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Abstract. We study a long standing open problem on the mixing time of Kac’s random walk
on SO(n,R) by random rotations. We obtain an upper bound mix = O(n2.5 log n) for the weak
convergence which is close to the trivial lower bound Ω(n2). This improves the upper bound
O(n4 log n) by Diaconis and Saloff-Coste [9]. The proof is a variation on the coupling technique we
develop to bound the mixing time for compact Markov chains, which is of independent interest.

Introduction

The MCMC (Monte Carlo Markov Chain) method has proved extremely powerful and led to
remarkable advances in both theory and practice. Despite a large body of literature, finding sharp
bounds on the mixing time of finite Markov chains remains technical and exceedingly difficult (see
e.g. [5, 17, 23, 28, 29]).

In this paper we study the classical Kac’s random walk on SO(n,R) by random rotations in the
basis 2-dimensional planes. Our main result is the O(n2.5 log n) mixing time upper bound. This is
sharper than previous results and within striking distance from the trivial Ω(n2) lower bound. This
random walk arose in Kac’s effort to simplify Boltzmann’s proof of the H-theorem [18] (see also [22])
and Hastings’s simulations of random rotations [14]. Most recently, this walk has appeared in the
work of Ailon and Chazelle [3] in connection with generating random projections onto subspaces.

Kac’s random walk was first rigorously studied by Diaconis and Saloff-Coste [9] who viewed it as
a natural example of a Glauber dynamics on SO(n,R). They used a modified comparison technique
and proved O(n4 log n) upper bound on the mixing time, by reducing the problem to a problem of
a random walk with all rotations, which was solved earlier by using the character estimates in [27]
(see also [26]).

In the wake of the pioneer work [9], there have been a flurry of activity in the subject, aimed
especially at finding sharp bounds for the eigenvalues [8, 16, 31]. In [21] Maslin was able to explicitly
compute the eigenvalues, but due to the large multiplicity of the highest eigenvalue this work does
not improve the mixing time of Kac’s random walk, in effect showing the limitation of this approach.

It is worth mentioning that there are several notions of the mixing time in this case, and in
contrast with the discrete case, the connections between them is yet to be completely understood.
We use here the mixing time in terms of the weak convergence, the same as used by Diaconis and
Saloff-Coste in [9].

Our approach is based on the coupling technique, a probabilistic approach which goes back to
Doeblin [10] (see also [4, 19, 25]). In recent years, this technique has been further adapted to finite
Markov chains, largely on combinatorial objects (see “path coupling” technique in [7, 12]). In this
paper we adapt the coupling technique to compact Markov chains. While the coupling on compact
groups has been studied earlier [19] (see also references therein), our approach is more general as
we allow stopping when two particles are at certain distance from each other.

Let us emphasize that while natural in the context, the continuous coupling we consider does not
seem to have known analogues in the context of finite Markov chains (cf. [5, 29]). In conclusion,
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let us mention that a related approach is used in [15], which develops a “distance-decreasing”
(with good probability) coupling technique. While the particular coupling construction we employ
can also be viewed as distance-decreasing in a certain precise sense (for the Frobenius distance on
matrices), our setting is more general.

1. Kac’s random walk on SO (n,R)

1.1. Main result. In this section we will consider the following discrete random walk on SO (n,R).
At each step we pick a pair (i, j) of two coordinates such that 1 ≤ i < j ≤ n, and an angle φ

uniformly distributed on [0, 2π). Define an elementary rotation matrix Ri,j
φ :

Ri,j
φ =




1 . . . 0 . . . 0 . . . 0
...

. . .
...

. . .
...

. . .
...

0 . . . cosφ . . . − sinφ . . . 0
...

. . .
...

. . .
...

. . .
...

0 . . . sinφ . . . cosφ . . . 0
...

. . .
...

. . .
...

. . .
...

0 . . . 0 . . . 0 . . . 1




which differs from the identity matrix by four entries only with coordinates (i, i), (j, i), (i, j)
and (j, j). Kac’s random walk {Ak} on SO (n,R) is now defined as follows:

Ak+1 = Ri,j
φ Ak, for all k ≥ 0,

where A0 = I is the identity matrix. More generally, we can assume that A0 is chosen from any
fixed initial distribution P 0 on SO (n,R) as the upper bound below remains valid in this case.

