
Oscillating Tableaux, S

p

� S

q

-modules, and

Robinson-Schensted-Knuth correspondence

Igor Pak

Department of Mathematics

Harvard University

Cambridge, MA 02138

pak@math.harvard.edu

Alexander Postnikov

Department of Mathematics

Massachusetts Institute of Technology

Cambridge, MA 02139

apost@math.mit.edu

January 15, 1994

1 Introduction

In the recent time in the works of di�erent authors [4, 5, 6, 7, 11, 14, 17] arose

a new interest to the classical Robinson-Schensted-Knuth correspondence [9].

The Robinson-Schensted-Knuth correspondence (RSK) is a bijection be-

tween pairs (P;Q) of semi-standard Young tableaux and matrices M with

nonnegative integer entries such that the column sums of M give weight

of P and the row sums of M give weight of Q (see Corollary 4.5). This

correspondence is important in representation theory of the general linear
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group GL(N) and the symmetric group S

n

and in the theory of symmetric

functions.

We can view a pair of tableaux (P;Q) of the same shape as a sequence

of Young digrams �

(0)

=

^

0 � �

(1)

� : : : � �

(p)

� �

(p+1)

� : : : � �

(k)

=

^

0.

In general, consider a sequence of diagrams � = (�

(0)

; �

(1)

; : : : ; �

(k)

) such

that for all i either �

(i)

=�

(i+1)

or �

(i+1)

=�

(i)

is a horizontal stripe. Such

objects generilize semi-standard Young tableaux (and pairs (P;Q)) and they

are called oscillating tableaux.

In this paper we use the following notation: N := f0; 1; 2; : : :g; s(�) :=

�

1

+ �

2

+ : : :+ �

k

for � = (�

1

; �

2

; : : : ; �

k

) 2Z

k

.

We are grateful to S. Fomin, and ??? for useful discussions.

2 Diagrams and tableaux

Recall basic de�nitions from combinatorics of Young diagrams (see [10]).

A partition � of n is a sequence of positive integers (�

1

; �

2

; : : : ; �

l

) such

that �

1

� �

2

� : : : � �

l

> 0 and j�j := �

1

+ �

2

+ : : :+ �

l

= n. We will also

write � ` n. Let P denote the set of all partitions. By

^

0 denote a unique

partition of zero.

With each partitions � we can associate its Young diagram which is the

set of pairs (i; j) 2 N

2

such that 1 � j � �

i

, i = 1; 2; : : : ; l. Pairs (i; j)

are arranged on the plane R

2

with i increasing downwards and j increasing

from left to right. Young diagrams will be presented in the form of sets of

1�1-boxes centered at (i; j). We denote partitions and the associated Young

diagrams by the same letter �.

Let \�" be the partitial order on P by inclusion of Young diagrams, i.e.,

� � � if �

i

� �

i

for all i. For � � �, skew Young diagram �=� is the

set theoretical di�erence of the Young diagrams � and �. For example, if

� = (6; 4; 4; 1), � = (4; 3; 2) then the skew Young diagram �=� is the shaded

region in Figure 1.

A partition �

0

= (�

0

1

; : : : ; �

0

r

) is conjugate to a partition � = (�

1

; : : : ; �

l

)

if their Young diagrams are symmetric to each other with respect to the

principal diagonal.

A horizontal (respectively, vertical) m-stripe is a skew Young diagram

�=� such that every column (respectively, row) contains at most one box of

�=� and j�j�j�j = m.

Let � = (�

1

; �

2

; : : : ; �

k

) 2 N

k

. A Young tableau of shape �=� and weight
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Figure 1: A skew Young diagram �=�
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Figure 2: A tableau T and a supertableau S

� is a sequence of partitions (�

(0)

= �; �

(1)

; �

(2)

; : : : ; �

(k)

= �) such that

�

(i�1)

� �

(

i) and �

(i�1)

=�

(i)

is a horizontal �

i

-stripe for all i = 1; 2; : : : ; k. Let

Y T (�=�; �) denote the set of all Young tableaux of shape �=� and weight �.

Note that such tableaux are also called column-strict or semi-standard. A

Young tableau is said to be standard if it has weight � = (1; 1; : : : ; 1).

Let " = ("

1

; "

2

; : : : ; "

k

) 2 f1;�1g

k

and �

"

denote the sequence b =

(b

1

; b

2

; : : : ; b

k

) in the alphabet fm;m j m 2 Zg such that b

i

= �

i

(respec-

tively b

i

= �

i

) if "

i

= 1 (respectively "

i

= �1).

A supertableau (see [2]) of shape �=� and superweight �

"

is a sequence

of partitions (�

(0)

= �; �

(1)

; �

(2)

; : : : ; �

(k)

= �) such that �

(i�1)

� �

(i)

and if

"

i

= 1 (respectively, "

i

= �1) then �

(i�1)

=�

(i)

is a horizontal (respectively,

vertical) �

i

-stripe for all i = 1; 2; : : : ; k. Let ST (�=�; b) denote the set of

all supertableaux of shape �=� and superweight b = �

"

. It is clear that

ST (�=�; �

(1;1;:::;1)

) = Y T (�=�; �).

When we present tableaux and supertableaux, we insert the integers k�

i+1 into the boxes of �

(i�1)

=�

(i)

for i = 1; 2; : : : ; k. Figure 2 shows examples

of a tableau T 2 Y T (�=�; (1; 2; 3)) and a supertableau S 2 ST (�=�; (2; 1; 3)).
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3 Oscillating tableaux

We can view tableaux as paths in certain graph Y. The vertices of Y are

Young diagrams and diagrams � and � are connected by an edge in Y if �=�

(or �=�) is a horizontal stripe. Let Y

n

denote the nth level of Y, i.e., Y

n

is the set of all diagrams � with j�j = n. We call Y the extended Young

graph because it is obtained from the Young graph by adding some edges

connecting non-adjacent levels.

