Oscillating Tableaux, $S_{p} \times S_{q}$-modules, and Robinson-Schensted-Knuth correspondence

Igor Pak
Department of Mathematics
Harvard University
Cambridge, MA 02138
pak@math.harvard.edu
Alexander Postnikov
Department of Mathematics
Massachusetts Institute of Technology
Cambridge, MA 02139
apost@math.mit.edu

January 15, 1994

1 Introduction

In the recent time in the works of different authors $[4,5,6,7,11,14,17]$ arose a new interest to the classical Robinson-Schensted-Knuth correspondence [9].

The Robinson-Schensted-Knuth correspondence (RSK) is a bijection between pairs (P, Q) of semi-standard Young tableaux and matrices M with nonnegative integer entries such that the column sums of M give weight of P and the row sums of M give weight of Q (see Corollary 4.5). This correspondence is important in representation theory of the general linear
group $G L(N)$ and the symmetric group S_{n} and in the theory of symmetric functions.

We can view a pair of tableaux (P, Q) of the same shape as a sequence of Young digrams $\alpha_{(0)}=\hat{0} \subset \alpha_{(1)} \subset \ldots \subset \alpha_{(p)} \supset \alpha_{(p+1)} \supset \ldots \supset \alpha_{(k)}=\hat{0}$. In general, consider a sequence of diagrams $\alpha=\left(\alpha_{(0)}, \alpha_{(1)}, \ldots, \alpha_{(k)}\right)$ such that for all i either $\alpha_{(i)} / \alpha_{(i+1)}$ or $\alpha_{(i+1)} / \alpha_{(i)}$ is a horizontal stripe. Such objects generilize semi-standard Young tableaux (and pairs (P, Q)) and they are called oscillating tableaux.

In this paper we use the following notation: $\mathbb{N}:=\{0,1,2, \ldots\} ; s(\beta):=$ $\beta_{1}+\beta_{2}+\ldots+\beta_{k}$ for $\beta=\left(\beta_{1}, \beta_{2}, \ldots, \beta_{k}\right) \in \mathbb{Z}^{k}$.

We are grateful to S . Fomin, and ??? for useful discussions.

2 Diagrams and tableaux

Recall basic definitions from combinatorics of Young diagrams (see [10]).
A partition λ of n is a sequence of positive integers $\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{l}\right)$ such that $\lambda_{1} \geq \lambda_{2} \geq \ldots \geq \lambda_{l}>0$ and $|\lambda|:=\lambda_{1}+\lambda_{2}+\ldots+\lambda_{l}=n$. We will also write $\lambda \vdash n$. Let \mathcal{P} denote the set of all partitions. By $\hat{0}$ denote a unique partition of zero.

With each partitions λ we can associate its Young diagram which is the set of pairs $(i, j) \in \mathbb{N}^{2}$ such that $1 \leq j \leq \lambda_{i}, i=1,2, \ldots, l$. Pairs (i, j) are arranged on the plane \mathbb{R}^{2} with i increasing downwards and j increasing from left to right. Young diagrams will be presented in the form of sets of 1×1-boxes centered at (i, j). We denote partitions and the associated Young diagrams by the same letter λ.

Let " \supset " be the partitial order on \mathcal{P} by inclusion of Young diagrams, i.e., $\lambda \supset \mu$ if $\lambda_{i} \geq \mu_{i}$ for all i. For $\lambda \supset \mu$, skew Young diagram λ / μ is the set theoretical difference of the Young diagrams λ and μ. For example, if $\lambda=(6,4,4,1), \mu=(4,3,2)$ then the skew Young diagram λ / μ is the shaded region in Figure 1.

A partition $\lambda^{\prime}=\left(\lambda_{1}^{\prime}, \ldots, \lambda_{r}^{\prime}\right)$ is conjugate to a partition $\lambda=\left(\lambda_{1}, \ldots, \lambda_{l}\right)$ if their Young diagrams are symmetric to each other with respect to the principal diagonal.

A horizontal (respectively, vertical) m-stripe is a skew Young diagram λ / μ such that every column (respectively, row) contains at most one box of λ / μ and $|\lambda|-|\mu|=m$.

Let $\beta=\left(\beta_{1}, \beta_{2}, \ldots, \beta_{k}\right) \in \mathbb{N}^{k}$. A Young tableau of shape λ / μ and weight

Figure 1: A skew Young diagram λ / μ

Figure 2: A tableau T and a supertableau S
β is a sequence of partitions $\left(\alpha_{(0)}=\lambda, \alpha_{(1)}, \alpha_{(2)}, \ldots, \alpha_{(k)}=\mu\right)$ such that $\left.\alpha_{(i-1)} \supset \alpha_{(} i\right)$ and $\alpha_{(i-1)} / \alpha_{(i)}$ is a horizontal β_{i}-stripe for all $i=1,2, \ldots, k$. Let $Y T(\lambda / \mu, \beta)$ denote the set of all Young tableaux of shape λ / μ and weight β. Note that such tableaux are also called column-strict or semi-standard. A Young tableau is said to be standard if it has weight $\beta=(1,1, \ldots, 1)$.

Let $\varepsilon=\left(\varepsilon_{1}, \varepsilon_{2}, \ldots, \varepsilon_{k}\right) \in\{1,-1\}^{k}$ and β^{ε} denote the sequence $b=$ $\left(b_{1}, b_{2}, \ldots, b_{k}\right)$ in the alphabet $\{m, \bar{m} \mid m \in \mathbb{Z}\}$ such that $b_{i}=\beta_{i}$ (respectively $b_{i}=\bar{\beta}_{i}$) if $\varepsilon_{i}=1$ (respectively $\varepsilon_{i}=-1$).

A supertableau (see [2]) of shape λ / μ and superweight β^{ε} is a sequence of partitions $\left(\alpha_{(0)}=\lambda, \alpha_{(1)}, \alpha_{(2)}, \ldots, \alpha_{(k)}=\mu\right)$ such that $\alpha_{(i-1)} \supset \alpha_{(i)}$ and if $\varepsilon_{i}=1$ (respectively, $\varepsilon_{i}=-1$) then $\alpha_{(i-1)} / \alpha_{(i)}$ is a horizontal (respectively, vertical) β_{i}-stripe for all $i=1,2, \ldots, k$. Let $S T(\lambda / \mu, b)$ denote the set of all supertableaux of shape λ / μ and superweight $b=\beta^{\varepsilon}$. It is clear that $S T\left(\lambda / \mu, \beta^{(1,1, \ldots, 1)}\right)=Y T(\lambda / \mu, \beta)$.

When we present tableaux and supertableaux, we insert the integers $k-$ $i+1$ into the boxes of $\alpha_{(i-1)} / \alpha_{(i)}$ for $i=1,2, \ldots, k$. Figure 2 shows examples of a tableau $T \in Y T(\lambda / \mu,(1,2,3))$ and a supertableau $S \in S T(\lambda / \mu,(2,1, \overline{3}))$.

3 Oscillating tableaux

We can view tableaux as paths in certain graph \mathcal{Y}. The vertices of \mathcal{Y} are Young diagrams and diagrams λ and μ are connected by an edge in \mathcal{Y} if λ / μ (or μ / λ) is a horizontal stripe. Let \mathcal{Y}_{n} denote the nth level of \mathcal{Y}, i.e., \mathcal{Y}_{n} is the set of all diagrams λ with $|\lambda|=n$. We call \mathcal{Y} the extended Young graph because it is obtained from the Young graph by adding some edges connecting non-adjacent levels.

It is clear that Young tableaux correspond to decreasing paths in the graph \mathcal{Y}. An oscillating tableau is an arbitrary path in \mathcal{Y}.

Definition 3.1 Let λ, μ be partitions and $\beta=\left(\beta_{1}, \beta_{2}, \ldots, \beta_{k}\right) \in \mathbb{Z}^{k}$. An oscillating tableau of shape (λ, μ) and weight β is a sequence of partitions $\alpha=\left(\alpha_{(0)}=\lambda, \alpha_{(1)}, \alpha_{(2)}, \ldots, \alpha_{(k)}=\mu\right)$ such that for all $i=1,2, \ldots, k$ the following conditions hold:

1. If $\beta_{i} \geq 0$ then $\alpha_{(i-1)} \supset \alpha_{(i)}$ and $\alpha_{(i-1)} / \alpha_{(i)}$ is a horizontal β_{i}-stripe;
2. If $\beta_{i}<0$ then $\alpha_{(i)} \supset \alpha_{(i-1)}$ and $\alpha_{(i)} / \alpha_{(i-1)}$ is a horizontal $\left(-\beta_{i}\right)$-stripe.