We endow the group SO (n,R) with the Frobenius norm (also called the Hilbert-Schmidt norm),
denoted ‖ · ‖F and defined for any real n× n matrix M = (mij) as follows:

(1) ‖M‖F =
√ ∑

1≤i,j≤n

m2
ij =

√
Tr (MMT ) =

√ ∑

1≤i≤n

|σi|2,

where σi are the singular values of M . This defines the Frobenius distance ‖A−B‖F between every
two n× n matrices A and B.

Let Lip (K) be a set of all real-valued functions on SO (n,R) such that

‖f‖L = sup
x 6=y

|f (x)− f (y)|
‖x− y‖F

≤ K.

We define the distance ρ (P,Q) for two probability laws P and Q on SO (n,R) as follows:

ρ (P,Q) = sup
{∣∣∣∣

∫
f d(P −Q)

∣∣∣∣ : f ∈ Lip (1)
}

.

It is well known (see e.g. [11, §11]) that ρ metrizes the weak convergence of probability laws.1

Theorem 1 (Main Theorem). Let P t be the distribution of the Kac’s random walk after t steps,
and let U be the uniform distribution on SO (n,R). Then, for every ε > 0 and

t = Ω
(
n2.5 log

n

ε

)
, we have ρ

(
P t, U

) ≤ ε.

1Instead of condition ‖f‖L < 1, it is common ([9, 11]) to bound ‖f‖L + ‖f‖∞ in order to metrize the weak

convergence. However, in our case all Lipschitz functions are bounded because SO (n,R) is bounded in ‖·‖F .
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The proof of this theorem uses an explicit construction of a “weak coupling” between P t and U ,
which enables us to bound ρ

(
P t, U

) ≤ ε. Our “coupling lemma” is described in the next subsection.
The proof of the theorem is presented in Section 2, where it is split into a sequence of lemmas.
The latter are mostly technical and are proved in Section 3. We conclude with final remarks in
Section 4.

1.2. Coupling lemma. The basic goal a of the coupling we construct it to obtain joint distribution
on SO (n,R)×SO (n,R) such that its marginals are P t and U , and the distribution is concentrated
near the main diagonal. The following lemma makes this precise in a more general setting.

Let X ⊂ V , where V is a metric space with distance d (·, ·). Let xt and yt, t ≥ 0, be two Markov
processes on X. A coupling is a joint process (x′t, y′t) on X2 such that x′t has the same distribution
as xt and y′t has the same distribution as yt. By abuse of notation we will use (xt, yt) to denote the
coupling.

Lemma 2 (Coupling lemma). Let xt and yt, t ≥ 0, be two discrete Markov processes on X as
above, with distributions P t and Qt after t steps. Suppose there exists a coupling (xt, yt), such that
for a stopping time

Tδ = min {t | d (xt, yt) < δ}
the distance d(xt, yt) is non-increasing for t ≥ Tδ. Then we have:

ρ
(
P t, Qt

)
< δ + P (Tδ > t) · sup

x,y∈X
d (x, y) .

1.3. Variations on the theme. As we mentioned in the introduction, Kac’s random walk does
not converge in the `2-distance. To see this, observe that after t steps with probability 1/

(
n
2

)t we
rotate in the first two coordinates, so the distribution after t steps is not absolutely continuous. On
the other hand, as shown by Diaconis and Saloff-Coste, there is a convergence in the `1-distance,
with the mixing time O(n5 log n). It is unclear whether our results can be used to improve this
bound as well, and as far as we know, there is no general result establishing a connection in this
case.

In a positive direction, our main theorem is robust enough to establish convergence for a number
of other matrix distances, such as operator, spectral or trace norms. For example, we easily have:

Corollary 3. Let K > 1 be a fixed constant. Then for every ε > 0, f ∈ Lip (K) and t =
Ω

(
n2.5 log Kn/ε

)
we have: ∣∣∣∣

∫
f d

(
P t − U

)∣∣∣∣ ≤ ε.

Proof. Corollary follows from Theorem 1 and the observation that f/K ∈ Lip (1). ¤

More generally, let us give a convergence result in other norm ‖·‖ on n×n real matrices. Suppose
for a constant C > 0 we have:

‖x− y‖ ≥ C ‖x− y‖F for all x, y ∈ M (n,R) .

