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Abstract

The main result in the paper is a construction of a simple (in fact, just a union of two
squares) set T in the plane with the following property. For every ε > 0 there is a family F of
an odd number of translates of T such that the area of those points in the plane that belong to
an odd number of sets in F is smaller than ε.

1 Introduction

The following puzzle appeared in the fall’s contest of ’the tournament of towns’ for the year 2009
[4]:

On an infinite chessboard are placed 2009 n× n cardboard pieces such that each of them covers
exactly n2 cells of the chessboard. Prove that the number of cells of the chessboard which are covered
by odd numbers of cardboard pieces is at least n2.

As for the history of the problem, this puzzle was originated by Uri Rabinovich and communi-
cated to Igor Pak who communicated it to Arseniy V. Akopyan, and then it found its way to the
organizers of the Tournament of Towns in Moscow.

Perhaps the shortest solution to this puzzle is an elegant use of the coloring technique: Color
the grid square (a, b) by the color ((a mod n), (b mod n)). We thus have n2 different colors and
the crucial observation is that each big square of size n × n contains precisely one grid square of
each color. It follows that there must be at least one grid square of each color class that is covered
an odd number of times (because the total number of grid squares from each color is 2009 with
multiple counting).

It is an immediate consequence of this puzzles that also the continuous version of this problem
is true. That is, given an odd number of axis-parallel unit squares in the plane the total area of
all points covered by an odd number of squares is at least 1. Equality is possible of course, for
example if all squares coincide.

For two sets X and Y we denote by X ⊕ Y the set of points covered an odd number of times
by X and Y . In other words, this is just a different notation for the symmetric difference of X
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and Y . However, we extend this notation for more than two sets. Therefore, for sets X1, . . . , Xt

we will denote by X1 ⊕ . . .⊕Xt (or sometimes by
⊕t

i=1Xi) the set of all points that belong to an
odd number of the sets X1, . . . , Xt. Notice that we have for any three sets X,Y, Z: (X ⊕ Y )⊕Z =
X ⊕ (Y ⊕Z). For a set X and a vector v we denote by X + v the Minkowsky sum of X and v, that
is, X + v = {x+ v | x ∈ X}.

Definition 1. For a measurable set S we denote by A(S) the measure of S. By a shape we refer to
any measurable compact set T in the plane (or, depending on the context, in Rd) with A(T ) > 0.
For a shape T we define OA(T ), that we call the odd area of T , as follows:

OA(T ) = inf{A(
2k−1⊕
i=1

(T + vi)) | k ∈ N, v1, . . . , v2k−1 ∈ R2}.

In other words, the odd area of T is the maximum number OA(T ) such that for any collection
F of a finite and odd number of translates of T , the set of all points in the plane that belong to an
odd number of members from F has area of at least OA(T ).

Clearly, OA(T ) ≤ A(T ) for any shape T , as we can place all the translated copies of T one on
the top of the other, or even just consider a single copy of T . Consequently, OA(T )/A(T ) ∈ [0, 1]
for any T . Notice that the definition of the odd area is valid in any dimension, although in this
paper we will focus more on the plane R2 and on the line R.

In [2], the exact value of OA(T ) is determined when T is a triangle or a trapezoid in the plane.
It is shown there that OA(T ) = 1

2A(T ) when T is a triangle and OA(T ) = 1
4(b − a)h when T is

a trapezoid with parallel sides of lengths a and b (and it is important that a 6= b, as for a = b we
have OA(T ) = A(T )) whose height is equal to h. Notice in each of these cases OA(T ) is strictly
positive. In this paper we consider related questions and develop further techniques for handling
those problems. Not less importantly, we raise some new and intriguing problems waiting to be
solved.

The main result in the current paper is a construction of a (simple) shape T with OA(T ) = 0.
To this end we will develop new tools for studying the function OA(·).

Definition 2. Let T be a shape. We define mT (n) to be the minimum cardinality of a finite family
F of translated copies of T such that

⊕
F∈F F contains almost (that is, up to a set of measure zero)

every point in a given n × n square. If such a finite family F does not exist we set mT (n) = ∞.
We define β(T ) = lim sup n2

mT (n) .

Observe that if one can tile the plane with a shape T , then mT (n) = n2

A(T ) + o(n2) and conse-
quently β(T ) = A(T ).