It is clear that Young tableaux correspond to decreasing paths in the

graph Y. An oscillating tableau is an arbitrary path in Y.

De�nition 3.1 Let �; � be partitions and � = (�

1

; �

2

; : : : ; �

k

) 2 Z

k

. An

oscillating tableau of shape (�; �) and weight � is a sequence of partitions

� = (�

(0)

= �; �

(1)

; �

(2)

; : : : ; �

(k)

= �) such that for all i = 1; 2; : : : ; k the

following conditions hold:

1. If �

i

� 0 then �

(i�1)

� �

(i)

and �

(i�1)

=�

(i)

is a horizontal �

i

-stripe;

2. If �

i

< 0 then �

(i)

� �

(i�1)

and �

(i)

=�

(i�1)

is a horizontal (��

i

)-stripe.

By OT (�; �; �) denote the set of all oscillating tableaux of shape (�; �) and

weight �.

It is clear that OT (�; �; �) is nonempty only when j�j � s(�) = j�j. If all

�

i

are nonnegative then OT (�; �; �) = Y T (�=�; �).

4 Intransitive graphs

De�nition 4.1 Let � = (�

1

; �

2

; : : : ; �

k

) 2 Z

k

be a sequence such that s(�) =

0. An intransitive graph of type � is an oriented graph 
 on the vertices

f1; 2; : : : ; kg (multiple edges allowed) such that:

1. If (i; j) is an edge of 
 then i < j.

2. If �

i

� 0 then indegree of i is �

i

and outdegree of i is 0.

3. If �

i

� 0 then outdegree of i is ��

i

and indegree of i is 0.

Denote by G(�) the set of all intransitive graphs of type �.
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Figure 3: An intransitive graph 
 2 G(�2; 1;�2; 0;�2; 2; 3)

Note that G(�) is nonempty if and only if

P

l

j=1

�

i

� 0 for l = 1; 2; : : : ; k.

Figure 3 shows an example of an intransitive graph.

Remark 4.2 Let x

1

; x

2

; : : : ; x

k

be variables. Consider the following q-analo-

gue of Kostant's partition function

P

q

=

Y

i>j

(1 � qe

x

i

�x

j

)

�1

=

X

�:s(�)=0

P

q

(�)e

�

1

x

1

+:::+x

k

�

k

:

Then the number G(�) of intransitive graphs of type � is equal to the coe�-

cient of the least power of q in P

q

(�). So we can view the number G(�) as an

analogue of P

q

(�) as q ! 0, i.e., \christal analogue of P

q

(�)".

Intransitive graphs are closely related to oscillating tableaux. In Sec-

tions 5 and 7 we present several theorem illustrating this connection. Here

we formulate a special case which is especially clear.

Theorem 4.3 Let � 2 Z

k

be such that s(�) = 0. Then the number of

oscillating tableaux of shape (

^

0;

^

0) and weight � is equal to the number of

intransitive graphs of type �

jOT (

^

0;

^

0; �)j = jG(�)j:

In Section ?? we construct a bijection �

���

which in the case � = � =

^

0

is is a bijection between OT (

^

0;

^

0; �) and G(�).

We call an oscillating tableau of weight � = (�

1

; : : : ; �

k

) standard if �

i

=

�1 for all i. Clearly, standard oscillating tableux correspond to paths in the

Young graph.

Corollary 4.4 The number of paths in the Young graph from

^

0 to

^

0 of length

2k is equal to (2k � 1)!! = (2k � 1)(2k � 3) : : : 1.

Proof | If �

i

= �1 for all i then an intransitive graph of type � is a perfect

matching. Therefore, by Theorem 4.3 the number of standard tableux of

shape (

^

0;

^

0) with weight of length 2k is equal to the number perfect matchings

on the set of vertices f1; 2; : : : ; 2kg which is equal to (2k � 1)!!. �
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In the end of this section we show how oscillation tableaux and intran-

sitive graphs are connected with classical Robinson-Shensted-Knuth corre-

spondence [9].

Let �

0

= (�

0

1

; �

0

2

; : : : ; �

0

s

) 2 N

s

, �

00

= (�

00

1

; �

00

2

; : : : ; �

00

t

) 2 N

t

, and � be the

sequence (��

0

s

;��

0

s�1

; : : : ;��

0

1

; �

00

1

; �

00

2

; : : : ; �

00

t

) 2 Z

s+t

. It is clear that every

oscillating tableau � 2 OT (

^

0;

^

0; �) can be presented by a pair (P;Q) of Young

tableux of the same shape and with weights �

0

and �

00

respectively. We can

associate with an intransitive graph 
 2 G(�) the s�t-matrix A = (a

ij

) such

that a

ij

is equal to the multiplicity of the edge (s+1�i; s+j) in 
. We get

the following corollary of Theorem 4.3.

Corollary 4.5 Let �

0

2 N

s

and �

00

2 N

t

. Then the number of pairs (P;Q)

of Young tableaux of the same shape and with weights �

0

and �

00

respectively

is equal to the number of s�t-matrices A = (a

ij

) such that

1. a

ij

2 N for i = 1; 2; : : : ; s; j = 1; 2; : : : ; t,

2.

P

j

a

ij

= �

0

i

for i = 1; 2; : : : ; s,

3.

P

i

a

ij

= �

00

j

for j = 1; 2; : : : ; t.