Corollary 4. If ‖f‖L = K with respect to the norm ‖ · ‖, then for ε > 0 and

t = Ω
(

n2.5 log
Kn

Cε

)

we have: ∣∣∣∣
∫

f d
(
P t − U

)∣∣∣∣ ≤ ε.
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Proof. For all x 6= y we obtain:

|f (x)− f (y)|
‖x− y‖ ≤ 1

C

|f (x)− f (y)|
‖x− y‖F

.

Hence, f ∈ Lip (K/C) with respect to the Frobenius norm. Now Corollary 3 implies the result. ¤

2. The coupling process

In this section, we construct a coupling process which decreases the Frobenius distance between
two random processes with sufficiently high probability. Formally, we show that there is a proba-
bility measure on SO (n,R) × SO (n,R) with marginals P t and U which is concentrated near the
main diagonal.

Consider now Kac’s random walks {Ak} and {Bk}, the former having the initial distribution P 0,
and the latter being initially uniformly distributed. It turns out that at each step we are able
to choose rotations so that the quantity ‖Ak −Bk‖F is non-increasing whereas the marginal dis-
tributions of Ak and Bk remain the same as we chose the rotations randomly. Define matrices
Qk = AkB

T
k , which will play a crucial role is our construction. The random walk of Qk is induced

by random walks of Ak and Bk. Indeed, if at the k-th step the matrices Ak and Bk are to be
rotated by RA and RB respectively, then

Qk+1 = Ak+1B
T
k+1 = (RAAk) (RBBk)

T = RA

(
AkB

T
k

)
RT

B = RAQkR
T
B.

In the case of orthogonal matrices, the Frobenius distance can be computed by the following
simple lemma.

Lemma 5. If A and B are orthogonal n× n matrices, then

(2) ‖A−B‖F =
√

2n− 2Tr (ABT ).

Proof. By the definition of the Frobenius norm, we have

‖A−B‖2
F = Tr

(
(A−B) (A−B)T

)
= Tr

(
AAT −BAT −ABT + BBT

)

= Tr (2I)− Tr
(
BAT + ABT

)
= 2n− 2Tr

(
ABT

)
,

since BAT =
(
ABT

)T . ¤

Lemma 5 implies that minimizing the Frobenius norm ‖Ak −Bk‖F is equivalent to maximizing
the trace Tr

(
AkB

T
k

)
= TrQk. Therefore, we have to show that we can increase the trace of Qk by

choosing appropriate rotations.
Let RA = Rij

α be the rotation by an angle α for a coordinate pair (i, j). Choose

RB = Rij
β(α),

where the angle β = β (α) will be determined by an explicit construction in the proof of Lemma 6.
Let

(M)ij =
(

mii mij

mji mjj

)

denote the 2× 2 minor of the matrix M and let

(Qk)ij =
(

a b
c d

)
, (Qk+1)ij =

(
a′ b′
c′ d′

)
.

Since RA and RB do not change other diagonal elements, the change in trace

TrQk+1 − TrQk = Tr (Qk+1)ij − Tr (Qk)ij
4



is determined solely by traces of the minors (Qk)ij and (Qk+1)ij . The following lemma allows us
to derive a coupling process.

Lemma 6. For every α ∈ [0, 2π) we can choose β = β (α) such that the following inequality holds:

(3)
(
a′ + d′

)− (a + d) ≥ 1
4

(b− c)2 .

Moreover, if α is a random variable with the uniform distribution on [0, 2π), then β(α) also has the
uniform distribution on [0, 2π).

The construction of the angle β = β(α) is the fundamental block on which the whole coupling
process construction is made. We conjecture that in fact it gives a nearly optimal coupling (see 4.1),
but for technical purposes the construction in this paper is more involved.

Note that Lemma 6 shows that the efficiency of choosing the rotations depends solely on (b− c),
i.e. the entries of Qk −QT

k . However, the norm of Qk −QT
k can be small whereas the matrix Qk is

far from the identity matrix. The following lemma shows that if at the beginning we are already
sufficiently close to the identity matrix I, then the coupling decreases ‖Qk − I‖F exponentially.