The following lemma will be useful in bounding OA(T ) from below.

Lemma 1. For every shape T we have OA(T ) ≥ β(T ).

Proof. If β(T ) = 0, there is nothing to prove. Therefore, we can assume β(T ) > 0 and mn(T ) <∞
for every n. Let d denote the diameter of T , that is the distance between the two furthest points
in T . Let ε > 0 be given. Find odd number k and k vectors v1, . . . , vk ∈ R2 such that the area of
D =

⊕k
i=1(T + vi) is at most OA(T ) + ε. Find n large enough such that kA(T )d/n < ε and such

that n2

mT (n) > β − ε. Set m = mT (n). Let u1, . . . , um ∈ R2 be vectors such that C =
⊕m

i=1(T + ui)
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contains almost every point of an n × n square B. Notice that C \ B is a set of area at most
4d(n+ d), as each of T + u1, . . . , T + um has a nonempty intersection with B.

Consider now the set E =
⊕m

i=1(D + ui). Clearly, the set E has area at most m(OA(T ) + ε).
We claim that E is exactly the set

⊕k
i=1(C + vi). Indeed,

E =
m⊕

i=1

(D + ui) =
m⊕

i=1

((
k⊕

j=1

T + vj) + ui) =
m⊕

i=1

k⊕
j=1

(T + vj + ui) =
k⊕

j=1

m⊕
i=1

(T + vj + ui)

=
k⊕

j=1

((
m⊕

i=1

(T + ui)) + vj) =
k⊕

j=1

(C + vj). (1)

We notice that

E =
k⊕

j=1

(C + vj) =
k⊕

j=1

((B ⊕ (C \B)) + vj) =
k⊕

j=1

(B + vj)⊕
k⊕

j=1

((C \B)) + vj).

The area of
⊕k

j=1(B + vj) is at least the area of B (i.e., n2) because B is a box and we have
OA(B) = A(B). The area of

⊕k
j=1((C \B)) + vj) is bounded from above by the sum of the areas

of (C \B) + vj , that is, by k4d(n+ d). Hence the area of E is at least n2 − 4kd(n+ d).

Combining the lower and upper bound on the area of E we get

(OA(T ) + ε)m ≥ A(E) ≥ n2 − 4kd(n+ d).

Recall that n2/m > β(T )− ε and observe that m = m(n) ≥ n2

A(T ) . Hence,

OA(T )+ε ≥ n2/m−4kd(n+d)/m ≥ β(T )−ε−4kd(n+d)A(T )/n2 ≥ β(T )−ε−8kdA(T )/n ≥ β(T )−9ε.

Since this is true for every ε > 0 we deduce that OA(T ) ≥ β(T ).

As an immediate consequence we get the following theorem:

Theorem 1. Suppose R2 can be tiled with translates of a shape T , then OA(T ) = A(T ).

Indeed, if we can tile the plane with translated copies of T , then mT (n) ≤ (n2 + 4nd)/A(T ),
where d is the diameter of T . It follows that β(T ) = lim supn2/mT (n) ≥ A(T ) (the last inequality
is in fact an equality) and consequently, by Lemma 1, OA(T ) = A(T ).

We will now bring another application of Lemma 1. This application is a stand-alone result
that will not be used later in this paper.

Definition 3. A grid animal is a shape T that is the union of B + v1, . . . B + vt, where B is the
unit square [0, 1]× [0, 1] and v1, . . . , vt are vectors with integers coordinates.

Theorem 2. Let T be any grid animal. Then OA(T ) ≥ 1.
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Remark: If T is a grid animal and T1, . . . , Tk are translates of T that sit on the integer grid
squares (that is, if each Ti is a translate of T by an integer vector), then it is immediate (regardless
of whether k is odd or not) that the area of

⊕k
i=1 Ti is at least 1. This is true because we can consider

the 1 × 1 square with integer coordinates (a, b) that is smallest with respect to the lexicographic
order and belongs to some Tj . Then (assuming no two of T1, . . . , Tk are equal, or else we may delete
them in pairs) it is easy to see that it belongs to precisely one of the Tj ’s and in particular the area
of
⊕k

i=1 Ti is at least 1. Therefore, it is important to notice that in Theorem 2 we are allowed to
consider translates of T by vectors with non-integer coordinates.

