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Abstract. We discuss different ways of generating k-subsets of an n-set, as well as
of permutations, matrices and flags over the finite field Fq . Connections with the
Markov Chain approach and Bruhat decomposition are established. The black box
groups approach is defined. No previous knowledge of the subject is assumed.

Introduction

The problem of choosing one or few objects among many has a long history and
probably existed since the beginning of the human era (e. g. ”Choose twelve men
from among the people,...” Joshua 4:2). Historically this choice was mostly rational
and random choice was considered to be a bad solution. Times have changed,
however. Problems have become enormously complex and computers have intruded
into virtually every part of human activity. In many cases random solution has
become desirable, if not the only possibility. Which means that it’s about time we
understand the nature of a random choice.

The ultimate goal of this paper is to explain the meaning of the words ”pick at
random a k-subset on an n-set” and ”pick at random a k-dimensional subspace”.
Basically this paper is about details of the procedure of actually choosing this subset
or subspace in real time. Somewhat unexpectedly these very details lead to some
interesting and nontrivial questions.

For the past several years the author has discussed results in this paper with peo-
ple working in different areas such as Combinatorics, Algebra, Probability Theory
and Computer Science. It was quite striking to see that very few people actually
understood the existing connections. Finally the author decided to write a self-
contained review paper which would provide a basis for the mutual understanding.
We restrict ourselves to study of the classical cases such as symmetric group Sn,
k-subsets of {1, . . . , n}, full linear group GL(n,Fq) and k-dimensional subspaces
of Fn

q . In each of these cases we try to develop and compare various generating
algorithms. While most of the results are well known, some are new and may be of
interest.

Here is a general setup of a problem. We are interested in generating a uniformly
chosen element from some finite set S. If S has a global description, we can use it to
get the desired random elements. One can think of it as reducing our randomization
procedure to several coin flips. The problem is to optimize the number of steps in
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the algorithm as well as the number of coin flips required (which are also called
random bits). The first half of the paper describes how to do that in the classical
cases.

Suppose now that the global structure of our set S is too complicated to be used
efficiently in order to generate random elements. The usual way to proceed then,
is to define a set of local transformation, each of them easy to describe, and then
run a random walk by choosing a local transformation at random, independently
at each step. For example, consider a group G and its set of generators S. We
can start at the identity and run a random walk using multiplications by a random
generator.

Under mild conditions the random walk will converge, often extremely fast, to
a uniform distribution. Thus after walking long enough we get a nearly uniform
random elements in S. Now the problem is to find how long is ”long enough”,
which is to find a mixing time for our random walk. Unfortunately even in nice
cases this becomes a hard problem.

There is another way to look at this problem. Consider a stopping rule which
observes the walk and stops it based on the previous observations. If the stopping
state of this rule is uniform, this will give us a new algorithm for generating random
elements in S. On the other hand, if the stopping state is uniform even conditioned
on the stopping time, the expected stopping time is roughly the mixing time (see
§6.1 the precise formulation). Such a stopping time is called a strong uniform
time. Now, given such a strong uniform time we solve both problems at once (of
generating a random element and of finding the mixing time of a random walk). In
section 6 we present several constructions of strong uniform times.

Finally, suppose we are given only the local structure of the set S and little or
no global description. For example, suppose our group G is defined by its set of
generators S lying in a bigger group G0 ⊃ G. This situation is known as a black box
group. Now we have to run some kind of random walk to achieve near-uniformity.
The theoretically important algorithm due to Babai shows that this can be done in
O(log5|G|) steps. Another important question to ask is whether a black box group
is isomorphic to a given group. While this question cannot be answered efficiently
in general, it has a fast solution in nice cases.

The paper is constructed in the following way. We do not highlight the results
into theorems or lemmas but rather divide the body of the paper into sections,
subsections and subsubsections, each with a certain purpose. The sections and
subsections inside the sections are made to be increasing in difficulty. The remarks
and some references are provided at the end of the sections.

The paper is written in a manner in which there is less emphasis on the results
and more on explanation of how one should approach the problem. Some of the
technical details and generalizations were left out or just briefly mentioned. The
idea was to make this paper ”easy reading” rather than overwhelm it with results.

The first section of the paper is introductory; it contains several basic definitions,
notations and some elementary computations. In the second section we discuss
several elementary generating algorithms. In particular, we present a ”smart” way
of choosing a k-subset in an n-set without keeping too much data in the memory.
Although virtually all the results in this section are pure classics these days, this
section cannot be skipped without loss of understanding.

In section 3 we show how to choose a permutation or a k-subset from a par-
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ticular non-uniform distribution. The results of this section will be used later for
random sampling of complete flags and of k-dimensional subspaces. In Section 4
we introduce the concept of Schubert cells and prove several basic results about
their structure. Later, in section 5 we use Schubert cell decomposition to generate
random flags and subspaces over a finite field.

In section 6 we study some natural random walks on permutations, k-subsets
and k-dimensional subspaces. We show that the mixing time for these walk is of
the same order (up to a logarithmic factor) as the complexity of the algorithm to
generate the corresponding combinatorial objects. This confirms the general rule
that natural random walks converge extremely fast.

Finally, in section 7 we briefly describe Babai’s algorithm and give a heuristic for
solving recognition problem for black box groups isomorphic to symmetric group
and to special linear group.
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Notation

N = {1, 2, . . . }
Z+ = {0, 1, 2, . . . }
[n] = {1, 2, . . . , n}
[

n
k

]
- k-subsets of an n-set [n]

n! = 1 · 2 · . . . · n, n ∈ N
(
n
k

)
= n!

k! (n−k)! =
∣∣∣∣
[

n
k

]∣∣∣∣
(n)q = 1 + q + q2 + · · ·+ qn−1, n ∈ N
(n!)q = (1)q · (2)q · . . . · (n)q, n ∈ N
(
n
k

)
q

= (n!)q

(k!)q (n−k)!q

hn = 1 + 1
2 + 1

3 + · · ·+ 1
n - partial harmonic sum

Z - group of integers

Zm ' Z/mZ - cyclic group with m elements

Fq - finite field with q elements

GL(n,Fq) - full linear group over the field Fq

B(n,Fq) - Borel subgroup over the field Fq

U(n,Fq) - unipotent group over the field Fq

Fl(n,Fq) - set of complete flags over the field Fq

Gr(n, k;Fq) - set of k-subspaces of Fn
q

Sn - group of permutations of n elements

An - alternating group of permutations of n elements

Bn = Sn n Zn
2 - group of symmetries of an n-dimensional cube

i(p) - coin with probability p of heads, 0 ≤ p ≤ 1.
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1. How many are there?

1.1 Permutations

By the symmetric group Sn we mean a group of all permutations of an n-set
[n] = {1, 2, . . . , n}. The number of all permutations i.e. the order of Sn is n!.
Indeed, there are n ways to choose position of 1, there are n − 1 ways to choose
position of 2 among remaining places, . . . , finally there is only one remaining place
left for n.

We use the standard notation to denote permutations: (3, 2, 1) ∈ S3 is a permu-
tation 1 → 3, 2 → 2 and 3 → 1.

1.2 k-subsets of n-set

By the
[

n
k

]
we denote the set of all k-subsets of n-set [n]. The number of

k-subsets of an [n] is given by the binomial coefficient:

∣∣∣∣
[

n
k

]∣∣∣∣ =
(

n

k

)
=

n!
k!(n− k)!