Lemma 7. Let Q0, Q1, . . . be a sequence obtained from coupling I and Q0 by choosing rotations at
each step as described above. If ‖Q0 − I‖F < 2, then for δ, ε > 0 and

t ≥ n2

2
log

4
δ2ε

,

we have
P (‖Qt − I‖F ≥ δ) < ε.

The next lemma allows us to avoid the problem of small (b− c) entries by adding intermediate
“target matrices”.

Lemma 8. For every matrix Q ∈ SO (n,R) there exists a sequence of orthogonal n × n matrices
M0,M1, . . . , Ml which satisfies the following conditions:

(1) Q = M0 and I = Ml;
(2) ‖Mk −Mk+1‖F < 1 for 0 ≤ k < l;
(3) l < π

√
n + 2.

The coupling for (Ak, Bk) is defined as follows. Set M0 = AT
0 B0, Ml = I. By Lemma 8, we can

construct a sequence of matrices M0,M1, . . . , Ml of length O (
√

n). First, couple matrices A0M1

and B0. Namely, at each step, choose the same coordinate pair (i, j) for RB as for RA, and use the
construction from Lemma 6 to determine β = β(α). By Lemma 6, the trace of Qk = AkM1B

T
k is

non-decreasing as k grows. Make τ steps, where the choice of τ will be made later in such a way
that the distance between AkM1 and Bk becomes smaller than δ < 1 with high probability, also to
be given later. For this stage Lemma 7 is applicable since the initial distance between A0M1 and
B0 is at most 1.

Denote by A′ and B′ the pair of matrices obtained after coupling A0M1 and B0. Now couple A′M2

and B′, etc. Each time we change the matrix Mi to Mi+1, the distance between AkMi+1 and Bk

does not exceed 1 + δ < 2. Therefore, we can use Lemma 7 to analyze every stage of the coupling
process. Since Ml = I, when we have finished couplings for all matrices Mi, the distance between Ak

and Bk becomes less than δ. From this point on, we always choose the same rotations for Ak and
Bk, which ensures that these random walks stay at the same distance.

In total, this gives roughly O(n2.5) rotations to make two matrices close enough, roughly O(n2)
rotation per matrix Mi. In fact, it is a bit more to account for the probability of failure at each of
the l sequence steps. A rigorous analysis will follow. Here we state the main lemma on the coupling
process.
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Lemma 9. Let

t ≥ 2n2.5 log
13
√

n

δ2ε

for 0 < δ < 1 and ε > 0. Then

P (Tδ > t) = P (‖At −Bt‖F ≥ δ) < ε.

Lemma 9 easily implies the main theorem.

Proof of Theorem 1. Note that for any x, y ∈ SO (n,R) we have ‖x− y‖F ≤ 2
√

n. Now using
Lemmas 2 and 9 for δ = ε

3 , ε = ε
3
√

n
and the fact that

sup
x,y∈SO(n,R)

‖x− y‖F = 2
√

n,

we get

ρ
(
P t, U

)
<

ε

3
+ 2

√
n · ε

3
√

n
= ε,

for

t = 2n2.5 log
13
√

n(
ε
3

)2 · ε
3
√

n

< 6n2.5 log
8n

ε
= O

(
n2.5 log

n

ε

)
.

¤

3. Proof of results

3.1. Proof of Lemma 2. Let M t be a joint distribution of P t and Qt, and L = supx,y∈X d (x, y).
For any f ∈ Lip (1) we have:

∣∣∣∣
∫

f d
(
P t −Qt

)∣∣∣∣ =
∣∣∣∣
∫∫ (

f (x)− f (y)
)
dP t (x) dQt (y)

∣∣∣∣

=
∣∣∣∣
∫∫ (

f (x)− f (y)
)
dM t (x, y)

∣∣∣∣

≤
∫∫ ∣∣f (x)− f (y)

∣∣ dM t (x, y)

≤
∫∫

d(x,y)<δ

d (x, y) dM t (x, y) +
∫∫

d(x,y)≥δ

d (x, y) dM t (x, y)

< δ P (d (x, y) < δ) + L P (d (x, y) ≥ δ)
< δ + L ·P (d (x, y) ≥ δ) ,

where the probabilities P are taken with respect to measure M t. By definition of the stopping
time Tδ and the assumption of non-increase of the distances after Tδ, we obtain

P
(
d(x, y) ≥ δ

)
= P

(
Tδ > t

)
,

and the lemma follows. ¤
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3.2. Proof of Lemma 6. We have:(
a′ b′
c′ d′

)
=

(
cosα − sinα
sinα cosα

)(
a b
c d

)(
cosβ sinβ
− sinβ cosβ

)
.