Proof of Theorem 2. This is in fact a corollary of Lemma 1. To see this we need the following
simple lemma:

Lemma 2. Let T be a grid animal, then mT (n) ≤ n2.

Proof. We provide a simple algorithm for finding a family F of at most n2 translates of T that
together cover almost every point of an n× n square an odd number of times.

We start with F = ∅. Let A be the leftmost grid square composing the shape T in the bottom
most row where there is at least one square in T (in other words, A is the grid square composing
T that is smallest in the appropriate lexicographic order). Take a translated copy of T so that A
coincides with the square B = [0, 1]×[0, 1] and add this translate of T to F . Look on the grid square
B+(1, 0) if it is already covered an odd number of times by the members in F continue. Otherwise
add the copy T + (1, 0) to F . Move on to consider the square B + (2, 0) and decide whether to
include T + (2, 0) in F . Then continue to the square B+ (3, 0) and so on until B+ (n− 1, 0). Then
scan the second row of 1× 1 squares: B + (0, 1), . . . , B + (n− 1, 1) and continue like this until the
whole [0, n]× [0, n] square is covered an odd number of times.

It follows from Lemma 2 that β(T ) ≥ 1. Lemma 1 implies now that OA(T ) ≥ β(T ) ≥ 1.

Remark: The case where T equals a unit square shows that Theorem 2 is (at least in one case)
best possible.

2 Construction of a shape T with OA(T ) = 0

In this section we will construct a shape T such that OA(T ) = 0. Our construction will in fact be
a one dimensional construction that will yield a construction in any dimension. Indeed, if T is a
shape in R such that OA(T ) = 0, then T×[0, 1]d−1 is a shape in Rd satisfying OA(T×[0, 1]d−1) = 0.
Therefore, for the rest of this section all of our shapes will lie in R and the notion of length will
replace that of an area.

Definition 4. Let a, b, and c be positive real numbers. We denote by [a, b, c] the shape that is the
disjoint union of the two segments [0, a] and [a + b, a + b + c]. In other words it is a segment of
length a and then a gap of length b and then another segment of length c.

The next lemma is general and applies to shapes in any dimension.

Lemma 3. Let T be a shape and v1, . . . , vt vectors. Let D =
⊕t

i=1(T + vi). Then OA(T ) ≥
1
tOA(D).

4



Proof. Let ε > 0 be given. There exist an odd number k and vectors u1, . . . , uk such that the area
of
⊕k

i=1(T + ui) is smaller than OA(T ) + ε.

Notice that

k⊕
i=1

(D + ui) =
k⊕

i=1

((
t⊕

j=1

(T + vj)) + ui) =
t⊕

j=1

((
k⊕

i=1

(T + ui)) + vj).

Therefore, the area of
⊕k

i=1(D+ui) is at most t(OA(T )+ ε). On the other hand this area must
be at least OA(D). Therefore, t(OA(T ) + ε) ≥ OA(D) yielding OA(T ) ≥ 1

tOA(D)− ε. As this is
true for every ε > 0, we conclude that OA(T ) ≥ 1

tOA(D).

The next lemma is quite easy and intuitive. We leave the proof to the reader.

Lemma 4. Let T be a shape in R and let c > 0 be any real number. We denote by cT the set
cT = {cx | x ∈ T}. Then OA(cT ) = c ·OA(T ).

Remark. Lemma 4 is stated for shapes in R but of course a similar lemma is valid in any dimension
d, where the statement in the lemma should be modified to OA(cT ) = cd ·OA(T ).

Lemma 5. Let T = [1, b, 1] for some positive integer b. Then OA(T ) = 2.

Proof. To see that OA(T ) ≤ 2 notice that OA(T ) ≤ A(T ) = 2. To see that OA(T ) ≥ 2, consider
the following b+ 1 translates of T : T, T + 1, T + 2 . . . , T + b. The disjoint union of all these copies
is the interval I = [0, 2b+ 2] of length 2b+ 2. As OA(I) = 2b+ 2, we conclude from Lemma 3 that
OA(T ) ≥ 1

b+1OA(I) = 2.

Notice the following simple corollary of Lemma 5 and Lemma 4:

Corollary 1. Suppose T = [q, bq, q] for positive integers b and q, then OA(T ) = 2q.