Indeed, consider a surjective map ϕ : Sn →
[

n
k

]
which maps a permutation σ ∈ Sn

onto the set of its first k elements. Observe that the preimage of a k-subset A ∈
[

n
k

]

consists of all permutations σ ∈ Sn with given sets of the first k and last n − k
elements regardless of their relative order. Therefore |ϕ−1(A)| = k!(n− k)! and

∣∣∣∣
[

n
k

]∣∣∣∣ =
|Sn|

|ϕ−1(A)| =
(

n

k

)

In other words, the elements in
[

n
k

]
are in a bijection with cosets in G/B, where

G = Sn, B = Sk × Sn−k.

1.3 Nonsingular matrices

By GL(n,Fq) we denote the group of nonsingular matrices over the finite field
Fq with q elements. We claim that

|GL(n,Fq)| = q(
n
2)(qn − 1)(qn−1 − 1) · . . . · (q − 1)

Indeed, the number of ways to choose the first row vector in a nonsingular matrix
is (qn − 1) : all but a zero row; the number of ways to choose the second row
vector is (qn − q) : all vectors that are not proportional to the first one, etc. This
immediately yields the result.

1.4 Complete flags over Fq
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By Fl(n,Fq) we denote the set of all complete flags in Fn
q , i.e. the sequences

∅ = V 0 ⊂ V 1 ⊂ · · · ⊂ V n = Fn
q where dim(V i) = i, i = 1, . . . , n. We claim that the

number of these flags is given by the formula

|Fl(n,Fq)| = (n!)q =
n∏

i=1

(1 + q + · · ·+ qi−1)

Before we prove it, note that (n!)1 = n!, which means that we can think of the
complete flags as a q-analog of permutations, even though there is no such thing as
a finite field with 1 element.

To count the number of complete flags, define a surjective map ψ : GL(n,Fq) →
Fl(n,Fq). Take a matrix M with row vectors v1, . . . , vn and define a vector space
V i = 〈v1, . . . , vi〉, i = 1, . . . , n. As before, let us compute the preimage of a fixed flag
∅ = V 0 ⊂ V 1 ⊂ · · · ⊂ V n = Fn

q . Consider the Borel subgroup B(n,Fq) ⊂ GL(n,Fq)
of upper triangular matrices B = (bi,j), 1 ≤ i ≤ j ≤ n, bi,j ∈ Fq, bi,i 6= 0. Denote
row vectors of BT M by ṽ1, . . . , ṽn and the corresponding flag Ṽ 0 ⊂ Ṽ 1 ⊂ · · · ⊂ Ṽ n.
By definition,

ṽi = b1,iv1 + · · ·+ bi−1,ivi−1 + bi,ivi

Observe that since bi,i 6= 0, the linear span of V i−1 and ṽi is exactly V i. Therefore
by induction we have Ṽ i = V i for all i = 1, . . . , n. This means that the whole orbit
of BT lies in the preimage of ψ. Similarly one can show that there is nothing but
orbit of BT in the preimage and

|Fl(n,Fq)| = |GL(n,Fq)|
|B(n,Fq)| =

q(
n
2)(qn − 1)(qn−1 − 1) · . . . · (q − 1)

q(
n
2)(q − 1)n

= (n!)q

In other words, the complete flags in Fl(n,Fq) are in the bijection with cosets
in G/B, where G = GL(n,Fq) and B = B(n,Fq) as above.

1.5 k-subspaces of Fn
q

Define a Grassmanian Gr(n, k,Fq) to be the set of all k-dimensional subspaces
V k ∈ Fn

q . We will show that

|Gr(n, k,Fq)| =
(

n

k

)

q

=
(n!)q

(k!)q(n− k)!q

To prove that, define a map ϕ : Fl(n,Fq) → Gr(n, k,Fq) by forgetting all subspaces
of a flag but the k-dimensional one. We have :

|Gr(n, k,Fq)| = |Fl(n,Fq)|
|Fl(k,Fq)| · |Fl(n− k,Fq)| =

(
n

k

)

q

Again, from here k-subspaces in Gr(n, k,Fq) are in the bijection with cosets in
G/B, where G = GL(n,Fq) and B = (bi,j) ⊂ GL(n,Fq), such that bi,j = 0 for all
1 ≤ j < k < i ≤ n.

1.6 Remark
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As the reader may have noticed, everything in this chapter is very well known
and can be generalized in many directions (see e.g. [GR, GJ, H1, H2, NW, P, S1,
St]). For example, one may look at other root systems, such as Cn. The analogs
of Sn for other root systems are called Weyl group, which in the case of Cn is the
group of symmetries of the n-dimensional cube. Also, in this case the analog of
GL(n) is the symplectic group Sp(2n) (see [H1, St, W]).

Note also that if we look at incomplete flags with a fixed sequence of dimensions
we get q-multinomial coefficients as their cardinalities (see [GR, GJ, S1]).

2. How do you generate them? (First part)

The mathematical formulation of the question is the following: how do you
choose an element of the classical set with equal probability?

2.1 Permutations

2.1.1 Here is a simple algorithm. Take an element 1 and put it on a line. Take
2. We have two possible places to put it: either to the left or to the right of 1. Do
it with equal probability. Keep going. At the end we have n places to put n. Pick
one at random and place n there. Stop.

2.1.2 There are thousands of others, more or less analogous ways to generate
a random permutation. Here is a bit unusual way to do that. We are going to be
marking elements of the permutation according to some rule. The rule is designed
in such a way that each time we will have a random permutation of the marked
elements with the rest of the elements remaining in their initial places.

Start with the identity permutation id = (1, . . . , n) ∈ Sn and mark the last
element. We will mark a new element at each step. Suppose at step m we have
m marked elements. Pick an unmarked element (it doesn’t have to be a random
choice; say it is the smallest unmarked element). Mark it. Exchange it with a
randomly chosen marked element (including itself, in which case the element stays
where it is). Stop after (n− 1) steps.

Checking by induction that we indeed get a random permutation is easy. Indeed,
after m-th step we get a permutation with the new marked element be the smallest,
the second smallest, etc., all with equal probability 1

m+1 . Therefore by induction
it’s a random permutation of these m + 1 elements. This finishes the proof.

2.1.3 Define T (i), 1 < i ≤ n to be the following operation on a permutation
σ ∈ Sn:
• Flip a coin i

(
i−1

i

)
. If heads, exchange σ(i) and σ(i− 1).

Here by i(p) we denote a coin with probability p of heads. Now, denote by
R(i) = T (i) ◦ T (i− 1) ◦ . . . ◦ T (2) (means we apply T (i) first, then T (i− 1), etc.).

Consider the following procedure. Starting with identity permutation and apply
R(2) ◦ R(3) ◦ . . . ◦ R(n). We claim that this gives us an algorithm for generating
a random permutation. Indeed, after R(2) we get either id or (1, 2) with equal
probability. Suppose after R(2)◦R(3)◦. . .◦R(k) every permutation of [k] occurs with
equal probability. After the first operation T (k + 1) the element (k + 1) stays with
probability 1

k+1 and the operations T (k), . . . , T (2) do not move it. Analogously
the element (k + 1) gets to the place k with probability k

k+1 · 1
k = 1

k+1 , etc. Thus
after R(k +1) the element (k +1) gets to every place with equal probability. Recall
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that we started with a random permutation of [k]. Now use induction. This proves
the claim.

2.1.4 Remarks
The algorithm in §2.1.2 was used by the author in [P] to bound the rate of

convergence of random walks generated by transpositions (see also section 6 of this
paper). The main advantage of this algorithm is that it can be easily generalized
in many directions. Some of them can be found below.

The algorithm in §2.1.3 was introduced by Diaconis in [D2]. It is based on the
following identity:

−→∏

k=n−1...1

−→∏

i=1...k

(
1

i + 1
e +

i

i + 1
(i, i + 1)

)
=

1
n!