In [9] D. E. Knuth generalized the constructions of G. de B. Robinson

[12] and C. Schencted [13] and obtained a one-to-one correspondence between

such pairs (P;Q) and matrices A. In this special case the bijection �

���

(see

Section ??) coincides with Robinson-Schensted-Knuth correspondence.

5 S

p

�S

q

-module M(p; �; q)

In this section we consider a permutational representation of S

p

�S

q

in the

linear space generated by intransitive graphs. Multiplicities of irreducible

components in this representation are given by the numbers of oscillating

tableaux.

Let p; q 2 N, � = (�

1

; : : : ; �

k

) 2 Z

k

such that p � s(�) = q, r = p + k,

and n = p + k + q. Let G(p; �; q) be the set of intransitive graphs of type

� = (�

1

; �

2

; : : : ; �

n

), where

�

i

=

8

<

:

�1 for i = 1; : : : ; p;

�

i�p

for i = p + 1; : : : ; r;

1 for i = r + 1; : : : ; n:
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The direct product of two symmetric groups S

p

�S

q

acts on the graphs


 2 G(p; �; q) as follows: the group S

p

permutes the �rst p vertices in 


and the group S

q

permutes the last q vertices in 
. More precisely, if g =

(�; �) 2 S

p

�S

q

, 
 2 G(p; �; q) then (i; j) is an edge of graph g � 
 if and only

if (g

�1

(i); g

�1

(j) is an edge of 
, where

g(s) =

8

<

:

�(s) s = 1; : : : ; p;

s s = p+ 1; : : : ; r;

�(s�r)+r s = r + 1; : : : ; n:

Let M(p; �; q) be the linear space over C with basis fv




g, 
 2 G(p; �; q).

The action of the group S

p

�S

q

on G(p; �; q) gives a linear representation

M(p; �; q) of S

p

�S

q

.

Example 5.1 Let p = q and � = ; be the empty sequence. Then graphs from

G(p; ;; p) can be identi�ed with permutations in S

p

. In this case M(p; ;; p) is

the regular representaion Reg(S

p

) of S

p

�S

p

. That isM(p; ;; p) is isomorphic

to the group algebra C [S

p

] on which one copy of S

p

acts by left multiplications

and the other copy of S

p

acts by right multiplications.

Example 5.2 Let q = 0 and �

i

� 0 for all i = 1; 2; : : : ; k. Then a graph


 2 G(p; �; 0) can be identi�ed with the word w = w

1

w

2

: : :w

p

in the alphabet

f1; 2; : : : ; kg where w

i

= j if (i; p+j) is an edge of 
. Clearly, the word w

contains �

1

1's, �

2

2's, etc. The symmetric group S

p

acts on such words

w by permutation of letters w

i

. The representation M

�

= M(p; �; 0) is the

well-known monomial representation, see [8],

M

�

= Ind

S

p

S

�

1

�:::�S

�

k

Id;

where Id is the identity representation of S

�

1

� : : :�S

�

k

.

Now we can give a combinatorial interpretation of multiplicities of irre-

ducible components in M(p; �; q) in terms of oscillating tableaux.

Let �

�

be the irreducible S

n

-module associated with a partition � ` n

(see [8, 10]). Every irreducible representation of the group S

p

�S

q

is of the

form �

�


 �

�

, where j�j = p and j�j = q.

Theorem 5.3

M(p; �; q) '

X

jOT (�; �; �)j � �

�


 �

�

;

where the sum is over all partitions � ` p and � ` q.
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The following two Corollaries present classical identities.

For p; q; � such as in Example 5.1 Theorem 5.3 gives

Corollary 5.4

Reg(S

p

) =

X

�`p

�

�


 �

�

:

This is a standard fact from representation theory of �nite groups.

For p; q; � such as in Example 5.2 Theorem 5.3 gives

Corollary 5.5

M

�

=M(p; �; 0) =

X

�`p

jY T (�; �)j � �

�

This is the classical Young rule for decomposition of monomial representa-

tions M

�

of symmetric groups (see [18, 8, 10]).

Clearly, Theorem 4.3 is a special case of Theorem 5.3 for p = q = 0.

6 Proof of Theorem 5.3

Let M be the category whose objects Ob

M

are �nite groups and mor-

phisms Mor

M

(G;H) (or simply Mor(G;H)) from a group G to a group H

are equivalence classes of complex �nite dimensional G�H-modules. Let

V 2 Mor(G;H) and W 2 Mor(H;K), G;H;K 2 Ob

M

, then composition

V �W of morphisms V and W is the following G�K-module

V �W = V 


C[H ]

W

(the tenzor product over the group algebra C [H]). In other words, the tenzor

product V 


C

W is a G�H�H�K-module. Then V �W is the G�K-module

of H-invariants in V 


C

W (with the diagonal action of H on V 


C

W ). The

composition is a bilinear operation with respect to the direct sum of modules.

Let

b

G denote the set of equivalence classes of irreducible representations

of G. Then any irreducible G�H-module is of the form �
�

�

, where � 2

b

G,

� 2

b

H and �

�

denotes the conjugate to � (which is also irreducible). It is

clear that these irredusible modules form a N-basis of Mor(G;H).

Let Reg(G) be the regular representation of G�G, i. e. Reg(G) is the

group algebra C [G] on which one copy of G acts by left multiplications and

the other copy of G acts by right multiplications.
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Figure 4: Composition of graphs

The following proposition presents two simple facts from representation

theory of �nite groups:

Proposition 6.1 1. Let � 2

b

G;� 2

b

H; 
 2

b

H; � 2

b

K. Then

(� 
 �

�

) � (
 
 �

�

) =

�

� 
 �

�

if � = 
;

0 if � 6= 
:

2. The regular representation Reg(G) =

P

�2

b

G

�
�

�

is the identity mor-

phism in the category M from G to G.