By OT (λ, μ, β) denote the set of all oscillating tableaux of shape (λ, μ) and weight β.

It is clear that $O T(\lambda, \mu, \beta)$ is nonempty only when $|\lambda|-s(\beta)=|\mu|$. If all β_{i} are nonnegative then $O T(\lambda, \mu, \beta)=Y T(\lambda / \mu, \beta)$.

4 Intransitive graphs

Definition 4.1 Let $\delta=\left(\delta_{1}, \delta_{2}, \ldots, \delta_{k}\right) \in \mathbb{Z}^{k}$ be a sequence such that $s(\delta)=$ 0 . An intransitive graph of type δ is an oriented graph γ on the vertices $\{1,2, \ldots, k\}$ (multiple edges allowed) such that:

1. If (i, j) is an edge of γ then $i<j$.
2. If $\delta_{i} \geq 0$ then indegree of i is δ_{i} and outdegree of i is 0 .
3. If $\delta_{i} \leq 0$ then outdegree of i is $-\delta_{i}$ and indegree of i is 0 .

Denote by $G(\delta)$ the set of all intransitive graphs of type δ.

Figure 3: An intransitive graph $\gamma \in G(-2,1,-2,0,-2,2,3)$

Note that $G(\delta)$ is nonempty if and only if $\sum_{j=1}^{l} \delta_{i} \leq 0$ for $l=1,2, \ldots, k$. Figure 3 shows an example of an intransitive graph.

Remark 4.2 Let $x_{1}, x_{2}, \ldots, x_{k}$ be variables. Consider the following q-analogue of Kostant's partition function

$$
P_{q}=\prod_{i>j}\left(1-q e^{x_{i}-x_{j}}\right)^{-1}=\sum_{\delta: s(\delta)=0} P_{q}(\delta) e^{\delta_{1} x_{1}+\ldots+x_{k} \rho_{k}} .
$$

Then the number $G(\delta)$ of intransitive graphs of type δ is equal to the coefficient of the least power of q in $P_{q}(\delta)$. So we can view the number $G(\delta)$ as an analogue of $P_{q}(\delta)$ as $q \rightarrow 0$, i.e., "christal analogue of $P_{q}(\delta)$ ".

Intransitive graphs are closely related to oscillating tableaux. In Sections 5 and 7 we present several theorem illustrating this connection. Here we formulate a special case which is especially clear.

Theorem 4.3 Let $\beta \in \mathbb{Z}^{k}$ be such that $s(\beta)=0$. Then the number of oscillating tableaux of shape $(\hat{0}, \hat{0})$ and weight β is equal to the number of intransitive graphs of type β

$$
|O T(\hat{0}, \hat{0}, \beta)|=|G(\beta)| .
$$

In Section ?? we construct a bijection $\Phi_{\lambda \mu \beta}$ which in the case $\lambda=\mu=\hat{0}$ is is a bijection between $O T(\hat{0}, \hat{0}, \beta)$ and $G(\beta)$.

We call an oscillating tableau of weight $\beta=\left(\beta_{1}, \ldots, \beta_{k}\right)$ standard if $\beta_{i}=$ ± 1 for all i. Clearly, standard oscillating tableux correspond to paths in the Young graph.

Corollary 4.4 The number of paths in the Young graph from $\hat{0}$ to $\hat{0}$ of length $2 k$ is equal to $(2 k-1)!!=(2 k-1)(2 k-3) \ldots 1$.

Proof - If $\beta_{i}= \pm 1$ for all i then an intransitive graph of type β is a perfect matching. Therefore, by Theorem 4.3 the number of standard tableux of shape $(\hat{0}, \hat{0})$ with weight of length $2 k$ is equal to the number perfect matchings on the set of vertices $\{1,2, \ldots, 2 k\}$ which is equal to $(2 k-1)!$!.

In the end of this section we show how oscillation tableaux and intransitive graphs are connected with classical Robinson-Shensted-Knuth correspondence [9].

Let $\beta^{\prime}=\left(\beta_{1}^{\prime}, \beta_{2}^{\prime}, \ldots, \beta_{s}^{\prime}\right) \in \mathbb{N}^{s}, \beta^{\prime \prime}=\left(\beta_{1}^{\prime \prime}, \beta_{2}^{\prime \prime}, \ldots, \beta_{t}^{\prime \prime}\right) \in \mathbb{N}^{t}$, and β be the sequence $\left(-\beta_{s}^{\prime},-\beta_{s-1}^{\prime}, \ldots,-\beta_{1}^{\prime}, \beta_{1}^{\prime \prime}, \beta_{2}^{\prime \prime}, \ldots, \beta_{t}^{\prime \prime}\right) \in \mathbb{Z}^{s+t}$. It is clear that every oscillating tableau $\alpha \in O T(\hat{0}, \hat{0}, \beta)$ can be presented by a pair (P, Q) of Young tableux of the same shape and with weights β^{\prime} and $\beta^{\prime \prime}$ respectively. We can associate with an intransitive graph $\gamma \in G(\beta)$ the $s \times t$-matrix $A=\left(a_{i j}\right)$ such that $a_{i j}$ is equal to the multiplicity of the edge $(s+1-i, s+j)$ in γ. We get the following corollary of Theorem 4.3.

Corollary 4.5 Let $\beta^{\prime} \in \mathbb{N}^{s}$ and $\beta^{\prime \prime} \in \mathbb{N}^{t}$. Then the number of pairs (P, Q) of Young tableaux of the same shape and with weights β^{\prime} and $\beta^{\prime \prime}$ respectively is equal to the number of $s \times t$-matrices $A=\left(a_{i j}\right)$ such that

1. $a_{i j} \in \mathbb{N}$ for $i=1,2, \ldots, s, j=1,2, \ldots, t$,
2. $\sum_{j} a_{i j}=\beta_{i}^{\prime}$ for $i=1,2, \ldots, s$,
3. $\sum_{i} a_{i j}=\beta_{j}^{\prime \prime}$ for $j=1,2, \ldots, t$.

In [9] D. E. Knuth generalized the constructions of G. de B. Robinson [12] and C. Schencted [13] and obtained a one-to-one correspondence between such pairs (P, Q) and matrices A. In this special case the bijection $\Phi_{\lambda \mu \beta}$ (see Section ??) coincides with Robinson-Schensted-Knuth correspondence.

$5 \quad S_{p} \times S_{q}$-module $M(p, \beta, q)$

In this section we consider a permutational representation of $S_{p} \times S_{q}$ in the linear space generated by intransitive graphs. Multiplicities of irreducible components in this representation are given by the numbers of oscillating tableaux.

Let $p, q \in \mathbb{N}, \beta=\left(\beta_{1}, \ldots, \beta_{k}\right) \in \mathbb{Z}^{k}$ such that $p-s(\beta)=q, r=p+k$, and $n=p+k+q$. Let $G(p, \beta, q)$ be the set of intransitive graphs of type $\delta=\left(\delta_{1}, \delta_{2}, \ldots, \delta_{n}\right)$, where

$$
\delta_{i}=\left\{\begin{array}{cl}
-1 & \text { for } i=1, \ldots, p \\
\beta_{i-p} & \text { for } i=p+1, \ldots, r \\
1 & \text { for } i=r+1, \ldots, n
\end{array}\right.
$$

The direct product of two symmetric groups $S_{p} \times S_{q}$ acts on the graphs $\gamma \in G(p, \beta, q)$ as follows: the group S_{p} permutes the first p vertices in γ and the group S_{q} permutes the last q vertices in γ. More precisely, if $g=$ $(\sigma, \rho) \in S_{p} \times S_{q}, \gamma \in G(p, \beta, q)$ then (i, j) is an edge of graph $g \cdot \gamma$ if and only if $\left(g^{-1}(i), g^{-1}(j)\right.$ is an edge of γ, where

$$
g(s)=\left\{\begin{array}{cl}
\sigma(s) & s=1, \ldots, p \\
s & s=p+1, \ldots, r \\
\rho(s-r)+r & s=r+1, \ldots, n
\end{array}\right.
$$

Let $M(p, \beta, q)$ be the linear space over \mathbb{C} with basis $\left\{v_{\gamma}\right\}, \gamma \in G(p, \beta, q)$. The action of the group $S_{p} \times S_{q}$ on $G(p, \beta, q)$ gives a linear representation $M(p, \beta, q)$ of $S_{p} \times S_{q}$.