∑

σ∈Sn

σ

where both sides are considered to be elements in group algebra C[Sn]. Similar
identities were obtained earlier by Jucys and Nazarov (see [J, N]) and in a less
explicit context for any root system by Demazure (see [De]).

2.2 k-subsets of a n-set

2.2.1 There are also great many ways you can approach this problem. The most
trivial way is simply to reduce the problem to the previous one by taking the first
k elements of the permutation. Use §1.2 to prove that this works. Unfortunately
when k is relatively small compared to n, this algorithm is very excessive.

2.2.2 One can try to use another simple idea. Start with an empty set. Pick an
element a1 ∈ [n] in random and add it to your set. Pick an element a2 ∈ [n] \ {a1}
etc. until we get ak. Stop. The disadvantage of this method is that it requires too
much memory. It also outputs an unsorted k-subset so if we want it them to be
sorted, we need to use an additional sorting at the end. This can be avoided by the
tricked we present in the next subsection.

2.2.3 The algorithm works the following way. We will go over all numbers from
1 to n and for each we will decide whether we want to take it in a k-set or not.
The only information we need to keep is the number l of elements we still need
to choose (l = k at the beginning) and the number m of elements left (m = n at
the beginning). When we accept or reject some element, we simply output it or
not, change numbers l and m appropriately and move on to the next element. We
claim that each time the probability of accepting a number is exactly P (l, m) = l

m .
Indeed, this probability can be computed as follows.

P (l, m) =

∣∣∣∣
{

A ∈
[

m
l

]
: 1 ∈ A

}∣∣∣∣
∣∣∣∣
[

m
l

]∣∣∣∣
=

(
m−1
l−1

)
(
m
l

) =
l

m

This gives us a probabilistic rule for accepting/rejecting the next element. Stop
when l = 0, i.e. when no elements are yet to be accepted.

Proof is clear.
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2.2.4 Finally, we would like to present a version of the algorithm in §2.1.2 suited
for this particular case. Start with the subset A = {1, . . . , k}. At each step we will
be marking one element in A, while making some changes in A. Now, suppose after
m steps we have a set A with k elements of which exactly m are marked. Choose
any unmarked element a ∈ A (say, the smallest one). Flip a coin i

(
m+1

n−k+m+1

)
. If

heads, mark the element and leave it there. If tails, choose randomly an element
b ∈ [n] \A, replace a by b and mark the latter. Stop after k-th step.

In order to show that this algorithm works the way it is supposed to, use the
following trick. We can think that at the beginning all the elements k + 1, . . . , n
are marked and written to the right of A in some order. Then what we do each
time is pick an unmarked element, mark it and exchange it with an unmarked one.
What happens is that there is no need to exchange the element with the other one
that are in the set A. That’s where the number m+1

n−k+m+1 comes from. Hence we
reduced the algorithm to the one considered in §2.1.2.

2.3 Nonsingular matrices over the finite field Fq

2.3.1 The simplest known way to generate a random nonsingular matrix is just
by choosing a random matrix, check whether it’s nonsingular and if it is singular,
try again. We will show that on average we wouldn’t need many tries. Still, this
algorithm takes about O(n3) steps for checking whether the matrix is nonsingular
using the standard Gaussian elimination algorithm.

The first problem with this algorithm is that it uses on average more random
bits than are really necessary. The second problem with this algorithm is that it
is unclear how to generalize it for other algebraic groups such as the symplectic or
orthogonal group over a finite field etc. (They are very sparsely distributed among
all matrices). Later on we will explain the ”right” way to generate nonsingular
matrices which can be easily generalized in many directions.

2.3.2 Lemma A randomly chosen matrix over Fq is nonsingular with probability
greater than 1/4 if q = 2 and 1/2 if q ≥ 3.

Proof. The desired probability is given by

p(n, q) =
|GL(n,Fq)|

qn2 =
qn − 1

qn

qn − q

qn
. . .

qn − qn−1

qn

=
(

1− 1
q

)(
1− 1

q2

)
. . .

(
1− 1

qn

)

>

∞∏

i=1

(
1− 1

qi

)
= 1− 1

q
− 1

q2
+

1
q5

+
1
q7
− . . .

The last product can be expanded into a sum using Euler’s pentagonal theorem

∞∏

i=1

(
1− 1

qi

)
=

∞∑
m=0

(−1)m

qm(3m±1)/2

Therefore the desired probability can be bounded as
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p(n, q) > 1− 1
q
− 1

q2
+

1
q5
−

(
1
q6

+
1
q7

+
1
q8

+ . . .

)
=

= 1− 1
q
− 1

q2
+

1
q5
− 1

q6

1
1− 1

q

= 1− 1
q
− 1

q2
+

1
q5

(
1− 1

q − 1

)

Finally we get

p(n, q) > 1− 1
q
− 1

q2

In particular,
p(n, 2) > 1− 1/2− 1/4 = 1/4

Also for all q ≥ 3 we have

p(n, q) ≥ p(n, 3) > 1− 1/3− 1/9 = 5/9 > 1/2

This proves the lemma. ¤
We decided to include the proof of the lemma for the sake of completeness. From

here one can see that the algorithm in §2.3.1 does indeed work very fast.

2.4 Complete flags over Fq

2.4.1 We have a small problem here. Namely, we need to decide how we are
going to encode the flags. By analogy with the idea described in §1.4 we will simply
encode them by the sequence of vectors, which forms a basis (v1, . . . , vn), and such
that the vector subspaces are given by V i = 〈v1, . . . , vi〉, i = 1, . . . , n.

2.4.2 Now we are ready to reduce the problem of generating a random complete
flag to the problem of generating a random nonsingular matrix. Indeed, using the
argument of §1.4 we can simply take row vectors of our randomly produced matrix
and we are done. The big advantage of this algorithm is that it is very easy to
code (assuming that the Gaussian elimination algorithm is available in some kind
of mathematical package). The only problem is that one can actually generate a
random complete flag much faster, in about O(n2) steps. You can’t beat this bound
since O(n2) is the number of steps required just to write the vectors down. We will
come back to this question later in §5.1, where we present generalizations of the
algorithm in §2.1.1.

2.4.3 If we were working over C we also could require our basis to be orthonormal,
which would make this basis uniquely defined for a given flag. The only difference is
that at the end we will now have to apply orthonormalization algorithm. Generally
speaking we can do the same over finite fields, but some of the technical details
become more complicated and we decided to omit this case.

2.5 k-subspaces of Fn
q

2.5.1 Again we have a similar problem. We can try to encode k-dimensional
subspaces by the k linearly independent vectors and try to generate them as in §2.2.1
by taking the first k vectors or a random matrix. In fact, we can pick a random
k × n matrix and check whether it has the maximal rank (which it obviously does
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at least as often as is predicted by Lemma 2.3.2). Now use Gaussian elimination
algorithm, which takes O(k2n) steps in this case.

2.5.2 To conclude, we would like to show how the algorithm in §2.2.4 can be
modified to apply in this case.

Start with some k-dimensional linear subspace V ∈ Fn
q . Mark it. We will be

gradually unmarking parts of V , reducing the dimension of the marked subspace
by one after each step. We use induction to get k-subspaces which are chosen
at random conditioned on having contain the marked subspace. In other words,
at the beginning our marked subspace is all of V so there is only one possible k-
dimensional subspace containing the marked subspace. After one step we get a k−1-
dimensional marked subspace and a random k-dimensional subspace containing it.
Keep on decreasing the dimension of the marked subspace. At the end we don’t
have anything marked, so we have a randomly chosen k-dimensional subspace.

