)"det Bb;;. Since B satisfies (3.1), this is equal to det B - d;; by the
lemma. But then
(det B, —det B, ... (=1)"B™) =det B - (1,0,...,0)- B~!

and
(B™Y11 = (det B)™* - det B'. O

12.2. Proof of Proposition 4.2. Follow the same scheme as in the previous sub-
section. The following is a well-known result (see e.g. [GLZ, Lemmas 2.3 and 2.4] or
[FH2, Properties 5 and 6]).

Lemma 12.2. Let B = (bij)mxm-

(1) If B satisfies (4.2) and if B" denotes the matriz we get by interchanging ad-
jacent columns of B, then det B’ = — det B.

(2) If B satisfies (4.2) and has two columns equal, then det B = 0.

(3) If BY denotes the matriz obtained from B by deleting the i-th row and the j-th
column, then

det B = (—1)""(det B"™)bi,. O
=1

The rest follows verbatim the previous argument.

12.3. Proof of Proposition 6.2. Foata and Han introduced ([FH1, Section 3]) the
so-called “1 = ¢ principle” to derive identities in the algebra A/Z,_,, from those in

the algebra A/Z,,.
Lemma 12.3. (“1 = ¢ principle”) Let ¢: A — A denote the linear map induced by

¢ (a)\,,u) — qinv p—inv )\ak,,u'
Then:

(a) ¢ maps I,y into I, ,q

(b) Call ay,, a circuit if X is a rearrangement of p (i.e. if X\ and p contain the
same letters with the same multiplicities). Then ¢(afB) = ¢(a)p(B) for a, 3
linear combinations of circuits.

We include the proof of the lemma since we need to generalize it later on.
Proof. (a) Tt suffices to prove the claim for elements of the form
o = aA,,u(aikajk; - ajk;aik)aX,u’
and

B = au(amaj — ajrai — ajaix + aiajg)ay v
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with ¢ < j (and k < 1). Note that the sets of inversions of the words Aij\" and Aij\’
differ only in the inversion (7, j). Therefore ¢(«) is a multiple of

ik — C]_lajkaik-
For the 3 the proof is analogous.

(b) It suffices to prove the claim for «, § circuits, i.e. & = ay, with X a rearrange-
ment of u and § = ay ,» with A" a rearrangement of p’. The set of inversions of A\
consists of the inversions of A, the inversions of A’, and the pairs (i, j) where A\; > p;.
Similarly, the set of inversions of uu' consists of the inversions of y, the inversions of
', and the pairs (i,7) where A; > p. Since A is a rearrangement of y and ' is a
rearrangement of p/, inv(up') — inv(AN) = (inv g — inv ) + (inv g/ — inv \’), which
concludes the proof. O

By Proposition 4.2, we have:
det(I — A)- ((1 - A)*l)n —det (I — A™) € Z,q.
It is clear that

S(det( — A)) =6 (Z(—M det AJ) =3 (~1)ldet, Ay =det, (I — A),

where the sums go over all subsets J C {1,...,m}. Similarly,
¢ (((I - A)_1>11) - ((I N A>_1)11 '
Now the result follows from Lemma 12.3. OJ

12.4. Proofs of Propositions 5.2, 7.3 and 8.1. The result can be derived from
Propositions 3.2 and 4.2 by a simple extension of the “1 = ¢ principle”.

Lemma 12.4. (“1 = g;; principle”) Call an element ), , ciay, ,, of A balanced if
foranyi,j € J, N is a reshuffle of \; and p; is a reshuffle of ;.
Let ¢: A — A denote the linear map induced by

¢ (ar,) = H Dy H q)fjl,\ A g
(N

(6,5) 1 (p) (i5)el

Choose a set S with balanced elements, denote by I the ideal generated by S, and by
T the ideal generated by ¢(S). Then

(a) ¢ maps T into I,
(b) ¢(af) = ¢(a)d(B) for av, B linear combinations of circuits.

The proof of lemma follows verbatim the proof of Lemma 12.3. Propositions 5.2 and
7.3 follow from Proposition 3.2, and Proposition 8.1 follows from Proposition 4.2. We
omit the details. O
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13. FINAL REMARKS

13.1. A connection between the free partially commutative monoids of Cartier and
Foata and Koszul duality was established by Kobayashi [K] and can be stated as
follows. Let G be a graph on [n] = {1,...,n}. Consider a quadratic algebra Ag
over C with variables x4, ..., z, and relations x;x; = x;z; for every edge (i,j) € G,
i # j, and 7 = i if there is a loop at i. It was shown by Froberg in full generality
that Ag is Koszul, and the Koszul dual algebra Al has a related combinatorial
structure (see [Fr]). This generalizes the classical case of a complete graph G = K,
where Ag is a symmetric and Al is an exterior algebra. We refer to [PP] for a
extensive recent survey on quadratic algebras and Koszul duality.