Example 5.1 Let $p=q$ and $\beta=\emptyset$ be the empty sequence. Then graphs from $G(p, \emptyset, p)$ can be identified with permutations in S_{p}. In this case $M(p, \emptyset, p)$ is the regular representaion Reg $\left(S_{p}\right)$ of $S_{p} \times S_{p}$. That is $M(p, \emptyset, p)$ is isomorphic to the group algebra $\mathbb{C}\left[S_{p}\right]$ on which one copy of S_{p} acts by left multiplications and the other copy of S_{p} acts by right multiplications.

Example 5.2 Let $q=0$ and $\beta_{i} \geq 0$ for all $i=1,2, \ldots, k$. Then a graph $\gamma \in G(p, \beta, 0)$ can be identified with the word $w=w_{1} w_{2} \ldots w_{p}$ in the alphabet $\{1,2, \ldots, k\}$ where $w_{i}=j$ if $(i, p+j)$ is an edge of γ. Clearly, the word w contains $\beta_{1} 1$'s, $\beta_{2} 2$'s, etc. The symmetric group S_{p} acts on such words w by permutation of letters w_{i}. The representation $M_{\beta}=M(p, \beta, 0)$ is the well-known monomial representation, see [8],

$$
M_{\beta}=\operatorname{Ind}_{S_{\beta_{1}} \times \ldots \times S_{\beta_{k}}}^{S_{\beta_{1}}} I d,
$$

where Id is the identity representation of $S_{\beta_{1}} \times \ldots \times S_{\beta_{k}}$.
Now we can give a combinatorial interpretation of multiplicities of irreducible components in $M(p, \beta, q)$ in terms of oscillating tableaux.

Let π_{λ} be the irreducible S_{n}-module associated with a partition $\lambda \vdash n$ (see $[8,10]$). Every irreducible representation of the group $S_{p} \times S_{q}$ is of the form $\pi_{\lambda} \otimes \pi_{\mu}$, where $|\lambda|=p$ and $|\mu|=q$.

Theorem 5.3

$$
M(p, \beta, q) \simeq \sum|O T(\lambda, \mu, \beta)| \cdot \pi_{\lambda} \otimes \pi_{\mu},
$$

where the sum is over all partitions $\lambda \vdash p$ and $\mu \vdash q$.

The following two Corollaries present classical identities. For p, q, β such as in Example 5.1 Theorem 5.3 gives

Corollary 5.4

$$
\operatorname{Reg}\left(S_{p}\right)=\sum_{\lambda \vdash p} \pi_{\lambda} \otimes \pi_{\lambda} .
$$

This is a standard fact from representation theory of finite groups.
For p, q, β such as in Example 5.2 Theorem 5.3 gives

Corollary 5.5

$$
M_{\beta}=M(p, \beta, 0)=\sum_{\lambda \vdash p}|Y T(\lambda, \beta)| \cdot \pi_{\lambda}
$$

This is the classical Young rule for decomposition of monomial representations M_{β} of symmetric groups (see [18, 8, 10]).

Clearly, Theorem 4.3 is a special case of Theorem 5.3 for $p=q=0$.

6 Proof of Theorem 5.3

Let \mathcal{M} be the category whose objects $\mathrm{Ob}_{\mathcal{M}}$ are finite groups and morphisms $\operatorname{Mor}_{\mathcal{M}}(G, H)$ (or simply $\left.\operatorname{Mor}(G, H)\right)$ from a group G to a group H are equivalence classes of complex finite dimensional $G \times H$-modules. Let $V \in \operatorname{Mor}(G, H)$ and $W \in \operatorname{Mor}(H, K), G, H, K \in \operatorname{Ob}_{\mathcal{M}}$, then composition $V \circ W$ of morphisms V and W is the following $G \times K$-module

$$
V \circ W=V \otimes_{\mathbb{q} H]} W
$$

(the tenzor product over the group algebra $\mathbb{C}[H]$). In other words, the tenzor product $V \otimes_{\mathbb{C}} W$ is a $G \times H \times H \times K$-module. Then $V \circ W$ is the $G \times K$-module of H-invariants in $V \otimes_{\mathbb{C}} W$ (with the diagonal action of H on $V \otimes_{\mathbb{C}} W$). The composition is a bilinear operation with respect to the direct sum of modules.

Let \widehat{G} denote the set of equivalence classes of irreducible representations of G. Then any irreducible $G \times H$-module is of the form $\alpha \otimes \beta^{*}$, where $\alpha \in \widehat{G}$, $\beta \in \widehat{H}$ and β^{*} denotes the conjugate to β (which is also irreducible). It is clear that these irredusible modules form a \mathbb{N}-basis of $\operatorname{Mor}(G, H)$.

Let $\operatorname{Reg}(G)$ be the regular representation of $G \times G$, i. e. $\operatorname{Reg}(G)$ is the group algebra $\mathbb{C}[G]$ on which one copy of G acts by left multiplications and the other copy of G acts by right multiplications.

Figure 4: Composition of graphs

The following proposition presents two simple facts from representation theory of finite groups:

Proposition 6.1 1. Let $\alpha \in \widehat{G}, \beta \in \widehat{H}, \gamma \in \widehat{H}, \delta \in \widehat{K}$. Then

$$
\left(\alpha \otimes \beta^{*}\right) \circ\left(\gamma \otimes \delta^{*}\right)=\left\{\begin{array}{cl}
\alpha \otimes \delta^{*} & \text { if } \beta=\gamma, \\
0 & \text { if } \beta \neq \gamma .
\end{array}\right.
$$

2. The regular representation $\operatorname{Reg}(G)=\sum_{\alpha \in \widehat{G}} \alpha \otimes \alpha^{*}$ is the identity morphism in the category \mathcal{M} from G to G.

Now construct a category \mathcal{T}. The objects of \mathcal{T} are nonnegative integers $\mathrm{Ob}_{\mathcal{T}}=\mathbb{N}$ and for $p, q \in \mathrm{Ob}_{\mathcal{T}}$ morphisms $\operatorname{Mor}_{\mathcal{T}}(p, q)$ from p to q are sequences $\beta=\left(\beta_{1}, \ldots, \beta_{k}\right)$ of integers such that $p-s(\beta)=q$ and $p-\sum_{i=1}^{j} \beta_{i} \geq 0$ for $j=1,2, \ldots, k$. The composition of morphisms $\beta^{\prime}=\left(\beta_{1}^{\prime}, \ldots, \beta_{k}^{\prime}\right)$ and $\beta^{\prime \prime}=\left(\beta_{1}^{\prime \prime}, \ldots, \beta_{l}^{\prime \prime}\right)$ is the sequence $\beta^{\prime} \circ \beta^{\prime \prime}=\left(\beta_{1}^{\prime}, \ldots, \beta_{k}^{\prime}, \beta_{1}^{\prime \prime}, \ldots, \beta_{l}^{\prime \prime}\right)$.

Consider the following maps from $\mathrm{Ob}_{\mathcal{T}}$ to $\mathrm{Ob}_{\mathcal{M}}$ and from $\operatorname{Mor}_{\mathcal{T}}$ to $\operatorname{Mor}_{\mathcal{M}}$

$$
\begin{aligned}
M_{o b}: & p \in \operatorname{Ob}_{\mathcal{T}} \rightarrow S_{p} \in \operatorname{Ob}_{\mathcal{M}} \\
M_{\text {mor }}: & \beta \in \operatorname{Mor}_{\mathcal{T}}(p, q) \rightarrow M(p, \beta, q) \in \operatorname{Mor}_{\mathcal{M}}\left(S_{p}, S_{q}\right)
\end{aligned}
$$

Theorem 6.2 These maps give a functor \mathcal{M} from category \mathcal{T} to category \mathcal{M}. In other words, if $\beta^{\prime} \in \operatorname{Mor}_{\mathcal{T}}(p, q)$ and $\beta^{\prime \prime} \in \operatorname{Mor}_{\mathcal{T}}(q, r)$ then $M\left(p, \beta^{\prime}, q\right) \circ$ $M\left(q, \beta^{\prime \prime}, r\right)=M\left(p, \beta^{\prime} \circ \beta^{\prime \prime}, r\right)$.

Proof - Define an operation of "composition" for intransitive graphs. Let $\gamma^{\prime} \in G\left(p, \beta^{\prime}, q\right), \gamma^{\prime \prime} \in G\left(q, \beta^{\prime \prime}, r\right)$, the sequence β^{\prime} has k elements, and $\beta^{\prime \prime}$ has l elements. Join the vertex $p+k+i$ of the graph γ^{\prime} with the vertex i of graph $\gamma^{\prime \prime}$ for $i=1,2, \ldots, q$. Delete all these vertices and renumber the remaining vertices by the numbers 1 through $p+k+l+r$ (all vertices of γ^{\prime} are less then vertices of $\left.\gamma^{\prime \prime}\right)$. As a result we get the graph $\gamma^{\prime} \circ \gamma^{\prime \prime} \in G\left(p, \beta^{\prime} \circ \beta^{\prime \prime}, r\right)$. See an example on Figure 4.