Suppose we are given a k-dimensional subspace V with the marked subspace W ⊂
V , dim(W ) = m. Choose any (m − 1)-dimensional subspace W ′ ⊂ W . Unmark
everything in W \W ′. Flip a coin i(P ), where the probability P = P (m, k, n) of
heads is given by

P (m, k, n) =
(k −m + 1)q

(n−m + 1)q
=

1 + q + · · ·+ qk−m

1 + q + · · ·+ qn−m

If it’s heads, stay. If it’s tails, choose a random V ′ ⊃ W ′, dim(V ′) = k, dim(V ′ ∩
V ) = 1. Go to the next step. Stop when W = {0}.

To make this algorithm rigorous we need to define how we are going to choose
subspaces V ′ and W ′ (see §5.2.3), explain how we are going to keep track of the
spaces, and prove the correctness of the algorithm (see below).

2.5.3 To show why the above algorithm works, compare it with the algorithm in
§2.2.4. Note that the idea is completely analogous except for the technical difference
of unmarking the ”random part” instead of marking it.

We prove the correctness of the algorithm by induction. We claim that after step
i we have a random uniformly chosen k-subspace V ∈ Fn

q conditioned V contains
the marked subspace W , where dim(W ) = n−i. The claim is clear at the beginning
when V = W = Fn

q . Define the probabilities

P ′(m, k, n) =
|{V ∈ Gr(n, k,Fq) : V ⊃ W}|
|{V ∈ Gr(n, k,Fq) : V ⊃ W ′}|

If we assume that P ′(m, k, n) = P (m, k, n), then the step of induction is clear.
Therefore modulo proof of the identity above, we prove the claim. Thus after k
steps we indeed get uniform k-subspaces.

2.5.4 Now in order to finish the proof we need to show that the probabilities

P ′(m, k, n) = P (m, k, n)

for all 0 ≤ m ≤ k ≤ n.
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Define FL(m, k, n,Fq) to be the set of sequences ∅ = V 0 ⊂ V m ⊂ V k ⊂ V n =
Fn

q , where dim(V i) = i. It is easy to see that

|FL(m, k, n,Fq)| =
(

n

k

)

q

(
k

m

)

q

since the number of ways to choose the sequence V m ⊂ V k ⊂ V n can be thought
as the number of ways to choose V k ⊂ V n times the number of ways to choose
V m ⊂ V k.

We have a group GL(n,Fq) acting transitively on Fl(m, k, n,Fq), which implies
that the number of ways to choose a k-dimensional subspace which contain a given
m-space is

c(m, k, n; q) =

(
n
k

)
q

(
k
m

)
q(

n
m

)
q

=
(

n−m

k −m

)

q

From here we have

P ′(m, k, n) =
c(m, k, n; q)

c(m− 1, k, n; q)
=

(
n−m
k−m

)
q(

n−(m−1)
k−(m−1)

)
q

=
1 + q + · · ·+ qk−m

1 + q + · · ·+ qn−m

which finishes the proof.

We will get back to this algorithm in §5.2.3 with an explanation on how we can
actually choose the subspaces.

2.6 Remarks

More about generation of permutations and k-subsets can be found in [K]. Var-
ious algorithms for generation of other combinatorial objects can be also found in
[NW]. See also [DSh2] for the general treatment of subgroup algorithms.

The result of Lemma 2.3.2 is known, although use of the Euler’s identity is not
standard. Ironically Euler invented this identity also for computational purposes.
He needed to compute the number p(n) of partitions of n for large n ([An, Eu]).
Indeed, the identity can be presented as follows

p(n) = p(n− 1) + p(n− 2)− p(n− 5)− p(n− 7) + p(n− 12) + p(n− 15)− . . .

which gives us a fast recursive algorithm.
Algorithm 2.2.3 can be found in [MR]. Another randomized algorithm was re-

cently found in [Ra]. Algorithm 2.2.4 and its q-version given in §2.5.2 are probably
new but not terribly interesting. They will be important to us when we get to the
random walks in section 6.

3. What if you like some better than others?

3.1 Permutations

3.1.1 Statistics on permutations
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There are great many different statistics on permutations and each of them can
be transformed into a question about sampling from a nonuniform distribution
associated with this statistics. Here is the definition.

Statistic on a finite set X is a function γ : X → Z+. Fix some positive real
number q. Define S(X, γ, q) =

∑
x∈X qγ(x). The probability distribution on X

associated with γ is defined as

Pγ,q(x) =
qγ(x)

S(X, γ, q)

We needed to normalize it by S(X, γ, q) so that the total sum adds up to 1.
Now the question is: Given q and statistic γ, how can we sample from the

distribution Pγ,q?

3.1.2 Inversions
Inversion in a permutation σ ∈ Sn is a pair (i, j), 1 ≤ i < j ≤ n such that

σ(i) > σ(j). Define inv to be a statistic on Sn by the number of inversions. In
other words,

inv(σ) = |{(i, j) : σ(i) > σ(j), 1 ≤ i < j ≤ n}|
Let us prove that

S(Sn, inv, q) =
n∏

i=1

(1 + q + · · ·+ qi−1) = (n!)q

Indeed, use the algorithm described in §2.1.1 and let t be a formal variable. We are
going to compute the polynomial

fn(t) =
∑

σ∈Sn

tinv(σ)

and then evaluate it at t = q.
Recall the algorithm in §2.1.1 for generating a permutation. Let us run this

algorithm and keep track of the number of inversions it generates. There is only
one way to put 1 on a line so f1 = 1. There are two ways to put 2 : one to the right
of 1 without any inversions and one to the left of 1 with one inversion. Therefore
f2(t) = f1(t)(1 + t) etc. There are n ways to put n : one with 0, 1, . . . , n − 1
additional inversions. By induction we have that

fn(t) =
n∏

i=1

(1 + t + · · ·+ ti−1)

and by definition S(Sn, inv, q) = fn(q). This completes the proof.
We would like to mention the important distinction here between the polynomial

fn(t) and its value fn(q). Note also that fn(q) = (n!)q is the number of complete
flags over Fq, where q is a power of a prime.

3.1.3 Standard sampling
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Observe that the above stated idea can be reduced to an algorithm which gener-
ates a permutation σ with probability qinv(σ)/fn(q). Indeed, when placing i simply
place it in the right-most position with probability 1/(i)q, in the second position
from the right with probability q/(i)q, etc., in the left-most position i-th probabil-
ity qi−1/(i)q, where (i)q = (1 + q + · · · + qi−1). By definition we get exactly the
probability distribution associated with statistic inv on Sn (i.e. by the number of
inversions). Use induction to finish the proof.

Note also that if were trying to generalize an algorithm in §2.1.2, we wouldn’t be
able to prove the multiplicative formula for fn(t) since sometimes when inserting
a new number we get a multiple of a different form. For example, if we had a
permutation (1, 2, 3) ∈ S3 with elements 1, 3 marked, then three permutation occur
after we exchanged 2 are (2, 1, 3) , (1, 2, 3) and (1, 3, 2) with 1, 0 and 1 inversions
respectively, which is different from the needed 0, 1 and 2 distribution.

3.1.4 Product sampling
By analogy with §2.1.3, define T (i; q), 1 < i ≤ n to be the following operation

on a permutation σ ∈ Sn.

• Flip a coin i
(

(i−1)q

(i)q

)
. If heads, exchange σ(i) and σ(i− 1).

Denote R(i; q) = T (i; q) ◦ T (i − 1; q) ◦ . . . ◦ T (2; q). The algorithm works as
follows. We start with a permutation (n, n − 1, . . . , 1) and apply R(2; q) ◦ . . . ◦
R(n; q). We claim that this algorithm outputs a permutation σ with probability
P (σ; q) = qinv(σ)

(n!)q
. The proof goes through verbatim of the proof in §2.1.3 with the

substitution of q-numbers in appropriate places. Note also that if we start with
identity permutation id ∈ Sn we get a permutation σ with probability P (σ; 1

q ).