Therefore,

a′ + d′ = (a cosα cosβ − c sinα cosβ − b cosα sinβ + d sinα sinβ)
+ (a sinα sinβ + c cosα sinβ + b sinα cosβ + d cosα cosβ)

= (a + d) cos (α− β) + (b− c) sin (α− β) .

Let r =
√

(a + d)2 + (b− c)2. If r = 0, then
(
a′ + d′

)
= (a + d) = (b− c) = 0,

and the inequality (3) holds for all β. In this case we choose β = α which is uniformly distributed
on [0, 2π).

Suppose now that r > 0. Let us define an angle θ so that:

(4) cos θ =
a + d

r
and sin θ =

b− c

r
.

Finally, let β = β (α) = α− θ. Then we have:

a′ + d′ = (a + d) cos θ + (b− c) sin θ = r cos θ · cos θ + r sin θ · sin θ = r.

Observe that θ = α − β depends only on Qk. Therefore, if α has the uniform distribution over
[0, 2π), then so does β.

Without loss of generality we can assume that a2 ≥ d2. Since
(

a b
c d

)
is a minor of an

orthogonal matrix, we get that |b| and |c| are bounded from above by
√

1− a2. Indeed, all rows
and all columns of Qk are of length 1, hence a2 + b2 ≤ 1 and a2 + c2 ≤ 1.

Now we get:

r2 =
(
a2 + b2

)
+

(
c2 + d2

)
+ 2 (ad− bc) ≤ 1 + 1 + 2

(
a2 +

√
1− a2

√
1− a2

)
= 4,

which implies that r ≤ 2. Finally, we have:

(a′ + d′)− (a + d) = r − r cos θ ≥ r (1− cos θ) · 1 + cos θ

2
=

1
2r
· (r sin θ)2 ≥ 1

4
(b− c)2 ,

which completes the proof. ¤

3.3. Frobenius distance via the eigenvalues. Define Sk = Qk −QT
k , for all k ≥ 1. In view of

Lemma 6, we need to estimate the entries of Sk depending on Qk. The following result expresses
the Frobenius norm ‖Sk‖F in terms of eigenvalues of Qk.

Let λ1, . . . , λn be eigenvalues of an orthogonal n × n matrix Q. The analysis slightly differs
when n is even or odd. Let m =

⌊
n
2

⌋
. Recall that if λ is an eigenvalue of Q, then λ̄ is also an

eigenvalue of Q. Therefore, we can order λ1, . . . , λn so that for all 1 ≤ i ≤ m we have λ2i = λ̄2i−1,
and let λn = 1 if n is odd. Denote by xi’s and yi’s the real and imaginary parts of the eigenvalues,
namely:

(5) λ2i−1 = xi + yi

√−1, λ2i = xi − yi

√−1, where 1 ≤ i ≤ m.

Lemma 10. For any orthogonal n× n matrix Q the following holds:

(6)
∥∥Q−QT

∥∥2

F
= 8

∑

k≤m

(
1− x2

k

)
.
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In particular, if ‖Q− I‖F < 2, then

(7)
∥∥Q−QT

∥∥2

F
> 8

∑

k≤m

(1− xk) .

Proof. Let v1, v2, . . . , vn be the eigenvectors of Q corresponding to eigenvalues λ1, λ2, . . . , λn.
Since Q is orthogonal, then QT Q = QQT = I, and all absolute values of λi are 1, in particular,
they are not equal to 0. Then we have for any 1 ≤ i ≤ n

vi = QT Qvi = λiQ
Tvi,

therefore, vectors v1, v2, . . . , vn are eigenvectors of QT with eigenvalues λ∗1, λ∗2, . . . , λ∗n. Now we
obtain (

Q−QT
)
vi = (λi − λ∗i )vi,

hence, the matrix S = Q−QT has eigenvalues

±2y1

√−1, ±2y2

√−1, . . . , ±2ym

√−1,

and its singular values are

2 |y1| , 2 |y1| , 2 |y2| , 2 |y2| , . . . , 2 |ym| , 2 |ym| ,
if n = 2m, and

2 |y1| , 2 |y1| , 2 |y2| , 2 |y2| , . . . , 2 |ym| , 2 |ym| , 0,

if n = 2m + 1. In both cases the square of the Frobenius norm of S can be represented as follows:

‖Sk‖2
F =

∑

1≤i≤m

2 |2yi|2 = 8
∑

1≤i≤m

y2
i = 8

∑

1≤i≤m

(
1− x2

i

)
.