Let $\left\{v_{\gamma^{\prime}}\right\}, \gamma^{\prime} \in G\left(p, \beta^{\prime}, q\right)$ be the basis of $M\left(p, \beta^{\prime}, q\right)$ and $\left\{v_{\gamma^{\prime \prime}}\right\}, \gamma^{\prime \prime} \in$ $G\left(q, \beta^{\prime \prime}, r\right)$ be the basis of $M\left(q, \beta^{\prime \prime}, r\right)$. Then vectors $v_{\gamma^{\prime}} \otimes v_{\gamma^{\prime \prime}}$ form a basis of $M\left(p, \beta^{\prime}, q\right) \otimes_{\mathbb{C}} M\left(q, \beta^{\prime \prime}, r\right)$. We must select S_{q}-invariants in this space. To do this we should symmetrize the space $M\left(p, \beta^{\prime}, q\right) \otimes_{\mathbb{C}} M\left(q, \beta^{\prime \prime}, r\right)$ by diagonal
action of S_{q}. Let Sym denote this symmetrization. Then we can identify $\operatorname{Sym}\left(v_{\gamma^{\prime}} \otimes v_{\gamma^{\prime \prime}}\right)$ with $v_{\gamma^{\prime} \circ \gamma^{\prime \prime}}$. Hence vectors of the type $v_{\gamma^{\prime} \circ \gamma^{\prime \prime}}$ generate the representation $M\left(p, \beta^{\prime}, q\right) \circ M\left(q, \beta^{\prime \prime}, r\right)$. On the other hand, it is clear that every element of $G\left(p, \beta^{\prime} \circ \beta^{\prime \prime}, r\right)$ is of the form $\gamma^{\prime} \circ \gamma^{\prime \prime}$ and vice versa.

Therefore, $M\left(p, \beta^{\prime}, q\right) \circ M\left(q, \beta^{\prime \prime}, r\right) \simeq M\left(p, \beta^{\prime} \circ \beta^{\prime \prime}, r\right)$.
Now we are able to prove Theorem 5.3. We will do it in two steps. First, we prove it in the case when the sequence β consists of one number $\beta=(b)$. Then we prove it for arbitrary β.

1. Let $\beta=(-b)$ and $b \geq 0$ (the case when $b \leq 0$ is dual). Then $q=p+b$ and

$$
M(p,(-b), q)=\operatorname{Ind}_{S_{p} \times S_{p} \times S_{b}}^{S_{p} \times S_{p+b}} \operatorname{Reg}\left(S_{p}\right) \otimes \operatorname{Id}_{b}
$$

where Id_{b} is the identity representation of S_{b}. Now

$$
\begin{aligned}
M(p,(-b), q) & =\operatorname{Ind}_{S_{p} \times S_{p} \times S_{b}}^{S_{p} \times S_{p+b}} \sum_{\lambda \vdash p} \pi_{\lambda} \otimes \pi_{\lambda} \otimes \operatorname{Id}_{b} \\
=\sum_{\lambda \vdash p} \pi_{\lambda} \otimes \operatorname{Ind}_{S_{p} \times S_{b}}^{S_{p_{p}}} \pi_{\lambda} & ={ }^{*} \sum_{\lambda \vdash p, \mu \vdash q}|O T(\lambda,(-b), \mu)| \cdot \pi_{\lambda} \otimes \pi_{\mu} .
\end{aligned}
$$

The first equality is true by Proposition 6.1(2) and the fact that for the symmetric group we have $\pi_{\lambda}^{*}=\pi_{\lambda}$. The equality $(*)$ uses the Pieri rule:

$$
\operatorname{Ind}_{S_{p} \times S_{b}}^{S_{p+b}} \pi_{\lambda}=\sum \pi_{\mu}
$$

where the sum is other all μ such that μ / λ is a horizontal b-stripe, see [8].
2. Let $\beta=\left(\beta_{1}, \ldots, \beta_{k}\right)$ be a sequence of integers and $p_{i}=p-\sum_{j=1}^{i} \beta_{j}$, $q=p_{k}$. Then

$$
\begin{aligned}
M(p, \beta, q) & ={ }^{(1)} M\left(p_{0},\left(\beta_{1}\right), p_{1}\right) \circ \ldots \circ M\left(p_{k-1},\left(\beta_{k}\right), p_{k}\right) \\
& ={ }^{(2)}\left(\sum \pi_{\lambda_{(1)}} \otimes \pi_{\mu_{(1)}}\right) \circ \ldots \circ\left(\sum \pi_{\lambda_{(k)}} \otimes \pi_{\mu_{(k)}}\right) \\
& ={ }^{(3)} \sum_{\lambda \vdash p, \mu \vdash q}|O T(\lambda, \mu, \beta)| \cdot \pi_{\lambda} \otimes \pi_{\mu},
\end{aligned}
$$

where in the second line the direct sums are over $\lambda_{(i)} \vdash p_{i-1}$ and $\mu_{(i)} \vdash p_{i}$ such that $\lambda_{(i)} / \mu_{(i)}$ is a horizontal β_{i}-stripe (if $\beta_{i} \geq 0$) or $\mu_{(i)} / \lambda_{(i)}$ is a horizontal $\left(-\beta_{i}\right)$-stripe (if $\left.\beta_{i} \leq 0\right)$ for all $i=1,2, \ldots, k$.

Equality (1) follows from Theorem 6.2; (2) follows from p. 1; (3) follows from Proposition 6.1(1) and definition of oscillating tableaux.

7 Combinatorial theorem

In this section we give a combinatorial analogue of Theorem 5.3.
A sequence $\tau=\left(\tau_{1}, \tau_{2}, \ldots, \tau_{k}\right) \in \mathbb{Z}^{k}$ is called normal if there exist $0 \leq$ $r \leq l \leq k$ such that $\tau_{1}, \tau_{2}, \ldots, \tau_{r}>0 ; \tau_{r+1}=\ldots=\tau_{l}=0 ; \tau_{l+1}, \ldots, \tau_{k}<0$. For a sequence $\beta \in \mathbb{Z}^{k}$, let $\operatorname{nor}(\beta)$ denote the normal sequence obtained from β by shuffling all positive entries of β into the beginning and all negative entries into the end. For example, $\operatorname{nor}(0,-3,1,-1,0,-2,0,1,3)=$ $(1,1,3,0,0,0,-3,-1,-2)$.

For $\beta, \delta \in \mathbb{Z}^{k}$ the expression $\delta \prec \beta$ means that for all $i=1,2, \ldots, k$ either $0 \leq \delta_{i} \leq \beta_{i}$ or $0 \geq \delta_{i} \geq \beta_{i}$.

Now we can state the combinatorial theorem.
Theorem 7.1 Let $\lambda, \mu \in \mathcal{P}$ be some partitions, $\beta \in \mathbb{Z}^{k}$. Then

$$
|O T(\lambda, \mu, \beta)|=\sum|G(\delta)| \cdot|O T(\lambda, \mu, \operatorname{nor}(\beta-\delta))|,
$$

where the sum is over all $\delta \in \mathbb{Z}^{k}$ such that $s(\delta)=0$ and $\delta \prec \beta$.
In order to deduce Theorem 7.1 from Theorem 5.3 we need one simple lemma.

Lemma 7.2 Let $p, q \in \mathbb{N}, \beta \in \mathbb{Z}^{k}$ be such that $p-s(\beta)=q$. Then

$$
M(p, \beta, q)=\sum|G(\delta)| \cdot M(p, \operatorname{nor}(\beta-\delta), q)
$$

where the direct sum is over all $\delta \in \mathbb{Z}^{k}$ such that $s(\delta)=0$ and $\delta \prec \beta$.
Proof - Let $\xi \in G(\delta)$, where $\delta=\left(\delta_{1}, \ldots, \delta_{k}\right) \in \mathbb{Z}^{k}, s(\delta)=0$. Let $G(p, \delta, q)_{\xi}$ be the set of graphs from $G(p, \delta, q)$ whose restriction on the vertices $p+1, p+2, \ldots, p+k$ is the graph ξ. If $G(p, \beta, q)_{\xi}$ is nonempty then $\delta \prec \beta$.