Now observe that result in this subsection is equivalent to the following identity
in C[Sn] which generalizes an identity presented in §2.1.4:

−→∏

k=n−1...1

−→∏

i=1...k

(
qi

(i + 1)q
e +

(i)q

(i + 1)q
(i, i + 1)

)
=

1
(n!)q

∑

σ∈Sn

σ · q(n
2)−inv(σ)

3.1.5 Metric on Sn

Define a Coxeter graph to be a graph with vertices in Sn and two permutation σ
and σ′ connected by an edge if and only if σ = σ′ ·(i, i+1) for some i = 1, . . . , n−1.
Call a distance d(σ, ω) the length of the minimal path between two permutation
σ and ω. We call it distance because it is obviously nonnegative, symmetric, and
satisfies the triangle inequality. We claim that

d(σ, ω) = inv(σ−1ω)

First, observe that by the definition of a distance we have

d(σ, ω) = d(τσ, τω)

for any σ, ω, τ ∈ Sn. Indeed, if we had a path (σ, σ′, σ′′, . . . , ω), we would also have
a path (τσ, τσ′, τσ′′, . . . , τω), and vice versa. Therefore it is enough to prove that

d(σ, id) = inv(σ)
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for all σ (to see that, take τ = σ−1). We prove it by induction on the length
of σ. Suppose the shortest path from σ to id starts with σ′ and we know that
d(σ′, id) = inv(σ′) = l. Hence d(σ, id) = l + 1 and we are left to prove that
inv(σ) = l + 1.

By definition, there exists some i, such that σ = σ′ · (i, i + 1). It is easy to see
that when we exchange i and i + 1 in σ′ we can either increase or decrease the
number of inversions by exactly one depending on whether (i, i + 1) is an inversion
or not. By induction it can’t be l− 1. Therefore inv(σ) = l + 1 and we proved the
result.

3.1.6 Braid Arrangements and Permutohedra
Consider a configuration of hyperplanes Hn =

⋃
Hi,j ⊂ Rn, where Hi,j is de-

fined as (zi − zj = 0), 1 ≤ i < j ≤ n. This configuration is usually called braid
arrangement. The complement (Rn\Hn) is a disjoint set of regions which is in a
natural bijection with the set of permutations. Indeed, it is not hard to see that
each region is a set of a form xσ(1) > xσ(2) > · · · > xσ(n) which makes the bijection
obvious.

Construct a graph with vertices to be these regions and two vertices connected
by an edge whenever we can cross only one hyperplane in order to get from one
region to another. A little less obvious is the result that this graph is exactly a
Coxeter graph after taking inverses of the permutations. Indeed, one can see that
the hyperplanes adjacent to the region xσ(1) > xσ(2) > · · · > xσ(n) are of the form
xσ(i) = xσ(i+1), i = 1, . . . n− 1 and therefore after crossing this hyperplane we end
up at the region xσ(1) > · · · > xσ(i) > xσ(i+1) > · · · > xσ(n) i.e. the new region
corresponds to a permutation σ′ = (i, i + 1)σ which proves the result.

Define a permutahedron to be a polytope in Rn with vertices
(
σ(1), . . . , σ(n)

)
.

This polytope is a translation of the Minkowsky sum of the vectors ei− ej , 1 ≤ i <
j ≤ n and its 1-skeleton is again a Coxeter graph. The reason is that this polytope
is dual to the braid arrangement which follows right from the definition. Another
description of this polytope is a convex hull of its set of vertices which form a
general orbit of a symmetric group acting on Rn by permutating coordinates. This
is where the name comes from.

3.2 k-subsets of a n-set

3.2.1 Inversions

Define inversion in a k-subset A ∈
[

n
k

]
to be a pair (i, j) such that i ∈ A,

j ∈ [n] \A, and j > i. Denote inv(A) to be the number of inversions in A. We can
think of inv as statistic on k-subsets of n-set. Here is a somewhat expected result
(by analogy with §3.1.2)

S(Sn, inv, q) =
(

n

k

)

q

To show this formula, let us define a polynomial

fn,k(t) =
∑

A∈
[
n
k

]
tinv(A)
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We need to prove that

fn,k =
fn

fkfn−k

We prove it using bijection ϕ defined in §1.2. Think about k-subsets of [n] as
permutations with increasing sequences of the first k and the last n − k elements.

For example, A = {1, 4, 6} ∈
[

6
3

]
corresponds to σ = (1, 4, 6, 2, 3, 5) ∈ S6. Clearly

ϕ(σ) = A and by definition inv(σ) = inv(A). On the other hand, when permuting
first k and the last n − k elements, we can only add the number of inversions in
each part. Therefore

∑

ω∈ϕ−1(A)

tinv(ω) = tinv(A)fk(t)fn−k(t)

Summing over all A ∈
[

n
k

]
and dividing both sides by fk(t)fn−k(t) we get the

result.

3.2.2 Sampling

Suppose now we would like to sample an element A ∈
[

n
k

]
from a probability

distribution P (·):
P (A) =

qinv(A)

(
n
k

)
q

for some q ∈ R, q > 0. As before, we can sample a permutation in the same manner
as it is done in §3.1.3, and then take the first k elements (i.e. use ϕ). Of course one
can do much better than that which we will show in the next subsection.

3.2.3 An algorithm

As in §2.2.3 we go over all numbers from 1 to n and for each of them decide
whether we want to take it in a k-set or not. The only information we need to keep
is the number l of elements we still need to choose and the number m of elements
left, (l = k and m = n at the beginning).

We take an element (n − m + 1) and decide whether we would like to take it
in a k-set or not. To do that we simply flip a coin i(P ), where the probability
P = P (l, m) is given by the formula

P (l, m) =
1 + q + . . . ql−1

1 + q + · · ·+ qm−1

If heads, take (n−m + 1) in a k-set, and if tails skip this number and move to the
next available. Stop when l = 0.

We claim that this algorithm does indeed produce a random k-subset A with
probability proportional to the qinv(A). The algorithm itself is completely analogous
to the one in §2.2.3. We just need to show that the probabilities P (l, m) are chosen
in the right way.
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Indeed, let us compute the probabilities P (l, m) :

P (l, m) =

∣∣∣∣
{

A ∈
[

m
l

]
: 1 ∈ A

}∣∣∣∣
∣∣∣∣
[

m
l

]∣∣∣∣
=

(
m−1
l−1

)
q(

m
l

)
q

=
(l)q

(m)q

Now, when we take a new elements into the k-subset we don’t force any new inver-
sions in the future since all the elements that can possibly make an inversion with
(n−m + 1) must be smaller. On the other hand, the probability

Q(l, m) = 1− P (l,m) =
ql(1 + q + . . . qm−l−1)

1 + q + · · ·+ qm−1

has a multiple ql because if we don’t take an element (n−m + 1), by doing so we
guarantee exactly l future inversions with all the numbers that will be added to our
k-subset. This finishes the proof.

3.2.4 Metric on
[

n
k

]

There are several ways to define a distance on k-subsets. We briefly mention
three of them.

1) Define a graph Γ1 with all k-subsets as vertices and edges (A,B), where

A,B ∈
[

n
k

]
such that |A ∩ B| = k − 1. Define d1(A, B) to be a distance between

A and B in this graph. It is easy to see that

d1(A,B) = |A ∩B|

This is an interesting notion of a distance and it is symmetric under the natural
action of Sn. Unfortunately this distance has nothing to do with inversions. In §6.3
we shall study nearest neighbor random walk on a graph Γ1.