Now construct a category T . The objects of T are nonnegative integers

Ob

T

= N and for p; q 2 Ob

T

morphisms Mor

T

(p; q) from p to q are sequences

� = (�

1

; : : : ; �

k

) of integers such that p � s(�) = q and p �

P

j

i=1

�

i

� 0

for j = 1; 2; : : : ; k. The composition of morphisms �

0

= (�

0

1

; : : : ; �

0

k

) and

�

00

= (�

00

1

; : : : ; �

00

l

) is the sequence �

0

� �

00

= (�

0

1

; : : : ; �

0

k

; �

00

1

; : : : ; �

00

l

).

Consider the following maps from Ob

T

to Ob

M

and from Mor

T

to Mor

M

M

ob

: p 2 Ob

T

! S

p

2 Ob

M

;

M

mor

: � 2 Mor

T

(p; q)!M(p; �; q) 2 Mor

M

(S

p

; S

q

):

Theorem 6.2 These maps give a functor M from category T to category

M. In other words, if �

0

2 Mor

T

(p; q) and �

00

2 Mor

T

(q; r) then M(p; �

0

; q)�

M(q; �

00

; r) =M(p; �

0

� �

00

; r).

Proof | De�ne an operation of \composition" for intransitive graphs. Let




0

2 G(p; �

0

; q), 


00

2 G(q; �

00

; r), the sequence �

0

has k elements, and �

00

has

l elements. Join the vertex p+k+i of the graph 


0

with the vertex i of graph




00

for i = 1; 2; : : : ; q. Delete all these vertices and renumber the remaining

vertices by the numbers 1 through p+k+l+r (all vertices of 


0

are less then

vertices of 


00

). As a result we get the graph 


0

� 


00

2 G(p; �

0

� �

00

; r). See an

example on Figure 4.

Let fv




0

g, 


0

2 G(p; �

0

; q) be the basis of M(p; �

0

; q) and fv




00

g, 


00

2

G(q; �

00

; r) be the basis of M(q; �

00

; r). Then vectors v




0


 v




00

form a basis of

M(p; �

0

; q)


C

M(q; �

00

; r). We must select S

q

-invariants in this space. To do

this we should symmetrize the space M(p; �

0

; q) 


C

M(q; �

00

; r) by diagonal

9



action of S

q

. Let Sym denote this symmetrization. Then we can identify

Sym(v




0


 v




00

) with v




0

�


00

. Hence vectors of the type v




0

�


00

generate the

representation M(p; �

0

; q) �M(q; �

00

; r). On the other hand, it is clear that

every element of G(p; �

0

� �

00

; r) is of the form 


0

� 


00

and vice versa.

Therefore, M(p; �

0

; q) �M(q; �

00

; r) 'M(p; �

0

� �

00

; r). �

Now we are able to prove Theorem 5.3. We will do it in two steps. First,

we prove it in the case when the sequence � consists of one number � = (b).

Then we prove it for arbitrary �.

1. Let � = (�b) and b � 0 (the case when b � 0 is dual). Then q = p+ b

and

M(p; (�b); q) = Ind

S

p

�S

p+b

S

p

�S

p

�S

b

Reg(S

p

)
 Id

b

;

where Id

b

is the identity representation of S

b

. Now

M(p; (�b); q) = Ind

S

p

�S

p+b

S

p

�S

p

�S

b

X

�`p

�

�


 �

�


 Id

b

=

X

�`p

�

�


 Ind

S

p+b

S

p

�S

b

�

�

=

�

X

�`p;�`q

jOT (�; (�b); �)j � �

�


 �

�

:

The �rst equality is true by Proposition 6.1(2) and the fact that for the

symmetric group we have �

�

�

= �

�

. The equality (�) uses the Pieri rule:

Ind

S

p+b

S

p

�S

b

�

�

=

X

�

�

;

where the sum is other all � such that �=� is a horizontal b-stripe, see [8].

2. Let � = (�

1

; : : : ; �

k

) be a sequence of integers and p

i

= p �

P

i

j=1

�

j

,

q = p

k

. Then

M(p; �; q) =

(1)

M(p

0

; (�

1

); p

1

) � : : : �M(p

k�1

; (�

k

); p

k

)

=

(2)

�

X

�

�

(1)


 �

�

(1)

�

� : : : �

�

X

�

�

(k)


 �

�

(k)

�

=

(3)

X

�`p;�`q

jOT (�; �; �)j � �

�


 �

�

;

where in the second line the direct sums are over �

(i)

` p

i�1

and �

(i)

` p

i

such

that �

(i)

=�

(i)

is a horizontal �

i

-stripe (if �

i

� 0) or �

(i)

=�

(i)

is a horizontal

(��

i

)-stripe (if �

i

� 0) for all i = 1; 2; : : : ; k.

Equality (1) follows from Theorem 6.2; (2) follows from p. 1; (3) follows

from Proposition 6.1(1) and de�nition of oscillating tableaux. �
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7 Combinatorial theorem

In this section we give a combinatorial analogue of Theorem 5.3.

A sequence � = (�

1

; �

2

; : : : ; �

k

) 2 Z

k

is called normal if there exist 0 �

r � l � k such that �

1

; �

2

; : : : ; �

r

> 0 ; �

r+1

= : : : = �

l

= 0 ; �

l+1

; : : : ; �

k

< 0.