It is clear that when $\delta \prec \beta$ and $\xi \in G(\delta)$ the submodule in $M(p, \beta, q)$ generated by $\left\{v_{\gamma} \mid \gamma \in G(p, \beta, q)_{\xi}\right\}$ is equivalent to $M(p, \operatorname{nor}(\beta-\delta), q)$.

Now Theorem 7.1 immediately follows from Theorem 5.3 and Lemma 7.2.
We will give a combinatorial proof of Theorem 7.1. In Section ?? we will construct a bijection $\Phi_{\lambda \mu \beta}$ which establishes a one-to-one correspondence between the following two sets.

$$
\Phi_{\lambda \mu \beta}: O T(\lambda, \mu, \beta) \rightarrow \coprod G(\delta) \times O T(\lambda, \mu, \operatorname{nor}(\beta-\delta))
$$

Let $\lambda=\mu=\hat{0}$. Then there is a unique oscillating tableau of shape $(\hat{0}, \hat{0})$ of normal weight. Namely, $(\hat{0}, \hat{0}, \ldots, \hat{0}) \in O T(\hat{0}, \hat{0},(0,0, \ldots, 0))$. We have $\delta=\beta$ in Theorem 7.1. Hence Theorem 4.3 is a special case of Theorem 7.1.

8 Superanalogue

In this section we give superanalogues of definitions and theorems from Sections 4-7.

Definition 8.1 Let λ, μ be partitions, $\beta \in \mathbb{Z}^{k}, \varepsilon=\left(\varepsilon_{1}, \ldots, \varepsilon_{k}\right) \in\{1,-1\}^{k}$. An oscillating supertableau of shape (λ, μ) and superweight $b=\beta^{\varepsilon}$ (see Section 2) is a sequence of partitions $\left(\alpha_{(0)}=\lambda, \alpha_{(1)}, \alpha_{(2)}, \ldots, \alpha_{(k)}=\mu\right)$ such that for all $i=1,2, \ldots, k$ the following conditions hold.

1. If $\varepsilon_{i}=1$ and $\beta_{i} \geq 0$ then $\alpha_{(i-1)} \supset \alpha_{(i)}$ and $\alpha_{(i-1)} / \alpha_{(i)}$ is a horizontal β_{i}-stripe;
2. If $\varepsilon_{i}=1$ and $\beta_{i}<0$ then $\alpha_{(i)} \supset \alpha_{(i-1)}$ and $\alpha_{(i)} / \alpha_{(i-1)}$ is a horizontal $\left(-\beta_{i}\right)$-stripe;
3. If $\varepsilon_{i}=-1$ and $\beta_{i} \geq 0$ then $\alpha_{(i-1)} \supset \alpha_{(i)}$ and $\alpha_{(i-1)} / \alpha_{(i)}$ is a vertical β_{i}-stripe;
4. If $\varepsilon_{i}=-1$ and $\beta_{i}<0$ then $\alpha_{(i)} \supset \alpha_{(i-1)}$ and $\alpha_{(i)} / \alpha_{(i-1)}$ is a vertical ($-\beta_{i}$)-stripe.

The set of all oscillating supertableaux of shape (λ, μ) and superweight $b=\beta^{\varepsilon}$ is denoted by $\operatorname{OST}(\lambda, \mu, b)$.

It is clear that $\operatorname{OST}(\lambda, \mu, b)$ is nonempty only when $|\lambda|-s(\beta)=|\mu|$. If all $\beta_{i} \geq 0$ then $\operatorname{OST}\left(\lambda, \mu, \beta^{\varepsilon}\right)=S T\left(\lambda / \mu, \beta^{\varepsilon}\right)$. And $\operatorname{OST}\left(\lambda, \mu, \beta^{(1,1 \ldots, 1)}\right)=$ OT (λ, μ, β).

Definition 8.2 Let $\delta \in \mathbb{Z}^{k}$ be such that $s(\delta)=0$ and $\epsilon=\left(\epsilon_{1}, \epsilon_{2}, \ldots, \epsilon_{k}\right) \in$ $\{1,-1\}^{k}$. An intransitive graph of supertype $d=\delta^{\epsilon}$ is an oriented graph γ on the set of vertices $\{1,2, \ldots, k\}$ satistying the conditions 1-3 of Definition 4.1 and also the condition:
4. If $\epsilon_{i} \neq \epsilon_{j}$ then γ contains at most one edge (i, j).

Let $S G\left(\delta^{\epsilon}\right)$ be the set of all such graphs.

The following algebra $\mathcal{A}(\epsilon)$ is closely related to Definition 8.2.
Definition 8.3 Let $\epsilon=\left(\epsilon_{1}, \epsilon_{2}, \ldots, \epsilon_{k}\right) \in\{1,-1\}^{k}$. The algebra $\mathcal{A}(\epsilon)$ generated by variables $x_{i j}, 1 \leq i<j \leq k$ with the following relations.

1. $x_{i j} x_{j r}=0$ for any $1 \leq i<j<r \leq k$,
2. $x_{i j} x_{l m}=(-1)^{\sigma_{i j} \sigma_{l m}} x_{l m} x_{i j}$, where

$$
\sigma_{i j}= \begin{cases}0 & \epsilon_{i}=\epsilon_{j} \\ 1 & \epsilon_{i} \neq \epsilon_{j} .\end{cases}
$$

Relation 2 implies that $x_{i j}$ with $\sigma_{i j}=0$ are commutative variables and $x_{l m}$ with $\sigma_{l m}=1$ are anticommutative variables.

For any oriented graph γ on the set of vertices $\{1,2, \ldots, k\}$ we can construct (up to a sign) a monomial m_{γ} in the algebra $\mathcal{A}(\epsilon)$:

$$
m_{\gamma}= \pm \prod x_{i j}
$$

where the product is over all edges (i, j) of graph γ.
Nonzero monomials in $\mathcal{A}(\epsilon)$ correspond to intransitive graphs of type β^{ϵ} with fixed ϵ and arbitrary β. Indeed, condition 4.1(2) corresponds to condition $8.3(1)$ and $8.2(4)$ corresponds to the fact that $x_{l m}^{2}=0$ for an anticommutative variable $x_{l m}$ with $\sigma_{l m}=1$.

Let $\mathcal{A}_{\delta}(\epsilon)$ denote the subspace of $\mathcal{A}(\epsilon)$ which is generated (as a linear space) by monomials m_{γ} for $\gamma \in S G\left(\delta^{\epsilon}\right)$. It is clear that $\mathcal{A}(\epsilon)=\bigoplus_{\delta} \mathcal{A}_{\delta}(\epsilon)$. Let $p, q \in \mathbb{N}, \beta=\left(\beta_{1}, \ldots, \beta_{k}\right), \varepsilon=\left(\varepsilon_{1}, \ldots, \varepsilon_{k}\right) \in\{1,-1\}^{k}$, and $\psi, \omega \in$ $\{1,-1\}$. Suppose that

$$
\begin{aligned}
& \delta=(\underbrace{-1,-1, \ldots,-1}_{p \text { times }}, \beta_{1}, \beta_{2}, \ldots, \beta_{k}, \underbrace{1,1, \ldots, 1}_{q \text { times }}) ; \\
& \epsilon=(\underbrace{\psi, \psi, \ldots, \psi}_{p \text { times }}, \varepsilon_{1}, \varepsilon_{2}, \ldots, \varepsilon_{k}, \underbrace{\omega, \omega, \ldots, \omega}_{q \text { times }}) .
\end{aligned}
$$

Let $S G\left(\mathrm{p}, \beta^{\varepsilon}, \mathrm{q}\right)$ be the set of intransitive graphs of supertype δ^{ϵ}. Denote by $M\left(\mathrm{p}, \beta^{\varepsilon}, \mathrm{q}\right)$ the subspace $\mathcal{A}_{\delta}(\epsilon)$, where $\mathrm{p}=p^{\psi}$ and $\mathrm{q}=q^{\omega}$. Then $\left\{m_{\gamma}\right.$: $\left.\gamma \in S G\left(\mathrm{p}, \beta^{\varepsilon}, \mathrm{q}\right)\right\}$ is a basis of the space $M\left(\mathrm{p}, \beta^{\varepsilon}, \mathrm{q}\right)$.

The group $S_{p} \times S_{q}$ acts on this space, cf. Section 5 . The symmetric group S_{p} permutes the first index of variables $x_{i j}$ with $i=1,2, \ldots, p$ and S_{q} permutes the second index of variables $x_{i j}$ with $j=p+k+1, \ldots, p+k+q$.