The next theorem will be our main tool in proving Theorem 4.

Theorem 3. Let k and z be relatively prime positive integers and let T = [k, z, k]. Then OA(T ) = 2.
Moreover, one can find a collection of an odd number of translates of T of no more than 2(k+z)!(k+z)
translates such that the length of the set of points that belong to an odd number of these translates
is equal to 2.

Proof. It is not hard to see that OA(T ) ≥ 2. Define

C = (T + 0)⊕ (T + (k + z))⊕ (T + 2(k + z))⊕ . . .⊕ (T + (k − 1)(k + z)).

Notice (after a moment of inspection) that C = [k, kz+(k−1)k, k]. By Corollary 1, OA(C) = 2k.
On the other hand C is the set of points covered an odd number of times by some k translates of
T . Therefore, by Lemma 3, OA(T ) ≥ 1

kOA(C) = 2.

It is left to show that OA(T ) ≤ 2 (this is the important and more difficult part of the theorem).
To this end we will show the existence of an odd number s of real numbers a1, . . . , as such that the
length of

⊕s
i=1(T + ai) is equal to 2. In fact, each of the numbers ai will be an integer.

Our main tool is the following algebraic lemma:
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Lemma 6. Let k and z be relatively prime positive integers and consider the polynomial

p(x) = (1 + x+ x2 + . . .+ xk−1) + (xk+z + . . .+ x2k+z−1)

= (1 + x+ x2 + . . .+ xk−1)(1 + xk+z) =
(1 + xk)(1 + xk+z)

1 + x

over F2. There exists a polynomial q(x) of degree at most 2(k+z)!(k + z) with q(1) = 1 such that
p(x)q(x) = 1 + xm for some integer m.

Proof. We recall the following fact about polynomials over F2: For every natural number n, the
polynomial 1 + x2n−1 is the product of all irreducible polynomials f(x), different from f(x) = x,
whose degree divides n.

We will need the following simple observations:

Claim 1. The polynomials 1 +xk and 1 +xk+z do not have a common root other than x = 1, over
any extension field of F2.

Proof. Assume that a is a common root of both polynomials, then ak = ak+z = 1. As a must be
different from 0, we conclude that az = 1. Since ak = az = 1 and k and z are relatively prime, we
have 1 = sz + tk for some integers s and t. It follows now that a = a1 = asz+tk = 1.

Claim 2. If t is odd, then the polynomial 1 + xt does not have a multiple root over any extension
field of F2 (and is therefore product of distinct irreducibles).

Proof. Easy to see by considering the derivative txt−1 whose only root is x = 0.

Claim 3. For every nonnegative integers t and `, 1 + xt2`
= (1 + xt)2

`
, over any extension field of

F2.

Proof. Easy to see by considering the binomial coefficients
(
2`

j

)
and observing they are all even,

unless j = 0 or j = 2`.

Going back to the proof of Lemma 6, we split into two cases.

Case 1. k is odd. In this case let us write k + z = 2`t where ` ≥ 0 is a nonnegative integer and t
is odd.

Let m = (2(k+z)! − 1)2`. We claim that 1 + xm is divisible by p(x). To prove this it is enough
to show that 1 + xm is divisible by 1 + xk and by 1 + xk+z. This is true because by Claim 1
the greatest common divisor of the latter two polynomials is 1 + x and p(x) = (1+xk)(1+xk+z)

1+x .
The polynomial 1 + xm is divisible by 1 + xk because 1 + xk is a product of distinct irreducibles
(by Claim 2 and the assumption that k is odd) and each such irreducible has degree that divides
(k + z)!. Hence, 1 + xk divides 1 + x2(k+z)!−1 and consequently 1 + xk divides also the polynomial
1 + xm = (1 + x2(k+z)!−1)2

`
. To see that 1 + xm is divisible by 1 + xk+z notice that, by Claim

3, 1 + xk+z = (1 + xt)2
`
. Now, 1 + xt is a product of distinct irreducibles each of which has

degree that divides (k+ z)!. Therefore, 1 + xt divides 1 + x2(k+z)!−1. It follows that the polynomial
1 + xk+z = (1 + xt)2

`
divides (1 + x2(k+z)!−1)2

`
= 1 + xm.