Now, Kobayashi observed that one can view the Cartier-Foata Mobius inversion
theorem for the partially commutative monoid corresponding to a graph G (see [CF])
as a statement about Hilbert series:

(13.1) Ag(t) - Ag(t) =1

where A(t) = >, dim A" for a graded algebra A = ®A". In effect, Kobayashi
gives an explicit construction of the Koszul complex for Ag by using Cartier-Foata’s
involution [K].

Most recently, Hai and Lorenz made a related observation, by showing that one
can view the Master Theorem as an identity of the same type as (13.1) but for
the characters rather than dimensions [HL]. This allowed them to give an algebraic
proof of the Garoufalidis-Lé-Zeilberger theorem.! In fact, they present a general
framework to obtain versions of the Master Theorem for other Koszul algebras (which
are necessarily quadratic) and a (quantum) group acting on it.

13.2. From our presentation, one may assume that the choice of a (g;;)-analogue
was a lucky guess or a carefully chosen deformation designed to make the technical
lemmas work. This was not our motivation, of course. These quadratic algebras are
well known generalizations of the classical quantum groups of type A (see [M1, M2,
M3]). They were introduced and extensively studied by Manin, who also proved their
Koszulity and defined the corresponding (generalized) quantum determinants.
While our proof is combinatorial, we are confident that the Hai-Lorenz approach
will work in the (g;;)-case as well. While we do not plan to further investigate this
connection, we hope the reader find it of interest to pursue that direction.

13.3.  For matrices over general rings, the elements of the inverse matrices are called
quasi-determinants [GeR] (see also [GGRW]). They were introduced by Gelfand and
Retakh, who showed that in various special cases these quasi-determinants are the
ratios of two (generalized) determinants. In particular, in the context of non-commu-
tative determinants they established Propositions 3.2, 6.2 and a (slightly weaker)
corresponding result for the super-analogue.

In a more general context, Etingof and Retakh showed the analogue of this result
for all twisted quantum groups [ER]. Although they do not explicitly say so, we

IThe most recent version of their paper includes our Theorem 1.2 and refers to the earlier version
of this paper.
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believe one can probably deduce our most general Proposition 8.1 from [ER] and the
above mentioned papers by Manin.

Let us mention here that the inverse matrix (I — A)~! appears in the same context
as in this paper in the study of quasi-determinants [GGRW] and the non-commutative
Lagrange inversion [PPR].

13.4.  The relations for variables in our super-analogue are somewhat different from
those studied in the literature (see e.g. [M3]). Note also that our super-determinant is
different from the Berezinian [B] (see also [GGRW, M1]). We are somewhat puzzled
by this and hope to obtain the “real” super-analogue in the future.

13.5.  The relations studied in this paper always lead to quadratic algebras. While
the deep reason lies in the Koszul duality, the fact that Koszulity can be extended to
non-quadratic algebras is suggestive [Be]. The first such effort is made in [EP] where
an unusual algebraic extension of MacMahon Master Theorem is obtained.

13.6.  While we do not state the most general result combining both (-extension and
(gij)-analogue, both the statement and the proof follow verbatim the presentation in
Section 10. Similarly, the results easily extend to all complex values g € C.

Let us mention here that the original g-extension of the Master Theorem (given
in [FZ]) follows easily from the [-extension of the Lagrange inversion [Ze]. In fact,
the proof of the latter is bijective.

13.7. In the previous papers [FH1, FH2, FH3, GLZ] the authors used Bos(-) and
Fer(-) notation for the left- and the right-hand side of (1.3). While the implied con-
nection is not unjustified, it might be misleading when the results are generalized.
Indeed, in view of Koszul duality connection (see Subsection 13.1 above) the alge-
bras can be interchanged, while giving the same result with notions of Boson and
Fermion summations switched. On the other hand, we should point out that in the
most interesting cases the Fermion summation is finite, which makes it special from
combinatorial point of view.

13.8. The Krattenthaler-Schlosser’s g-analogue (Theorem 11.1) is essentially a bypro-
duct of the author’s work on ¢-series. It was pointed out to us by Michael Schlosser
that the Cartier-Foata matrices routinely appear in the context of “matrix inversions”
for g-series (see [KS, Sc|). It would be interesting to see if our extensions (such as
Cartier-Foata g;;-case in Section 7) can can be used to obtain new results, or give
new proofs of existing results.
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