The following example gives an odd analogue of the regular representation of S_{p} (see Example 5.1).

Example 8.4 Let $\beta^{\varepsilon}=\emptyset$ be the empty sequence, $\mathrm{p}=p$ and and $\mathrm{q}=\bar{p}$, $p \in \mathbb{N}$. Then $M(p, \emptyset, \bar{p})$ is the representation of $S_{p} \times S_{p}$ on the group algebra $\mathbb{C}\left[S_{p}\right]$ given by the formula

$$
(\sigma, \pi) \cdot f=\operatorname{sgn}\left(\sigma \pi^{-1}\right) \sigma f \pi^{-1},
$$

where $(\sigma, \pi) \in S_{p} \times S_{p}, f \in \mathbb{C}\left[S_{p}\right]$ and sgn denotes the sign of permutation. Denote this representation by Altp.

We use the following notation. For a partition $\lambda \in \mathcal{P}$ and $\psi \in\{1,-1\}$, $\lambda^{\psi}=\lambda$ if $\psi=1$ and $\lambda^{\psi}=\lambda^{\prime}$ (the conjugate partition) if $\psi=-1$.

Now we can present a superanalogue of Theorem 5.3.

Theorem 8.5

$$
M\left(p^{\psi}, \beta^{\varepsilon}, q^{\omega}\right) \simeq \sum\left|\operatorname{OST}\left(\lambda^{\psi}, \mu^{\omega}, \beta^{\varepsilon}\right)\right| \cdot \pi_{\lambda} \otimes \pi_{\mu}
$$

where the sum is over all partitions $\lambda \vdash p$ and $\mu \vdash q$.
For p, q, β^{ϵ} such as in Example 8.4 we have by Theorem 8.5

Corollary 8.6

$$
A l t_{p}=\sum_{\lambda \vdash p} \pi_{\lambda} \otimes \pi_{\lambda^{\prime}} .
$$

This is an odd analogue of Corollary 5.4. Of course this formula easily follows from definition of Alt_{p}.
Sketch of proof of Theorem 8.5 - The proof is analogous to the proof of Theorem 5.3. The only difference is the definition of "composition" for intransitive graphs. If we define the composition as in Section 6 then it may happen that the composition of two graphs $\gamma^{\prime} \in S G\left(\mathrm{p}, b^{\prime}, \mathrm{q}\right)$ and $\gamma^{\prime \prime} \in S G\left(\mathrm{q}, b^{\prime \prime}, \mathrm{r}\right)$ is not a graph from $S G\left(\mathrm{p}, b^{\prime} \circ b^{\prime \prime}, r\right)$. We define "supercomposition" $\gamma^{\prime} o^{s} \gamma^{\prime \prime}$ of graphs γ^{\prime} and $\gamma^{\prime \prime}$ by

$$
\gamma^{\prime} \circ \mathrm{s} \gamma^{\prime \prime}=\left\{\begin{array}{cl}
\gamma^{\prime} \circ \gamma^{\prime \prime} & \text { if } \gamma^{\prime} \circ \gamma^{\prime \prime} \in S G\left(\mathrm{p}, b^{\prime} \circ b^{\prime \prime}, \mathrm{r}\right) \\
0 & \text { otherwise }
\end{array}\right.
$$

This convention is consistent with interpretation of composition in terms of symmetrization. Indeed, if $\gamma^{\prime} \circ \gamma^{\prime \prime}$ is not in $S G\left(\mathrm{p}, b^{\prime} \circ b^{\prime \prime}, \mathrm{r}\right)$ then $\operatorname{Sym}\left(m\left(\gamma^{\prime}\right) \otimes\right.$ $\left.m\left(\gamma^{\prime \prime}\right)\right)=0$.

Now we give a superanalogue of Theorem 7.1. Let $b=\left(b_{1}, b_{2}, \ldots, b_{k}\right)=$ β^{ε} (see Section 2). Let nor (b) denote the word obtained from the word $b=\left(b_{1}, b_{2}, \ldots, b_{k}\right)$ by shuffling all negative entries into the beginning and all positive entries into the end. For example, $\operatorname{nor}(0, \overline{3},-1, \overline{1}, 0,2, \overline{0},-\overline{1},-3)=$ $(-1,-\overline{1},-3,0,0, \overline{0}, \overline{3}, \overline{1}, 2)$.

Theorem 8.7 Let $\lambda, \mu \in \mathcal{P}$ be some partitions, $\beta \in \mathbb{Z}^{k}, \varepsilon \in\{1,-1\}^{k}$. Then

$$
\left|O S T\left(\lambda, \mu, \beta^{\varepsilon}\right)\right|=\sum\left|S G\left(\delta^{\varepsilon}\right)\right| \cdot\left|\operatorname{OST}\left(\lambda, \mu, \operatorname{nor}\left((\beta-\delta)^{\varepsilon}\right)\right)\right|
$$

where the summation is over all $\delta \in \mathbb{Z}^{k}$ such that $s(\delta)=0$ and $\delta \prec \beta$.
This theorem can be deduced from Theorem 8.5 in the same way as Theorem 7.1 from Theorem 5.3.

In Section ?? we will construct a bijection

$$
\Phi_{\lambda \mu b}^{\text {super }}: O S T\left(\lambda, \mu, \beta^{\varepsilon}\right) \rightarrow \coprod_{\delta<\beta} S G\left(\delta^{\varepsilon}\right) \times O S T\left(\lambda, \mu, \operatorname{nor}\left((\beta-\delta)^{\varepsilon}\right)\right)
$$

This will give a combinatorial proof of Theorem 8.5.
If $\lambda=\mu=\hat{0}$ then Theorem 8.7 implies the following
Corollary 8.8 Let $\beta \in \mathbb{Z}^{k}$ be such that $s(\beta)=0, \varepsilon \in\{1,-1\}^{k}$. Then the number of oscillating tableaux of shape $(\hat{0}, \hat{0})$ and superweight $b=\beta^{\varepsilon}$ is equal to the number of intransitive graphs of sypertype b

$$
|O S T(\hat{0}, \hat{0}, b)|=|G(b)|
$$

Let $\beta^{\prime} \in \mathbb{N}^{s}, \beta^{\prime \prime} \in \mathbb{N}^{t}, \beta=\left(-\beta_{s}^{\prime},-\beta_{s-1}^{\prime}, \ldots,-\beta_{1}^{\prime}, \beta_{1}^{\prime \prime}, \beta_{2}^{\prime \prime}, \ldots, \beta_{t}^{\prime \prime}\right)$, and $\varepsilon=(-1,-1, \ldots,-1,1,1, \ldots, 1)(s-1$'s and $t 1$'s $)$. It is clear that oscillating supertableaux of shape $(\hat{0}, \hat{0})$ and superweight β^{ε} correspond to pairs (P, Q) of Young tableaux with conjugate shapes and with weights $\beta^{\prime}, \beta^{\prime \prime}$ respectively, cf. Section 4.

We can identify an intransitive graph $\gamma \in S G\left(\beta^{\varepsilon}\right)$ with a $s \times t$-matrix $A=\left(a_{i j}\right)$ satisfying conditions $1-3$ of Corollary 4.5 and such that $a_{i j}=0$ or 1 for all i and j. We get the following

Corollary 8.9 Let $\beta^{\prime} \in \mathbb{N}^{s}$ and $\beta^{\prime \prime} \in \mathbb{N}^{t}$. Then the number of pairs of tableaux (P, Q) with conjugated shapes and with weights β^{\prime} and $\beta^{\prime \prime}$ respectively is equal to the number of $s \times t$-matrices satisfying the conditions $1-3$ of Corollary 4.5 with all entries equal to 0 or 1.

Knuth in [9] construct also an odd analogue of RSK-correspondence which is a bijection between the set of such $s \times t$-matrices and the set of such pairs of tableaux (P, Q). In this special case the bijection $\Phi_{\lambda \mu b}^{s u p e r}$ coincides with Knuth's correspondence.

9 Increasing and decreasing operators

First we give another description of the category \mathcal{M} from Section 6 .
Let G be a finite group. By $\operatorname{Rep}(G)$ denote the set of equivalence classes of complex finite dimensional representations of G. It is clear that $\operatorname{Rep}(G)=$ $\operatorname{Mor}_{\mathcal{M}}(\{\mathrm{id}\}, G)$ (see Section 6), where $\{\mathrm{id}\}$ denote the group with one element id.