Now using (5), we conclude with (6).
From (2) it follows that if ‖Q− I‖F < 2 then

∑

k≤m

(1− xk) =
n− TrQ

2
< 1.

Therefore, for all 1 ≤ k ≤ m we get xk > 0. Hence,

1− x2
k = (1− xk) (1 + xk) > 1− xk,

and (7) follows. ¤

3.4. Proof of Lemma 7. For any n× n orthogonal matrix Q, define

(8) η (Q) =
∑

i≤m

(1− xi) =
n− TrQ

2
=

1
4
‖I −Q‖2

F and ηt = η (Qt) .

Applying the inequality (3) for the coordinate pair (i, j) chosen at step t, we obtain:

ηt − ηt+1 =
1
2

(
TrQt+1 − TrQt

) ≥ 1
8

(
Qt,ij −Qt,ji

)2
,

where Qt,ij is the ij-th entry of Qt. Since

‖Qt − I‖F ≤ ‖Q0 − I‖F < 2,
8



we can get the following upper bound on the expected value of ηt+1 with respect to the choice
of (i, j) :

E ηt+1 ≤ ηt − 1
8 E (Qt,ij −Qt,ji)

2 ≤ ηt − 1
8
· 2
n2

∑

1≤i,j≤n

(Qt,ij −Qt,ji)
2

≤ ηt − 1
4n2

∥∥Q−QT
∥∥2

F
< ηt − 8ηt

4n2
= ηt

(
1− 2

n2

)
.

The induction on t and the fact that η0 = 1
2 (n− TrQ0) < 1 give:

E ηt < η0

(
1− 2

n2

)t

<

(
1− 2

n2

)t

< exp
(
− 2t

n2

)
.

Now the Markov inequality implies:

P (‖Qt − I‖F ≥ δ) = P
(

ηt ≥ δ2

4

)
≤ 4

δ2
·E ηt <

4
δ2

exp
(
− 2t

n2

)
.

Therefore, for t ≥ n2

2 log 4
δ2ε

we have:

P (‖Qt − I‖F ≥ δ) < ε.

¤

3.5. Proof of Lemma 8. First, consider the case when all eigenvalues of M0 are different. We
choose all matrices M1, . . . , Ml so that they have the same eigenvectors v1, . . . ,vn as M0 has. Let

exp
(
φi

1

√−1
)
, . . . , exp

(
φi

n

√−1
)

be the eigenvalues of Mi. Without loss of generality, we can assume that all φi
j belong to (−π, π)

for all i ≤ l and j ≤ n.
Let θ be a positive number to be chosen later and let a function fθ (x) be defined as follows:

fθ (x) =





x− θ if x > θ,
0 if |x| ≤ θ,
x + θ if x < −θ.

Now let
φi+1

j = fθ(φi
j) for all j ≤ n, i < l.

Note that fθ is an odd function, therefore, we have φi+1
a = −φi+1

b if φi
a = −φi

b for some values of a
and b. Hence, all Mi belong to SO (n,R).

Since all matrices Mi have the same eigenvectors, we obtain that the eigenvalues of Mi+1M
T
i are

the following:
exp

((
φi+1

1 − φi
1

)√−1
)
, . . . , exp

((
φi+1

n − φi
n

)√−1
)
.

Observe that |fθ(x)− x| ≤ θ. Therefore, the real parts of the eigenvalues of Mi+1M
T
i are at

least cos θ. Thus, by Lemma 5, we have:

‖Mi −Mi+1‖F =
√

2n− 2 TrMi+1MT
i ≤

√
2n− 2n cos θ

<

√
2n− 2n

(
1− θ2

2

)
= θ

√
n.