Having shown that p(x) divides 1 + xm, there exists a polynomial q(x) such that p(x)q(x) =
1 + xm and the degree of q is at most 2(k+z)!2` ≤ 2(k+z)!(k + z), as desired. It remains to show
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that q(1) = 1. To this end notice that x = 1 is a root of multiplicity 2` of p(x). Indeed, x = 1 is a
root of multiplicity 2` of the polynomial 1 + xk+z = 1 + x2`t = (1 + xt)2

`
and x = 1 is not a root of

(1 + xk)/(1 + x), as we assume k is odd. On the other hand x = 1 is also a root of multiplicity 2`

of (1 + x2(k+z)!−1)2
`

= 1 + x(2(k+z)!−1)(2`) = 1 + xm. Therefore, because p(x)q(x) = 1 + xm, it must
be that x = 1 is not a root of q(x) and consequently q(1) = 1.

Case 2. k is even. Write k = t2` where t is odd and ` > 0 is a positive integer. In this case both
z and k + z are odd, because k and z are relatively prime.

Let m = (2(k+z)! − 1)2`. Similar to Case 1, we will show that p(x) divides 1 + xm. Again it is
enough to show that each of 1 + xk and 1 + xk+z divides 1 + xm.

Because k + z is odd, 1 + xk+z is a product of distinct irreducibles (see Claim 2) and each of
these irreducibles has degree that divides (k+ z)!. Therefore, 1 + xk+z divides 1 + x2(k+z)!−1 which
in turn divides 1 + xm. To see that 1 + xk divides 1 + xm notice that 1 + xt divides 1 + x2(k+z)!−1

and hence 1 + xk = (1 + xt)2
`

divides (1 + x2(k+z)!−1)2
`

= 1 + x(2(k+z)!−1)2`
= 1 + xm.

Having shown that p(x) divides 1+xm, we conclude that there exists q(x) such that p(x)q(x) =
1 + xm = (1 + x2(k+z)!−1)2

`
. It remains to show that q(1) = 1. We observe that x = 1 is a root of

multiplicity 2` of p(x). Indeed, p(x) = (1 + xk)(1 + xk+z)/(1 + x) = (1 + xt)2
`
(1 + xk+z)/(1 + x).

By Claim 3 (and the fact that t is odd), x = 1 is a root of multiplicity 2` of (1 + xt)2
`
, while it is

not a root of (1 + xk+z)/(1 + x) because k + z is odd. On the other hand x = 1 is also a root of
multiplicity 2` of the polynomial 1 + xm = (1 + x2(k+z)!−1)2

`
. Because p(x)q(x) = 1 + xm, it follows

that x = 1 is not a root of q(x) and consequently q(1) = 1.

Let us now go back to the proof of Theorem 3. We need to show that if T = [k, z, k], then
OA(T ) ≤ 2. To see this we just need to interpret Lemma 6 geometrically. Let p(x) = (1 + x +
x2 + . . .+ xk−1) + (xk+z + . . .+ xk+z−1). By Lemma 6, there exists q(x), a polynomial over F2 of
degree at most 2(k+z)!(k + z), such that p(x)q(x) = 1 + xm for some integer m > 1 and moreover
q(1) = 1. Write q(x) = xi1 + xi2 + . . . + xis , where 0 ≤ i1 < i2 < . . . < is and s ≤ 2(k+z)!(k + z).
Then it is not hard to see that the set (T + i1) ⊕ (T + i2) ⊕ . . . ⊕ (T + is) has length precisely 2
and in fact this set consists of a union of precisely two unit segments namely [0, 1] and [m− 1,m].
q(1) = 1 implies that s is odd and this shows that OA(T ) ≤ 2.

Corollary 2. Let k and z be relatively prime positive integers and let T = [1, z
k , 1]. Then OA(T ) =

2
k .

Proof. Observe that k · T = [k, z, k] and therefore, by Theorem 3, OA(k · T ) = 2. By Lemma 4,
we have: OA(T ) = 1

kOA(k · T ) = 2
k .

It follows from Theorem 3 that in Corollary 2 one can construct a family F of an odd number
s of translates of T , where s ≤ 2(k+z)!(k + z), such that A(

⊕
F∈F F ) = 2

k .