Let $W \in \operatorname{Mor}_{\mathcal{M}}(G, H)$. Consider the \mathbb{N}-linear map $\langle W\rangle$ from $\operatorname{Rep}(G)$ to $\operatorname{Rep}(H)$ which is defined by $\langle W\rangle V=V \circ W$, where $V \in \operatorname{Rep}(G)=$ $\operatorname{Mor}_{\mathcal{M}}(\{\mathrm{id}\}, G)$. On the other hand, if we know a $\operatorname{map}\langle W\rangle$ then we can reconstruct the morphism W in \mathcal{M}.

By R denote the direct $\operatorname{sum} R=\operatorname{Rep}\left(S_{0}\right) \oplus \operatorname{Rep}\left(S_{1}\right) \oplus \operatorname{Rep}\left(S_{2}\right) \oplus \ldots$.
Let $\langle M(p, b, q)\rangle$ be the operator from $\operatorname{Rep}\left(S_{p}\right)$ to $\operatorname{Rep}\left(S_{q}\right)$ which corresponds to $S_{p} \times S_{q}$-module $M(p, b, q)$. Recall that $b=\beta^{\varepsilon}$ is a sequence in the alphabet $\{m, \bar{m} \mid m \in \mathbb{Z}\})$. Let $\langle b\rangle$ be the endomorpism of R such that $\langle b\rangle=\sum\langle M(p, b, q)\rangle$, where the sum is over $p-s(\beta)=q$. In the case when the sequence b has only one element m or $\bar{m}, m \in \mathbb{Z}$, we denote these operators by $\langle m\rangle$ or $\langle\bar{m}\rangle$. It is clear from Section 8 that $\left\langle\left(b_{1}, b_{2}, \ldots, b_{k}\right)\right\rangle=\left\langle b_{1}\right\rangle \cdot\left\langle b_{2}\right\rangle \cdot \ldots \cdot\left\langle b_{k}\right\rangle$.

If $n \in \mathbb{N}$ then we call operators $\langle n\rangle$ and $\langle\bar{n}\rangle$ increasing and denote them by $I(n)$ or $I(\bar{n})$. If $-n \in \mathbb{N}$ then we call operators $\langle n\rangle$ and $\langle\bar{n}\rangle$ decreasing and denote them $D(n)$ or $D(\bar{n})$. The following description of operators $I(n)$, $I(\bar{n}), D(n)$, and $D(\bar{n})$ follows from Sections 6 and 8 .

Let $V \in \operatorname{Rep}\left(S_{p}\right)$. Then

$$
\begin{aligned}
& I(n) \cdot V=\operatorname{Ind}_{S_{p}}^{S_{p+n}} V \\
& I(\bar{n}) \cdot V=\operatorname{Ind}_{S_{p} \times S_{n}}^{S_{p+n}}\left(V \otimes \operatorname{sgn}_{n}\right),
\end{aligned}
$$

where sgn_{n} is the sign representation of S_{n}.
Let $V \in \operatorname{Rep}\left(S_{p+n}\right)$. Then

$$
\begin{aligned}
& D(n) \cdot V=\operatorname{Inv}_{n}\left(\operatorname{Res}_{S_{p} \times S_{n}}^{S_{p+n}} V\right) \\
& D(\bar{n}) \cdot V=\operatorname{Skew}_{n}\left(\operatorname{Res}_{S_{p} \times S_{n}}^{S_{p+n}} V\right),
\end{aligned}
$$

where Inv_{n} is the space of S_{n}-invariants and Skew $_{n}$ is the space of skew invariants of S_{n}.

The space R has the basis $\left\{\pi_{\lambda} \mid \lambda \in \mathcal{P}\right\}$ consisting of all irreducible representations of all symmetric groups. Therefore a linear operator on the space R can be represented as an infinite matrix indexed by partitions.

All increasing and decreasing operators in coordinates are given below.

$$
\begin{aligned}
I(n)_{\lambda \mu} & = \begin{cases}1 & \text { if } \lambda \supset \mu \text { and } \lambda / \mu \text { is a horizontal } n \text {-stripe }, \\
0 & \text { otherwise },\end{cases} \\
D(n)_{\lambda \mu} & = \begin{cases}1 & \text { if } \mu \supset \lambda \text { and } \mu / \lambda \text { is a horizontal } n \text {-stripe } \\
0 & \text { otherwise }\end{cases} \\
I(\bar{n})_{\lambda \mu} & = \begin{cases}1 & \text { if } \lambda \supset \mu \text { and } \lambda / \mu \text { is a vertical } n \text {-stripe } \\
0 & \text { otherwise }\end{cases} \\
D(\bar{n})_{\lambda \mu} & = \begin{cases}1 & \text { if } \mu \supset \lambda \text { and } \mu / \lambda \text { is a vertical } n \text {-stripe } \\
0 & \text { otherwise }\end{cases}
\end{aligned}
$$

It is clear that $\langle b\rangle_{\lambda \mu}=\left(\left\langle b_{1}\right\rangle \cdot\left\langle b_{2}\right\rangle \cdot \ldots \cdot\left\langle b_{k}\right\rangle\right)_{\lambda \mu}=|\operatorname{OST}(\lambda, b, \mu)|$.
All increasing operators commute and all decreasing operators commute. But increasing and decreasing operators do not commute with each other. The following theorem gives the relations between these operators. Here $[a, b]=a b-b a$ denotes the commutator of operators.

Theorem 9.1 Let $m, n \in \mathbb{N}$. The following relations hold.

1. $[I(m), I(n)]=[I(\bar{m}), I(\bar{n})]=[D(m), D(n)]=[D(\bar{m}), D(\bar{n})]=0$.
2. $[I(m), I(\bar{n})]=[D(m), D(\bar{n})]=0$.
3. $[I(m+1), D(n+1)]=I(m) D(n),[I(\overline{m+1}), D(\overline{n+1})]=I(\bar{m}) D(\bar{n})$.
4. $[I(m+1), D(\overline{n+1})]=D(\bar{n}) I(m),[I(\overline{m+1}), D(n+1)]=D(n) I(\bar{m})$.

In the following section we give a combinatorial proof of Theorem 9.1.

10 Local bijections

Let $m, n \in \mathbb{N}$. In this section we construct the following four bijections:

1. $\psi_{1}: Y T(\lambda / \nu,(m, n)) \rightarrow Y T(\lambda / \nu,(n, m))$,
2. $\psi_{2}: S T(\lambda / \mu,(m, \bar{n})) \rightarrow S T(\lambda / \nu,(\bar{n}, m))$,
3. $\psi_{3}: O T(\lambda, \nu,(-m, n)) \rightarrow \coprod_{0 \leq k \leq \min (m, n)} O T(\lambda, \nu,(n-k,-m+k))$,
4. $\psi_{4}: \operatorname{OST}(\lambda, \nu,(-m, \bar{n})) \rightarrow \coprod_{0 \leq k \leq \min (1, m, n)} \operatorname{OST}(\lambda, \nu,(\overline{n-k},-m+k))$.

It is clear that these bijections are sufficient to prove Theorem 9.1. Later we will use bijections ψ_{3} and ψ_{4} in combinatorial proofs of Theorems 7.1 and 8.7

In all examples, when displaying an (oscillating) (super)tableau $\alpha=$ (λ, μ, ν), we insert 2's into the boxes of the skew diagram λ / μ (or μ / λ) and 1's into the boxes of μ / ν (or ν / μ). The symbol $1 / 2$ in a box means that we insert simultaneously integers 1 and 2 into this box.

We say that a skew diagram λ / μ falls into a disjoint union of skew diagrams $\tau_{1}, \tau_{2}, \ldots, \tau_{l}$ if $\lambda / \mu=\cup_{i} \tau_{i}$ and for all $1 \leq i<j \leq l$ any box of τ_{j} is below and the to the left of any box of τ_{j}. For example, the skew diagram on Figure 1 falls into a disjoint union of three diagrams. We also say that a (super)tableau of shape λ / μ falls into a disjoint union of so does the shape λ / μ.

Constructions:

1. Let $\alpha=(\lambda, \mu, \nu) \in Y T(\lambda / \mu,(m, n)), \lambda=\left(\lambda_{1}, \lambda_{2}, \ldots\right), \mu=\left(\mu_{1}, \mu_{2}, \ldots\right)$, and $\nu=\left(\nu_{1}, \nu_{2}, \ldots\right)$. Then we have $\lambda_{i} \geq \mu_{i} \geq \lambda_{i+1}, i=1,2 \ldots$; and $\mu_{i} \geq$ $\nu_{i} \geq \mu_{i+1}, i=1,2, \ldots$. Set by convention $\nu_{0}=\infty$. On the following diagram arrow $x \rightarrow y$ denotes the inequality $x \geq y$.