Let us choose θ = 1/
√

n. We obtain ‖Mi −Mi+1‖F < 1. On the other hand, for every j ≤ n we
get φl

j = 0 if

l =
⌈π

θ

⌉
< π

√
n + 1.
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Indeed, if φl
j > 0 for some j, then

φ0
j ≥ φl

j + lθ > π
√

n · 1√
n

= π,

which contradicts the assumption φ0
j < φ. Analogously, φl

j cannot be negative. Therefore, all
eigenvalues of Ml are equal to 1, i.e. Ml = I.

In case when not all eigenvalues of M0 are different, choose any matrix M1 within distance 1
from M0 with distinct eigenvalues. Applying the above construction to M1, we get the desired
sequence of length at most π

√
n + 2. This completes the construction. ¤

3.6. Proof of Lemma 9. Note that for any auxiliary matrix Mk there is a probability of failing
to couple two matrices. Recall that we stop the coupling procedure if we fail at a certain stage.

For each matrix Mk, 1 ≤ k ≤ l, we make τ =
⌈

n2

2 log 4
δ2ε

⌉
steps. Then, by Lemma 7, we have:

P (‖AτM1 −Bτ‖F ≥ δ) <
ε

l
.

and

P
(
‖AkτMk −Bkτ‖F ≥ δ

∣∣∣
∥∥A(k−1)τMk−1 −B(k−1)τ

∥∥
F

< δ
)

<
ε

l
,

for all 2 ≤ k ≤ l. Thus, after lτ steps we have:

P (‖Alτ −Blmτ‖F ≥ δ) <
l∑

k=1

P (‖AkτMk −Bkτ‖F ≥ δ) <
l∑

k=1

ε

l
= ε.

Note that l < π
√

n + 2. Hence, we can couple A0 and B0 with probability of success at least
1− ε in at most

t = 2n2.5 log
13
√

n

δ2ε

steps.
¤

4. Conclusion and final remarks

4.1. In our coupling construction for technical reasons (to avoid a small eigenvalue problem) we
have to choose a O(

√
n) sequence of “target matrices” Mi. While this sequence cannot be easily

shortened, we believe that our coupling process is in fact more efficient than our results may suggest.
Recall the basic coupling process we constructed with same pair of coordinates and β = β(α) as

in Lemma 6. We conjecture that in fact this process mixes in O(n2 log n) time, a result supported
by experimental evidence. This would further improve the upper bound of the mixing time of Kac’s
walk to nearly match with the trivial lower bound.

4.2. It is important to emphasize that some of the difficulty of this problem is that the modern
`2-analysis of Markov chains (see e.g. [23, 28]) does not apply here. In fact, Kac’s random walk
does not converge in `2-distance, as we mentioned in the introduction (see also [9]).

4.3. As noted in [9], the study of Kac’s random walk is strongly related to study of random walks
on SU(n,C) by random elementary 2-dimensional rotations. In fact, the technique in [9] and of
this paper can be directly translated to this case. These walks are closely related and motivated
by quantum computing [2, 30], more specifically by quantum random walks [1].
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4.4. One can easily modify our coupling construction to obtain a O(n2 log n) upper bound for the
for the corresponding random walk on the unit sphere Sn−1 ⊂ Rn. The improvement has to do
with a O(1) sequence of required “target matrices” in this case.

A lower bound Ω(n log n) was conjectured in [3, 21]. Moreover, Maslin conjectures a sharp cutoff
in this case [21]. As in 4.1, it is possible that our basic coupling mixes in O(n log n), but as of now
such a result seems unfeasible.
4.5. The main result in [16] (see also [31]) is the O(n3) upper bound on the convergence rate of
the entropy. This is related to Kac’s original question [18]. We are hopeful that our results could
be used to prove stronger bounds.
4.6. The analogue of Kac’s random walk on SL(n,Fq) was studied in [24] and is shown to mix
in O(n3 log n) steps. Unfortunately, the stopping time approach in that paper does not seem to
translate to the compact case. It is unclear whether the generalized coupling approach can be used
to improve Pak’s bounds.
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[13] P. Erdös and A. Rényi, On a classical problem of probability theory, Magyar Tud. Akad. Mat. Kutató Int. Közl.
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