For a sequence � 2 Z

k

, let nor(�) denote the normal sequence obtained

from � by shu�ing all positive entries of � into the beginning and all neg-

ative entries into the end. For example, nor(0;�3; 1;�1; 0;�2; 0; 1; 3) =

(1; 1; 3; 0; 0; 0;�3;�1;�2):

For �; � 2Z

k

the expression � � � means that for all i = 1; 2; : : : ; k either

0 � �

i

� �

i

or 0 � �

i

� �

i

.

Now we can state the combinatorial theorem.

Theorem 7.1 Let �; � 2 P be some partitions, � 2Z

k

. Then

jOT (�; �; �)j =

X

jG(�)j � jOT (�; �;nor(� � �))j;

where the sum is over all � 2Z

k

such that s(�) = 0 and � � �.

In order to deduce Theorem 7.1 from Theorem 5.3 we need one simple

lemma.

Lemma 7.2 Let p; q 2 N, � 2Z

k

be such that p� s(�) = q. Then

M(p; �; q) =

X

jG(�)j �M(p;nor(� � �); q);

where the direct sum is over all � 2Z

k

such that s(�) = 0 and � � �.

Proof | Let � 2 G(�), where � = (�

1

; : : : ; �

k

) 2 Z

k

, s(�) = 0. Let

G(p; �; q)

�

be the set of graphs fromG(p; �; q) whose restriction on the vertices

p+1; p+2; : : : ; p+k is the graph �. If G(p; �; q)

�

is nonempty then � � �.

It is clear that when � � � and � 2 G(�) the submodule in M(p; �; q)

generated by fv




j 
 2 G(p; �; q)

�

g is equivalent to M(p;nor(� � �); q). �

Now Theorem 7.1 immediately follows from Theorem 5.3 and Lemma 7.2.

We will give a combinatorial proof of Theorem 7.1. In Section ?? we will

construct a bijection �

���

which establishes a one-to-one correspondence

between the following two sets.

�

���

: OT (�; �; �)!

a

G(�)�OT (�; �;nor(� � �)):

11



Let � = � =

^

0. Then there is a unique oscillating tableau of shape (

^

0;

^

0)

of normal weight. Namely, (

^

0;

^

0; : : : ;

^

0) 2 OT (

^

0;

^

0; (0; 0; : : : ; 0)). We have

� = � in Theorem 7.1. Hence Theorem 4.3 is a special case of Theorem 7.1.

8 Superanalogue

In this section we give superanalogues of de�nitions and theorems from Sec-

tions 4{7.

De�nition 8.1 Let �; � be partitions, � 2 Z

k

, " = ("

1

; : : : ; "

k

) 2 f1;�1g

k

.

An oscillating supertableau of shape (�; �) and superweight b = �

"

(see Sec-

tion 2) is a sequence of partitions (�

(0)

= �; �

(1)

; �

(2)

; : : : ; �

(k)

= �) such that

for all i = 1; 2; : : : ; k the following conditions hold.

1. If "

i

= 1 and �

i

� 0 then �

(i�1)

��

(i)

and �

(i�1)

=�

(i)

is a horizontal

�

i

-stripe;

2. If "

i

= 1 and �

i

< 0 then �

(i)

��

(i�1)

and �

(i)

=�

(i�1)

is a horizontal

(��

i

)-stripe;

3. If "

i

= �1 and �

i

� 0 then �

(i�1)

��

(i)

and �

(i�1)

=�

(i)

is a vertical

�

i

-stripe;

4. If "

i

= �1 and �

i

< 0 then �

(i)

��

(i�1)

and �

(i)

=�

(i�1)

is a vertical

(��

i

)-stripe.

The set of all oscillating supertableaux of shape (�; �) and superweight b = �

"

is denoted by OST (�; �; b).

It is clear that OST (�; �; b) is nonempty only when j�j � s(�) = j�j. If

all �

i

� 0 then OST (�; �; �

"

) = ST (�=�; �

"

). And OST (�; �; �

(1;1:::;1)

) =

OT (�; �; �).

De�nition 8.2 Let � 2 Z

k

be such that s(�) = 0 and � = (�

1

; �

2

; : : : ; �

k

) 2

f1;�1g

k

. An intransitive graph of supertype d = �

�

is an oriented graph 
 on

the set of vertices f1; 2; : : : ; kg satistying the conditions 1{3 of De�nition 4.1

and also the condition:

4. If �

i

6= �

j

then 
 contains at most one edge (i; j).

Let SG(�

�

) be the set of all such graphs.

12



The following algebra A(�) is closely related to De�nition 8.2.

De�nition 8.3 Let � = (�

1

; �

2

; : : : ; �

k

) 2 f1;�1g

k

. The algebra A(�) gener-

ated by variables x

ij

; 1 � i < j � k with the following relations.

1. x

ij

x

jr

= 0 for any 1 � i < j < r � k,

2. x

ij

x

lm

= (�1)

�

ij

�

lm

x

lm

x

ij

, where

�

ij

=

�

0 �

i

= �

j

;

1 �

i

6= �

j

:

Relation 2 implies that x

ij

with �

ij

= 0 are commutative variables and

x

lm

with �

lm

= 1 are anticommutative variables.

For any oriented graph 
 on the set of vertices f1; 2; : : : ; kg we can con-

struct (up to a sign) a monomial m




in the algebra A(�):

m




= �

Y

x

ij

;

where the product is over all edges (i; j) of graph 
.

Nonzero monomials in A(�) correspond to intransitive graphs of type

�

�

with �xed � and arbitrary �. Indeed, condition 4.1(2) corresponds to

condition 8.3(1) and 8.2(4) corresponds to the fact that x

2

lm

= 0 for an

anticommutative variable x

lm

with �

lm

= 1.