Let $a_{i}=\min \left(\lambda_{i}, \nu_{i-1}\right)$ and $b_{i}=\max \left(\lambda_{i+1}, \nu_{i}\right), i=1,2, \ldots$. Then $a_{i} \geq$ $\mu_{i} \geq b_{i}$. Set $\widetilde{\mu}_{i}=a_{i}+b_{i}-\mu_{i}, i=1,2, \ldots$, i.e., $\widetilde{\mu}_{i}$ is symmetric to μ_{i} in the interval $\left(b_{i}, a_{i}\right)$.

Figure 5: Bijection ψ_{1}

Figure 6: Bijection ψ_{3}

Now $\widetilde{\mu}=\left(\widetilde{\mu}_{1}, \widetilde{\mu}_{2}, \ldots\right)$ is a partition and $\widetilde{\alpha}=(\lambda, \widetilde{\mu}, \nu) \in Y T(\lambda / \mu,(n, m))$. Define $\psi_{1}: \alpha \mapsto \widetilde{\alpha}$. It is easy to see that ψ_{1} is a bijection between the sets $Y T(\lambda / \mu,(m, n))$ and $Y T(\lambda / \mu,(n, m))$. Figure 5 shows an example of the bijection ψ_{1}.
2. Let $\alpha=(\lambda, \mu, \nu) \in S T(\lambda / \mu,(m, \bar{n})) \ldots$
3. Let $\alpha=(\lambda, \mu, \nu) \in O T\left(\lambda, \mu,(-m, n), \lambda=\left(\lambda_{1}, \lambda_{2}, \ldots\right), \mu=\left(\mu_{1}, \mu_{2}, \ldots\right)\right.$, and $\nu=\left(\nu_{1}, \nu_{2}, \ldots\right)$. Then we have $\mu_{i} \geq \lambda_{i} \geq \mu_{i+1}, \mu_{i} \geq \nu_{i} \geq \mu_{i+1}$, $i=1,2, \ldots ;|\mu|-|\lambda|=m$, and $|\mu|-|\nu|=n$.

Let $a_{i}=\min \left(\lambda_{i}, \nu_{i}\right)$ and $b_{i}=\max \left(\lambda_{i+1}, \nu_{i+1}\right), i=1,2 \ldots$ Then $a_{i} \geq$ $\mu_{i+1} \geq b_{i}$. Set $\widetilde{\mu}_{i}=a_{i}+b_{i}-\mu_{i+1}, i=1,2, \ldots\left(c f . \quad\right.$ p. 1) and $k=\mu_{1}-$ $\min \left(\lambda_{1}, \nu_{1}\right)$. Clearly, $0 \leq k \leq \min (n, m)$.

Now $\widetilde{\mu}=\left(\widetilde{\mu}_{1}, \widetilde{\mu}_{2}, \ldots\right)$ is a partition and $\widetilde{\alpha}=(\lambda, \widetilde{\mu}, \nu) \in O T(\lambda, \mu,(n-$ $k,-m+k)$). We define $\psi_{3}: \alpha \mapsto \widetilde{\alpha}$. Then ψ_{3} gives a bijection between the sets $O T(\lambda, \mu,(-m, n))$ and $\coprod_{k} O T(\lambda, \mu,(n-k,-m+k)), 0 \leq k \leq \min (m, n)$. Indeed, if we have a partition $\widetilde{\mu}=\left(\widetilde{\mu}_{1}, \widetilde{\mu}_{2}, \ldots\right)$ and $0 \leq k \leq \min (m, n)$ then we can reconstruct μ setting $\mu_{1}=k+\min \left(\lambda_{1}, \nu_{1}\right)$ and $\mu_{i+1}=a_{i}+b_{i}-\widetilde{\mu}_{i}$, $i=1,2, \ldots$. See an example of the bijection ψ_{3} on Figure 6 .
4. Let $\alpha=(\lambda, \mu, \nu) \in \operatorname{OST}(\lambda, \nu,(-m, \bar{n})) \ldots$

11 Generalized Gelfand-Tsetlin patterns

Let $\alpha=\left(\alpha_{(0)}, \alpha_{(1)}, \ldots, \alpha_{(k)}\right) \in O T(\lambda, \mu, \beta)$ be an oscillating tableau of weight $\beta=\left(\beta_{1}, \beta_{2}, \ldots, \beta_{k}\right)$. Let $w=w_{1} w_{2} \ldots w_{k}$ be a word in the alphabet $\{+,-\}$

0	0	1	1		
0	1	1	1	1	
1	1	1	2	2	2
	2	2	2	2	3
		3	4		

Figure 7:
such that if β_{i} is positive (negative) then $w_{i}=+\left(w_{i}=-\right), i=1,2, \ldots, k$. Let $\rho(i)$ be the number of + 's in the word $w_{1} w_{2} \ldots w_{i}, i=1,2, \ldots, k$.

The generalized Gelfand-Tsetlin pattern P of type w corresponding to the oscillating tableau α is the two-dimensional array $P=\left\{p_{i j}\right\}$, where $i=1,2, \ldots, k, j \geq \rho(i)$, and $p_{i j}=\alpha_{(i) j-\rho(i)}$. For example, a generalized Gelfand-Tsetlin pattern of type $w=++-\ldots$ is an array of the following form (as above $x \rightarrow y$ means $x \geq y$).

Note that standard Gelfand-Tsetlin patterns have type $w=+++\ldots$ in our terminology.

We can present a generalized Gelfand-Tsetlin pattern P (and the corresponding oscillating tableau) in more convinient form as a plane partition with cutted off corners. For example, Figure 7 presents the oscillating tableau

$$
((211),(3211),(221),(211),(421),(321)) .
$$

References

[1] A. Berele, A. Schensted-type correspondence for the sympletic group, J. Comb. Theory, Ser. A 43 (1986), 320-328.
[2] A. Berele, A. Regev, Hook Young diagrams with applications to combinatories and to representation of Lie superalgebras, Adv. Math. 64 (1987) N. 2, 118-175.
[3] A. D. Berenstein, A. N. Kirillov, Groups generated by involutions, Gelfand-Tsetlin patterns, and combinatorics of Young tableaux, Algebra i Analiz 7 (1995), N. 1. 92-152.
[4] S. V. Fomin, Generalized Robinson-Shensted-Knuth correspondence [in Russian], Zapiski Nauchn. Sem. LOMI 155 (1985), 156-175.
[5] S. Fomin, Duality of graded graphs, J. Alg. Comb. 3 (1994), 357-404.
[6] S. Fomin, Shensted algorithms for dual graded posets, J. Alg. Comb. 4 (1995), 5-45.
[7] S. Fomin, Schur operators and Knuth correspondence, to appear in J. Comb. Theory, Ser. A.
[8] G. James, A. Kerber, The representation theory of the symmetric groups. Encyclopedia of Math. and its Appl., 16, Addison-Wesley, Reading, Mass. 1981.
[9] D. E. Knuth, Permutations, matrices and generalized Young tableaux, Pacific J. Math. 34 (1970), N. 3, 709-727.
[10] I. G. Macdonald, Symmetric Functions and Hall Polynomials, Oxford, 1870.
[11] T. W. Roby, Applications and extensions of Fomin's generalization of the Robinson-Schensted-Knuth correspondence to differential posets, Ph. D. thesis, M.I.T., 1991.
[12] G. de B. Robinson, On the representations of the symmetric group, Amer. J. Math. 60 (1938), 745-760; 69 (1947), 268-298; 70 (1948), 277-297.
[13] C. Schensted, Longest increasing and decreasing subsequences, Canad. J. Math. 13 (1961), 179-191.
[14] B. E. Sagan, R. P. Stanley, Robinson-Schensted algorithms for skew tableaux, J. Comb. Theory, Ser. A 55 (1990), 161-193.
[15] M.-P. Schützenberger, La correspondence de Robinson, Combinatoire et représentation du groupe symétrique, D. Foata ed., Lecture Notes in Math./ 579 (1977), 59-135.
[16] M.-P. Schützenberger, Propriétés nouvelles des tableaux de Young. Séminaire Delange-Pisot-Poitou, 19e année, 1977/78, no. 26, Secretariat Mathematique, Paris, 1977/78.
[17] R. P. Stanley, Differential posets, J. Amer. Math. Soc. 1 (1988), 919961.
[18] A. Young, Collected Papers, Mathematical Expositions N. 21, Univ. of Toronto-Press, Toronto, 1977.