Before turning to the proof of Theorem 4 we need one more easy observation (this observation
is true in any dimension).

Claim 4. Let T and T ′ be two shapes in R. Assume that A(T ⊕ T ′) < ε where ε > 0 is given. Let
v1, . . . , vs ∈ R, where s is odd. Then OA(T ) ≤ A(

⊕s
i=1(T ′ + vi)) + sε.

Proof. We have
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OA(T ) ≤ A(
s⊕

i=1

(T + vi)) = A(
s⊕

i=1

((T ′ ⊕ T ⊕ T ′) + vi))

= A((
s⊕

i=1

(T ′ + vi))⊕ (
s⊕

i=1

((T ⊕ T ′) + vi))) ≤ A((
s⊕

i=1

(T ′ + vi)) +A(
s⊕

i=1

((T ⊕ T ′) + vi)))

≤ A(
s⊕

i=1

(T ′ + vi)) + s ·A(T ⊕ T ′) = A(
s⊕

i=1

(T ′ + vi)) + sε.

We are now ready to prove our main result.

Theorem 4. There exist shapes T with OA(T ) = 0.

Proof. We will show that OA(T ) = 0 for the shape T = [1, γ, 1] where γ is a real number defined
as follows: Let {an}∞n=1 be the sequence defined by a1 = 2 and for n > 1: an = 22(2an−1)!. We set
γ =

∑∞
n=1

1
an

.

Let ε > 0 be given. Let N be such that 1
aN

< ε/4 (N clearly exists as {an} goes, very fast, to
infinity). Let z and k be relatively prime positive integers such that

∑N
i=1

1
ai

= z
k . Observe that

we must have k = aN while z is odd and satisfies z < k (the latter is because γ < 1).

Consider the shape T ′ defined as T ′ = [1, z
k , 1]. By Corollary 2, OA(T ′) = 2

aN
< ε/2. Moreover,

there are v1, . . . , vs ∈ R, where s is an odd number smaller than 2(2aN )!(2aN ), such thatA(
⊕s

i=1(T ′+
vi)) ≤ ε/2. Observe that T ⊕ T ′, that is the symmetric difference of T and T ′, has area equal to
2
∑∞

i=N+1
1
ai

and this is strictly smaller than 4
aN+1

(because of the fast rate at which {an} goes to
infinity). It follows, by Claim 4, that

OA(T ) ≤ A(
s⊕

i=1

(T ′ + vi)) + s
4

aN+1
≤ ε/2 + 2(2aN )!(2aN )

4
aN+1

.

However, the latter summand 2(2aN )!(2aN ) 4
aN+1

in the right hand side of the inequality satisfies

2(2aN )!(2aN )
4

aN+1
= 8aN2(2aN )!−2(2aN )! =

8aN

2(2aN )!
≤ 1
aN
≤ ε/4.

We conclude that OA(T ) ≤ ε/2 + ε/4 < ε.

Remark. It is not hard to see that the number γ defined in the proof of Theorem 4 is irrational.
This is because of the fast rate at which {an} goes to infinity and the fact that each an is a power
of 2 (we leave it to the reader as an amusing exercise). As a consequence, the shape T constructed
in Theorem 4, with the property that OA(T ) = 0 yields in two (and similarly in all) dimensions
a shape, namely P = T × [0, 1] ⊂ R2 with OA(P ) = 0. Notice that P is just a union of two
1times1 squares with a gap of length (width) γ between them. Because γ is irrational, P cannot
have rational vertices under any affine transformation in the plane. In an on going work [3] we
show that this is not a coincidence. It turns out that if P is a polygon (or union of polygons) with
rational vertices, then necessarily OA(P ) > 0.
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3 Open problems

There are many challenging problems related to the notion of odd area that we cannot solve. We
bring here some of which that are most related to Theorem 4.

• Perhaps one of the most interesting problem related to odd area is to determine the odd area
of a circular disc. In particular it is not even known whether the odd area of a disc is at all
positive.

• For a positive odd integer n define OAn(T ) to be the minimum value of
⊕n

i=1(T + vi), where
each vi is any vector in R2. Suppose that OA(T ) = 0. How fast does OAn(T ) goes to 0 as n
goes to infinity?

• Is there a convex set T such that OA(T ) = 0? Is there such a convex polygon T?
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