Let A

�

(�) denote the subspace of A(�) which is generated (as a linear

space) by monomials m




for 
 2 SG(�

�

). It is clear that A(�) =

L

�

A

�

(�):

Let p; q 2 N, � = (�

1

; : : : ; �

k

), " = ("

1

; : : : ; "

k

) 2 f1;�1g

k

, and  ; ! 2

f1;�1g. Suppose that

� = (�1;�1; : : : ;�1

| {z }

p times

; �

1

; �

2

; : : : ; �

k

; 1; 1; : : : ; 1

| {z }

q times

);

� = ( ; ; : : : ;  

| {z }

p times

; "

1

; "

2

; : : : ; "

k

; !; !; : : : ; !

| {z }

q times

):

Let SG(p; �

"

; q) be the set of intransitive graphs of supertype �

�

. Denote

by M(p; �

"

; q) the subspace A

�

(�), where p = p

 

and q = q

!

. Then fm




:


 2 SG(p; �

"

; q)g is a basis of the space M(p; �

"

; q).

The group S

p

�S

q

acts on this space, cf. Section 5. The symmetric group

S

p

permutes the �rst index of variables x

ij

with i = 1; 2; : : : ; p and S

q

per-

mutes the second index of variables x

ij

with j = p+k+1; : : : ; p+k+q.
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The following example gives an odd analogue of the regular representation

of S

p

(see Example 5.1).

Example 8.4 Let �

"

= ; be the empty sequence, p = p and and q = p,

p 2 N. Then M(p; ;; p) is the representation of S

p

�S

p

on the group algebra

C [S

p

] given by the formula

(�; �) � f = sgn(��

�1

)�f�

�1

;

where (�; �) 2 S

p

�S

p

, f 2 C [S

p

] and sgn denotes the sign of permutation.

Denote this representation by Alt

p

.

We use the following notation. For a partition � 2 P and  2 f1;�1g,

�

 

= � if  = 1 and �

 

= �

0

(the conjugate partition) if  = �1.

Now we can present a superanalogue of Theorem 5.3.

Theorem 8.5

M(p

 

; �

"

; q

!

) '

X

jOST (�

 

; �

!

; �

"

)j � �

�


 �

�

;

where the sum is over all partitions � ` p and � ` q.

For p, q, �

�

such as in Example 8.4 we have by Theorem 8.5

Corollary 8.6

Alt

p

=

X

�`p

�

�


 �

�

0

:

This is an odd analogue of Corollary 5.4. Of course this formula easily follows

from de�nition of Alt

p

.

Sketch of proof of Theorem 8.5 | The proof is analogous to the proof of The-

orem 5.3. The only di�erence is the de�nition of \composition" for intransi-

tive graphs. If we de�ne the composition as in Section 6 then it may happen

that the composition of two graphs 


0

2 SG(p; b

0

; q) and 


00

2 SG(q; b

00

; r) is

not a graph from SG(p; b

0

� b

00

; r). We de�ne \supercomposition" 


0

�

s




00

of

graphs 


0

and 


00

by




0

�

s




00

=

�




0

� 


00

if 


0

� 


00

2 SG(p; b

0

� b

00

; r);

0 otherwise.
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This convention is consistent with interpretation of composition in terms

of symmetrization. Indeed, if 


0

�


00

is not in SG(p; b

0

�b

00

; r) then Sym(m(


0

)


m(


00

)) = 0: �

Now we give a superanalogue of Theorem 7.1. Let b = (b

1

; b

2

; : : : ; b

k

) =

�

"

(see Section 2). Let nor(b) denote the word obtained from the word

b = (b

1

; b

2

; : : : ; b

k

) by shu�ing all negative entries into the beginning and all

positive entries into the end. For example, nor(0; 3;�1; 1; 0; 2; 0;�1;�3) =

(�1;�1;�3; 0; 0; 0; 3; 1; 2).

Theorem 8.7 Let �; � 2 P be some partitions, � 2Z

k

, " 2 f1;�1g

k

. Then

jOST (�; �; �

"

)j =

X

jSG(�

"

)j � jOST (�; �;nor((� � �)

"

))j;

where the summation is over all � 2Z

k

such that s(�) = 0 and � � �.

This theorem can be deduced from Theorem 8.5 in the same way as

Theorem 7.1 from Theorem 5.3.

In Section ?? we will construct a bijection

�

super

��b

: OST (�; �; �

"

)!

a

���

SG(�

"

)�OST (�; �;nor((� � �)

"

)):

This will give a combinatorial proof of Theorem 8.5.

If � = � =

^

0 then Theorem 8.7 implies the following

Corollary 8.8 Let � 2 Z

k

be such that s(�) = 0, " 2 f1;�1g

k

. Then the

number of oscillating tableaux of shape (

^

0;

^

0) and superweight b = �

"

is equal

to the number of intransitive graphs of sypertype b

jOST (

^

0;

^

0; b)j = jG(b)j:

Let �

0

2 N

s

, �

00

2 N

t

, � = (��

0

s

;��

0

s�1

; : : : ;��

0

1

; �

00

1

; �

00

2

; : : : ; �

00

t

), and

" = (�1;�1; : : : ;�1; 1; 1; : : : ; 1) (s �1's and t 1's). It is clear that oscillating

supertableaux of shape (

^

0;

^

0) and superweight �

"

correspond to pairs (P;Q)

of Young tableaux with conjugate shapes and with weights �

0

, �

00

respectively,

cf. Section 4.