Here is another place where Γ1 occurs. Define a hypersimplex to be the convex
hull of characteristic functions of all k-subsets. It is an (n−1)-dimensional polytope
which is a simplex when k = 1. Another way to define this polytope is to take an
orbit of the point (1, . . . , 1, 0, . . . , 0) (k ones) of Sn acting on Rn by permuting co-
ordinates. An easy theorem says that Γ1 corresponds to 1-skeleton of this polytope
(see [EKK, Z]).

2) Define a graph Γ2 on
[

n
k

]
as follows. Two k-subsets A and B are connected

by an edge if and only if |A ∩B| = k − 1, and the unique elements in B \A, A \B
are consecutive integers.

By definition Γ2 is a subgraph of Γ1, but it is no longer regular and has fewer
symmetries. We can still define a distance d2(A, B) as a distance in this graph.
One can easily see now that

d2(J,A) = inv(A)

where J = {1, . . . , k}.
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There is one more interpretation of Γ2. Consider a set of all sequences (a) =
(a1, . . . , ak) such that n− k ≥ a1 ≥ a2 ≥ · · · ≥ ak ≥ 0. We say that two sequences
are similar if they differ by 1 at exactly one place. Define a graph on these se-
quences by connecting pairs of similar sequences by edges. This graph appears to
be isomorphic to Γ2. To prove that we define an intermediate set of combinatorial
objects which are easier to deal with and construct two simple bijections between
our sets and this new set.

Consider set of all lattice paths in a rectangular k × (n − k), which start from
the southwest corner, go either right or up, and end at the northeast corner. We
can think of the area above the path as a diagram (which is called Young diagram)
with the number of squares in each row corresponding to elements in a sequence.
This gives the first bijection.

On the other hand, we can move along the path starting from the southwestern
corner and ending at the northeastern corner. We need exactly n moves. Now we
can either take an element into a k-subset or not depending whether our move was
vertical or horizontal. It gives another bijection and establishes the result.

Although d2 has some nice properties, we are not going to use this notion of a
distance.

3) Denote the INV(A) to be a set of inversions in a k-subset A (see §3.2.1).
Define a new distance as follows:

d3(A,B) = |INV(B) \ INV(A)|

Although it is not true that d3(A,B) = d3(B, A), we still have the triangle
inequality:

d3(A, B) + d3(B, C) ≥ d3(A,C)

On the other hand there is an obvious connection with inversions:

d3(J,A) = inv(A)

where J = {1, . . . , k}. Moreover, if INV(A) ⊂ INV(B), then

d3(A, B) = d2(A,B)

Therefore it makes sense to think of d3 as some kind of ”oriented distance”.
As far as we know d3 does not correspond to any distance in an oriented graph.

It occurs in combinatorics of k-dimensional subspaces. We shall come back to it
later in the paper.

3.3 Remarks

The number of inversions in a permutation can be generalized for any Weyl group
where it becomes the length of an element (see [Bou, H2, W]).

The q-identities similar to the one given in §3.1.4 for all root systems were found
in [Ch].

Inversions in permutations and k-subsets have been heavily studied in Combi-
natorics (see e. g. [GJ, S1, SW]). They will reappear in connection with flags and
k-dimensional subspaces. There are many other important combinatorial statistics.
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Braid arrangements are very important by themselves. Considered over C their
complement is an Eilenberg-MacLain space K(π, 1), where π is a colored braid
group (see [Ar, Ca]).

Permutohedron as an abstract polytope is simply a Coxeter complex of Sn and
Coxeter generators (see [CM]). Translations of permutohedron can tile the whole
(n − 1)-dimensional space. This is obvious once you consider Coxeter complex of
affine Weyl group Ân.

Both permutahedron and hypersimplex are examples of the orbit polytopes, which
can be obtained by taking a convex hull of an Sn-orbit of a particular point in Rn.

The distance d1 is well known and has been studied in numerous papers (see e.g.
[Be, DSh3]). Distance d2 in a different form was also considered in various places
(see e.g. [GJ, S1, SW]). Distance d3 is probably new.

4. What do these flags look like, anyway?

The idea is to break a set of flags into many pieces (cells) with each of them
looking like finite vector spaces. Then we can try to work with each of the cells
individually.

4.1 Complete flags

4.1.1 Schubert cells

Let us fix a basis E = (e1, . . . , en) in a vector space V = Fn
q and fix a complete

flag ∅ = V 0 ⊂ V 1 ⊂ · · · ⊂ V n = V associated with E, where V i = 〈e1, . . . , ei〉,
i = 1, . . . , n (cf. §1.4). Now with each flag ∅ = W 0 ⊂ W 1 ⊂ · · · ⊂ Wn = V
associate set of numbers

αi,j = dim(V i ∩W j)

Define Schubert cells to be unions of flags with the same set of numbers αi,j , 1 ≤
i, j < n. Of course not all sets of numbers can appear and we will give a complete
description of them in the next few subsections.

4.1.2 Unipotent group and its action on flags

Define the unipotent group U(n,Fq) ⊂ B(n,Fq) to be the group of upper tri-
angular matrices with 1’s on the diagonal. Recall that complete flags correspond
to cosets BT (n,Fq) \ GL(n,Fq) where B(n,Fq) is a Borel subgroup of all upper
triangular matrices. We claim that Schubert cells correspond to double cosets
BT (n,Fq) \GL(n,Fq)/U(n,Fq). In other words Schubert cells are the orbits of the
unipotent group acting on flags through its action on matrices.

First, notice that by associativity of matrix multiplication it doesn’t matter
whether we first multiply a matrix from the right and then from the left or vice
versa. Hence the action of U(n,Fq) on complete flags is indeed well-defined. Now,
take a flag W 0 ⊂ W 1 ⊂ · · · ⊂ Wn = V associated with the basis (w1, . . . , wn),
where wi is an i-th row vector of a matrix M . Take an upper triangular matrix
U ∈ U(n,Fq). We can think of the complete flag corresponding to M · U as the
same flag written in different coordinates. Observe that since U is upper triangular,
the original basis flag V 0 ⊂ V 1 ⊂ · · · ⊂ V n wouldn’t change either (see §1.4) and
therefore all the dimensions of intersections will remain the same. It proves that
the orbits of the unipotent group do indeed lie inside the Schubert cells. The



20 IGOR PAK

other direction, which claims that the numbers ri,j actually distinguish between
the orbits, will be proven later using a combinatorial description of the orbits.

4.1.3 Permutation flags

Since we haven’t yet fully established the connection between Schubert cells and
orbits of the unipotent group, in this subsection we will continue to analyze the
latter.

With each permutation σ associate a permutation flag Vσ corresponding to a
basis (eσ(1), . . . , eσ(n)). We claim that each orbit of the unipotent group U(n,Fq)
acting on the complete flags Fl(n,Fq) contains exactly one permutation flag.

First of all, no two flags can lie in the same orbit since otherwise they would have
to be in the same Schubert cell (by the result in §4.1.2) and have the same set of
numbers αi,j , which is clearly false. Therefore if we prove that each orbit contains
at least one permutation flag, we would instantly prove not only this claim but also
the result about Schubert cells being the orbits of the unipotent group.

Fix a permutation σ ∈ Sn and consider the orbit O(σ,Fq) of the unipotent
group containing the permutation flag Vσ, Vσ ∈ O(σ,Fq). Recall that in a basis
E we can think of O(σ,Fq) as an image of the map ψ (see §1.4) of an orbit of the
U(n,Fq) acting on GL(n,Fq) by the right multiplication. Now we are ready to give
an explicit combinatorial description of the orbit O(σ,Fq) (and, as we will see in a
moment, of Schubert cells).