We can identify an intransitive graph 
 2 SG(�

"

) with a s�t-matrix

A = (a

ij

) satisfying conditions 1{3 of Corollary 4.5 and such that a

ij

= 0

or 1 for all i and j. We get the following
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Corollary 8.9 Let �

0

2 N

s

and �

00

2 N

t

. Then the number of pairs of

tableaux (P;Q) with conjugated shapes and with weights �

0

and �

00

respec-

tively is equal to the number of s�t-matrices satisfying the conditions 1{3 of

Corollary 4.5 with all entries equal to 0 or 1.

Knuth in [9] construct also an odd analogue of RSK-correspondence which

is a bijection between the set of such s�t-matrices and the set of such pairs

of tableaux (P;Q). In this special case the bijection �

super

��b

coincides with

Knuth's correspondence.

9 Increasing and decreasing operators

First we give another description of the category M from Section 6.

Let G be a �nite group. By Rep(G) denote the set of equivalence classes

of complex �nite dimensional representations of G. It is clear that Rep(G) =

Mor

M

(fidg; G) (see Section 6), where fidg denote the group with one element

id.

Let W 2 Mor

M

(G;H). Consider the N-linear map hW i from Rep(G)

to Rep(H) which is de�ned by hW i V = V � W , where V 2 Rep(G) =

Mor

M

(fidg; G). On the other hand, if we know a map hW i then we can

reconstruct the morphism W in M.

By R denote the direct sum R = Rep(S

0

)�Rep(S

1

)�Rep(S

2

)� : : :.

Let hM(p; b; q)i be the operator from Rep(S

p

) to Rep(S

q

) which cor-

responds to S

p

�S

q

-module M(p; b; q). Recall that b = �

"

is a sequence

in the alphabet fm;m j m 2 Zg). Let hbi be the endomorpism of R

such that hbi =

P

hM(p; b; q)i, where the sum is over p � s(�) = q. In

the case when the sequence b has only one element m or m, m 2 Z, we

denote these operators by hmi or hmi. It is clear from Section 8 that

h(b

1

; b

2

; : : : ; b

k

)i = hb

1

i � hb

2

i � : : : � hb

k

i.

If n 2 N then we call operators hni and hni increasing and denote them

by I(n) or I(n). If �n 2 N then we call operators hni and h n i decreasing

and denote them D(n) or D(n). The following description of operators I(n),

I(n), D(n), and D(n) follows from Sections 6 and 8.

Let V 2 Rep(S

p

). Then

I(n) � V = Ind

S

p+n

S

p

V ;

I(n) � V = Ind

Sp+n

S

p

�S

n

(V 
 sgn

n

);
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where sgn

n

is the sign representation of S

n

.

Let V 2 Rep(S

p+n

). Then

D(n) � V = Inv

n

(Res

S

p+n

S

p

�S

n

V );

D(n) � V = Skew

n

(Res

S

p+n

S

p

�S

n

V );

where Inv

n

is the space of S

n

-invariants and Skew

n

is the space of skew

invariants of S

n

.

The space R has the basis f�

�

j � 2 Pg consisting of all irreducible

representations of all symmetric groups. Therefore a linear operator on the

space R can be represented as an in�nite matrix indexed by partitions.

All increasing and decreasing operators in coordinates are given below.

I(n)

��

=

�

1 if � � � and �=� is a horizontal n-stripe;

0 otherwise;

D(n)

��

=

�

1 if � � � and �=� is a horizontal n-stripe;

0 otherwise;

I(n)

��

=

�

1 if � � � and �=� is a vertical n-stripe;

0 otherwise;

D(n)

��

=

�

1 if � � � and �=� is a vertical n-stripe;

0 otherwise:

It is clear that hbi

��

= (hb

1

i � hb

2

i � : : : � hb

k

i)

��

= jOST (�; b; �)j.

All increasing operators commute and all decreasing operators commute.

But increasing and decreasing operators do not commute with each other.

The following theorem gives the relations between these operators. Here

[a; b] = ab� ba denotes the commutator of operators.

Theorem 9.1 Let m;n 2 N. The following relations hold.

1. [I(m); I(n)] = [I(m); I(n)] = [D(m);D(n)] = [D(m);D(n)] = 0:

2. [I(m); I(n)] = [D(m);D(n)] = 0:

3. [I(m+ 1);D(n + 1)] = I(m)D(n), [I(m+ 1);D(n+ 1)] = I(m)D(n):

4. [I(m+ 1);D(n + 1)] = D(n)I(m), [I(m+ 1);D(n+ 1)] = D(n)I(m):

In the following section we give a combinatorial proof of Theorem 9.1.
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10 Local bijections

Let m;n 2 N. In this section we construct the following four bijections:

1.  

1

: Y T (�=�; (m;n))! Y T (�=�; (n;m));

2.  

2

: ST (�=�; (m;n))! ST (�=�; (n;m));

3.  

3

: OT (�; �; (�m;n))!

`

0�k�min(m;n)

OT (�; �; (n�k;�m+k));

4.  

4

: OST (�; �; (�m;n))!

`

0�k�min(1;m;n)

OST (�; �; (n�k;�m+k)):

It is clear that these bijections are su�cient to prove Theorem 9.1. Later

we will use bijections  

3

and  

4

in combinatorial proofs of Theorems 7.1

and 8.7

In all examples, when displaying an (oscillating) (super)tableau � =

(�; �; �), we insert 2's into the boxes of the skew diagram �=� ( or �=� )

and 1's into the boxes of �=� ( or �=� ). The symbol 1=2 in a box means

that we insert simultaneously integers 1 and 2 into this box.

We say that a skew diagram �=� falls into a disjoint union of skew dia-

grams �

1

; �

2

; : : : ; �

l

if �=� = [

i

�

i

and for all 1 � i < j � l any box of �

j

is

below and the to the left of any box of �

j

. For example, the skew diagram

on Figure 1 falls into a disjoint union of three diagrams. We also say that a

(super)tableau of shape �=� falls into a disjoint union of so does the shape

�=�.

Constructions:

1. Let � = (�; �; �) 2 Y T (�=�; (m;n)), � = (�

1

; �

2

; : : :), � = (�

1

; �

2

; : : :),

and � = (�

1

; �

2

; : : :). Then we have �

i

� �

i

� �

i+1

, i = 1; 2 : : :; and �

i

�

�

i

� �

i+1

, i = 1; 2; : : :. Set by convention �

0

=1. On the following diagram

arrow x! y denotes the inequality x � y.

�

1

�

2

�

3

: : : �

i

�

i+1

: : :

& % & % & %

�

1

�

2

: : : �

i

: : :

% & % & % &

1 �

1

�

2

: : : �

i�1

�

i

: : :

Let a

i

= min(�

i

; �

i�1

) and b

i

= max(�

i+1

; �

i

), i = 1; 2; : : :. Then a

i

�

�

i

� b

i

. Set e�

i

= a

i

+ b

i

� �

i

, i = 1; 2; : : :, i.e., e�

i

is symmetric to �

i

in the

interval (b

i

; a

i

).
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Figure 5: Bijection  

1

Figure 6: Bijection  

3

Now e� = (e�

1

; e�

2

; : : :) is a partition and e� = (�; e�; �) 2 Y T (�=�; (n;m)).

De�ne  

1

: � 7! e�. It is easy to see that  

1

is a bijection between the sets

Y T (�=�; (m;n)) and Y T (�=�; (n;m)). Figure 5 shows an example of the

bijection  

1

.

2. Let � = (�; �; �) 2 ST (�=�; (m;n)) ...

3. Let � = (�; �; �) 2 OT (�; �; (�m;n) , � = (�

1

; �

2

; : : :), � = (�

1

; �

2

; : : :),

and � = (�

1

; �

2

; : : :). Then we have �

i

� �

i

� �

i+1

, �

i

� �

i

� �

i+1

,

i = 1; 2; : : :; j�j � j�j = m, and j�j � j�j = n.

�

1

�

2

�

3

: : : �

i

�

i+1

: : :

% & % & % & %

�

1

�

2

�

3

: : : �

i+1

: : :

& % & % & % &

�

1

�

2

�

3

: : : �

i

�

i+1

: : :

Let a

i

= min(�

i

; �

i

) and b

i

= max(�

i+1

; �

i+1

), i = 1; 2 : : :. Then a

i

�

�

i+1

� b

i

. Set e�

i

= a

i

+ b

i

� �

i+1

, i = 1; 2; : : : (cf. p. 1) and k = �

1

�

min(�

1

; �

1

). Clearly, 0 � k � min(n;m).

Now e� = (e�

1

; e�

2

; : : :) is a partition and e� = (�; e�; �) 2 OT (�; �; (n �

k;�m+ k)). We de�ne  

3

: � 7! e�. Then  

3

gives a bijection between the

sets OT (�; �; (�m;n)) and

`

k

OT (�; �; (n�k;�m+k)), 0 � k � min(m;n).

Indeed, if we have a partition e� = (e�

1

; e�

2

; : : :) and 0 � k � min(m;n) then

we can reconstruct � setting �

1

= k + min(�

1

; �

1

) and �

i+1

= a

i

+ b

i

� e�

i

,

i = 1; 2; : : :. See an example of the bijection  

3

on Figure 6.

4. Let � = (�; �; �) 2 OST (�; �; (�m;n)) ...

11 Generalized Gelfand-Tsetlin patterns

Let � = (�

(0)

; �

(1)

; : : : ; �

(k)

) 2 OT (�; �; �) be an oscillating tableau of weight

� = (�

1

; �

2

; : : : ; �

k

). Let w = w

1

w

2

: : : w

k

be a word in the alphabet f+;�g
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0 0 1 1

0 1 1 1 1

1 1 1 2 2 2

2 2 2 2 3

3 4

Figure 7:

such that if �

i

is positive (negative) then w

i

= + (w

i

= �), i = 1; 2; : : : ; k.

Let �(i) be the number of +'s in the word w

1

w

2

: : :w

i

, i = 1; 2; : : : ; k.

The generalized Gelfand-Tsetlin pattern P of type w corresponding to

the oscillating tableau � is the two-dimensional array P = fp

ij

g, where

i = 1; 2; : : : ; k, j � �(i), and p

ij

= �

(i)j��(i)

. For example, a generalized

Gelfand-Tsetlin pattern of type w = ++� : : : is an array of the following

form (as above x! y means x � y).

�

(0)1

�

(0)2

�

(0)3

�

(0)4

: : :

& % & % & %

�

(1)1

�

(1)2

�

(1)3

: : :

& % & % &

�

(2)1

�

(2)2

�

(2)3

: : :

% & % & %

�

(3)1

�

(3)2

�

(3)3

: : :

� � � � � � �

.

.

.

Note that standard Gelfand-Tsetlin patterns have type w = +++ : : : in

our terminology.

We can present a generalized Gelfand-Tsetlin pattern P (and the cor-

responding oscillating tableau) in more convinient form as a plane partition

with cutted o� corners. For example, Figure 7 presents the oscillating tableau

((211); (3211); (221); (211); (421); (321)):
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