4.1.4 Combinatorial construction

By definition a flag Vσ corresponds to a matrix D(σ) = (di,j), where di,j = 1,
j = σ(i) and di,j = 0 otherwise. By definition an orbit of U(n,Fq) is the set of
all matrices that can be obtained by adding columns to the columns with bigger
numbers. Since all the ones are in different columns in D(σ), it is easy to see
that we get a set of matrices R(σ) such that R = (ri,j) ∈ R(σ) if and only if
ri,σ(i) = 1 and ri,j = 0, j < σ(i). Indeed, both conditions are necessary since we
can’t possibly change ri,σ(i) and any numbers to the left of it (in standard matrix
notations). Suppose now we have a matrix R ∈ R(σ). There is nothing to the right
of (σ−1(n), n). There is exactly one matrix element to the right of (σ−1(n−1), n−1)
and we can make it zero by subtracting the (n − 1)-th column from n-th column
appropriate number of times. Proceed analogously until we are left with matrix
D(σ). Therefore R(σ) is indeed an orbit of U(n,Fq) in GL(n,Fq).

Now let us find the equivalence classes of matrices R ∈ R(σ) under the action of
BT (n,Fq) by multiplication from the left. In other words, we would like to find a
representative in a preimage ψ−1(F ) for each of the F ∈ O(σ,Fq). As we know (see
§1.4) we can add a row of the matrix R ∈ R(σ) to a row with a bigger number. By
an argument similar to the one above we can get all the elements below (i, σ(i)) to
be zeros.

Note that in this construction new zeros are placed in those positions (i, j) which
correspond to the inversions in σ (see §3.1.2). Indeed, if we have a matrix element
to the right of (i, σ(i)) and below (σ−1(j), j), then we have i > σ−1(j) and σ(i) < j
i.e. pair (i, σ−1(j)) is an inversion in σ.

Define S(σ,Fq) to be a set of matrices M = (mi,j), M ∈ R, such that ri,σ(i) = 1,
and ri,j = 0 if j < σ(i) or σ−1(j) < i. We just showed that for each F ∈ O(σ,Fq)
there exist exactly one matrix M ∈ S(σ,Fq) such that F = ψ(M).
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4.1.5 Example
Let n = 5, σ = (2, 4, 3, 1, 5) ∈ S5. All matrices R ∈ R(σ,Fq) and M ∈ S(σ,Fq)

look as follows.

R =




0 1 ∗ ∗ ∗
0 0 0 1 ∗
0 0 1 ∗ ∗
1 ∗ ∗ ∗ ∗
0 0 0 0 1


 , M =




0 1 ∗ ∗ ∗
0 0 0 1 ∗
0 0 1 0 ∗
1 0 0 0 ∗
0 0 0 0 1




where by ”∗” we mean any number x ∈ Fq. Four new zeros in M at places (3, 4),
(4, 2), (4, 3) and (4, 4) correspond to four inversions in σ = (2, 4, 3, 1, 5), namely to
(2, 3), (1, 4), (3, 4) and (2, 4) respectively.

4.1.6 End of the proof
Recall that in §4.1.3 we showed that all we have left to prove is that each orbit

of the unipotent group contains at least one permutation flag. We already know all
permutation flags lie in different orbits. Now what we can do is compute the number
of flags in orbits containing a permutation flag and then compare this number with
the total number of complete flags.

By the §4.1.4 we have
|O(σ,Fq)| = |S(σ,Fq)|

Recall that matrices M ∈M(σ,Fq) have exactly n ones, 0+1+ · · ·+(n− 1) =
(
n
2

)
zeros to the left of ones and an additional inv(σ) number of zeros which are below
and to right of ones. Therefore the total number of ”stars” in M (see example
above) is

(
n2 − n− (

n
2

)− inv(σ)
)

=
(
n
2

)− inv(σ) i.e.

|S(σ,Fq)| = q(
n
2)−inv(σ)

Summing over all permutations we get

∑

σ∈Sn

q(
n
2)−inv(σ) = q(

n
2)fn

(
1
q

)
= fn(q)

where fn(q) = (n!)q = |Fl(n,Fq)| is the total number of the complete flags of length
n over Fq (see §1.4 and §3.2.1).

Let us summarize what we did. We proved that all the orbits of the unipotent
group containing at least one permutation flag do not overlap and cover the whole
set of complete flags. This implies that all orbits must contain a permutation flag
which respectively implies that these orbits are indeed the Schubert cells. This
completes the proof of the Schubert cell description.

4.2 k-subspaces of Fn
q

The case of k-subspaces of Fn
q is almost exactly similar to the case of complete

flags. So we will just state what Schubert cells look like in this case and skip much
of the proof.

4.2.1 Schubert cells
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As in §4.1.1, fix a basis E = (e1, . . . , en) in a space V = Fn
q and an associated

with E complete flag ∅ = V 0 ⊂ V 1 ⊂ · · · ⊂ V n = V defined as V i = 〈e1, . . . , ei〉,
i = 1, . . . , n.

Now with each k-dimensional subspace W ⊂ V we associate a set of numbers

βi = dim(V i ∩W )

Define Schubert cells to be unions of subspaces with the same set of numbers βi,
1 ≤ i < n.

Rather than the whole unitary group in this case one should consider its subgroup
U(n, k,Fq) ⊂ U(n,Fq) such that U = (ui,j) ∈ U(n, k,Fq) if and only if ui,j = 0,
1 ≤ i < j ≤ k or k < i < j ≤ n.

The role of permutation flags would play basis k-subspaces i.e. subspaces gen-
erated by any subset of k basis vectors. Basis k-subspaces are in bijection with

k-subsets A ∈
[

n
k

]
, A = {i1, i2, . . . , ik}, 1 ≤ i1 < i2 < · · · < ik ≤ n. They cor-

respond to k × n matrices D(A,Fq) which have ones in places (1, i1), (2, i2), . . . ,
(k, ik), and zeros elsewhere.

As in the case of complete flags, we claim that each Schubert cell contains exactly
one basis k-subspace and can be obtained as an orbit of U(n, k,Fq) acting on
Gr(n, k,Fq). These orbits O(A,Fq) can be lifted up to a set of matrices S(A,Fq)
which can be obtained from matrices D(A,Fq) by putting ”stars” on places to the
right of ones and with no 1 in the same column. One can observe that

|O(A,Fq)| = |S(A,Fq)| = qk·(n−k)−inv(A)

which by analogy with §4.1.6 proves the claim.

4.2.2 Example

Let n = 9, k = 4, A = {1, 4, 6, 7} ∈
[

9
4

]
. All matrices M ∈ S(A,Fq) look as

follows:

M =




1 ∗ ∗ 0 ∗ 0 0 ∗ ∗
0 0 0 1 ∗ 0 0 ∗ ∗
0 0 0 0 0 1 0 ∗ ∗
0 0 0 0 0 0 1 ∗ ∗




The number of inversions inv(A) = 8. Here we have

|S(A,Fq)| = q4·(9−4)−8 = q12

which is easy to see since M has exactly 12 ”stars” in it.

4.3 Remarks

Although the results in this section are known, our elementary approach is not
standard. The careful treatment of Bruhat decomposition for all root systems can
be found in [Bou, H1]. Lie groups over the finite field are called Chevalley groups
(see e.g. [Bor, St]). The group U(n, k,Fq) introduced in §4.2 is an example of
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a parabolic subgroup. These parabolic subgroups can be used in a similar way to
study incomplete flag varieties.

Schubert cells by themselves represent a major development. They are heavily
used in different branches of mathematics. There is even a Schubert calculus, which
is a part of Algebraic Geometry (see e.g. [GH, M2]). Quite recently people in
Algebraic Combinatorics have also invaded this area (see [LS, M2, S2]).

5. How do you generate them? (Second part).

The idea is to generate flags or subspaces in two steps. First, choose a Schubert
cell with probability proportional to the number of elements it contains. Second,
choose an element in the chosen cell.

As we already know these Schubert cells look like vector spaces over Fq of dimen-
sion equal to

(
n
2

)
minus the number of inversions. So the first step is basically done

in §3 while the second is easy since we have a complete combinatorial description
of these cells. Here is a careful explanation of this idea.

5.1 Complete flags

Let q0 be a power of a prime, and let q = 1
q0

. We would like to sample complete
flags over Fq0 from the uniform distribution. Following §2.4.1 the output must be
of a form (v1, . . . , vn).

5.1.1 The idea stated above can be reformulated the following way. By §4.1.4
and §4.1.6 choosing a complete flag is equivalent to first choosing the permutation
σ and then a matrix M ∈ S(σ,Fq). In the notation of §3.1.1 we therefore need to
sample σ from the distribution Pinv,q, which can be done by the algorithm described
in §3.1.3. Note that we need to use q = 1

q0
since by the result in §4.1.6 we have

|S(σ,Fq)| = q(
n
2)−inv(σ)

which forces us to take an inverse scale.
The second step is sampling a matrix M ∈ S(σ,Fq). But this is easy since the

set S(σ,Fq) has an explicit description (see §4.1.4). Basically all we need to do is
replace all the ”stars” by the randomly chosen numbers in Fq0 . Here is the final
version of the algorithm.

5.1.2 Algorithm
1)Input n, q0; q := 1

q0
;

2)Sample σ ∈ Sn from the distribution Pinv,q using the Algorithm in §3.1.3;
3)Sample M ∈ S(σ,Fq) uniformly;
4)Output M .

5.2 k-subspaces of Fn
q0

5.2.1
Again let q0 be a power of a prime, q = 1

q0
. We can work out the generating

algorithm of the k-dimensional subspaces by analogy with flags. Following §2.4.1
the output must be of form k independent vectors (v1, . . . , vk). Now we can use a
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very efficient algorithm described in 3.2.3 to generate a k-subset from the nonuni-
form distribution associated with statistic inv and a constant q. Here is the new
algorithm.

5.2.2 Algorithm
1)Input n, k, q0; q := 1

q0
;

2)Sample A ∈
[

n
k

]
from the distribution Pinv,q using the Algorithm in §3.2.3;

3)Sample M ∈ S(A,Fq) uniformly;
4)Output M .

5.2.3 Now we can also formalize the idea of an algorithm in §2.5.2. As usual
we will encode the k-dimensional subspace V by k linearly independent vectors
v1, . . . , vk In addition to that we will also keep in memory n−k vectors vk+1, . . . , vn

which form a basis together with v1, . . . , vk. Since we are allowed to choose marked
m-dimensional subspace W in any way we like, we will do it by making it to be a
span of v1, . . . , vm, 0 ≤ m ≤ k ≤ n.

Now let us describe what we do at each step. At step k − m + 1 first we
need to choose an m − 1-dimensional subspace W ′ which is going to be a span
of v1, . . . , vm−1. Then we need to choose a new k-dimensional subspace V ′ ⊃ W ′.
We flip a coin i(P ), where P = P (m, k, n) = (k−m+1)q

(n−m+1)q
. If it’s heads, let V ′ = V

and keep all the vectors.
If it’s tails, we replace vm by a vector v′m /∈ V in such a way that a subspace

V ′ = 〈v1, . . . , v
′
m, . . . , vk〉 is randomly chosen k-dimensional subspace in condition

dim(V ′ ∩ V ) = 1 and V ′ ⊃ W ′.
Let a vector v′m to be of a form a1vm + · · ·+ ak−m+1vk + b1vk+1 + · · ·+ bn−kvn

Choose a number 1 ≤ i ≤ n− k with probability

p(i) =
qi−1

1 + q + · · ·+ qn−m

Set values bi+1, . . . , bn = 0, bi = 1 and choose random values a1 . . . , ak−m+1 and
b1, . . . , bi−1 ∈ Fq. Now have the subroutine output vectors v1, . . . , v

′
m, . . . , vk.

What we basically did here was show how to choose a line in a (n−k)-dimensional
space by choosing first a Schubert cell and then its random element. This establishes
a rigorous procedure for the algorithm in §2.5.2.

5.3 Nonsingular matrices over Fn
q0

5.3.1 We can use the algorithm described in §5.1.2 in order to generate random
nonsingular matrices. Indeed, as we showed in §1.4, complete flags correspond to
the cosets BT (n,Fq)\GL(n,Fq), so all we need to do is choose a random complete
flag and multiply it by a random lower triangular matrix. Here is an algorithm
formalizing the idea.

5.3.2 Algorithm
1)Input n, q0; q := 1

q0
;

2)Sample σ ∈ Sn from the distribution Pinv,q using the Algorithm in §3.1.3;
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3)Sample M ∈ S(σ,Fq) uniformly;
4)Sample B ∈ B(n,Fq) uniformly;
5)Compute M ′ = BT ·M ;
6)Output M ′.

5.4 ”Lazy programmer” solution

Sometimes you can see ”lazy programmers” who are capable of sacrificing the
speed of an algorithm for the sake of writing less of a computer code. We can
actually help these people.

5.4.1 Complete flags
Observe that instead of sampling a random matrix M ∈ S(σ,Fq) we could have

sampled a random unipotent matrix U ∈ U(n,Fq) which is easy to do since these
are upper triangular matrices with ones on diagonal and then output the product
D(σ,Fq) · U , where D(σ,Fq) is a permutation matrix corresponding to σ.

Sampling a random unipotent matrix might be considered easier to code espe-
cially if it’s already done in some kind of math. package. By using it we still get
a uniform distribution of corresponding complete flags which is exactly what we
need. It may take more time to sample a unipotent matrix since it may have many
more random entries to be chosen. On average however it is off only by a factor of

2 since the average number of inversions in a permutation is (n
k)
2 , simply because

fn(t) = t(
n
k)fn(t−1).

The constant 2 is so small that the employer of the ”lazy programmer” can
probably live with it. Here is an algorithm which realizes this idea.

Algorithm
1)Input n, q0; q := 1

q0
;

2)Sample σ ∈ Sn from the distribution Pinv,q using the Algorithm in §3.1.3;
3)Sample U ∈ U(σ,Fq) uniformly; M := D(σ,Fq) · U ;
4)Output M .

5.4.2 k-subspaces of Fn
q0

Exactly the same thing happens in here. One can come up with the following
algorithm.

Algorithm
1)Input n, k, q0; q := 1

q0
;

2)Sample A ∈
[

n
k

]
from the distribution Pinv,q using the Algorithm in §3.2.3;

3)Sample U ∈ U(n, k,Fq) uniformly; M := D(A,Fq) · U ;
4)Output M .

5.4.3 Nonsingular matrices over Fn
q0

Finally in the case of nonsingular matrices we get an amazingly simple algorithm
by choosing two upper triangular matrices. Even High School students can learn
this algorithm but only few of them will really understand why it works.

Algorithm
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1)Input n, q0; q := 1
q0

;
2)Sample σ ∈ Sn from the distribution Pinv,q using the Algorithm in §3.1.3;
3)Sample B1, B2 ∈ B(n,Fq) uniformly;
4)Compute M = BT

1 ·D(σ,Fq) ·B2;
5)Output M .

5.5 Product sampling

Here we present an analog of the algorithm in §2.1.3 for generating nonsingular
matrices over the finite field Fq. The idea is again based on the identity in the
group algebra C[GL(n,Fq)] (see §2.1.4).

Recall that by D(σ), σ ∈ Sn we denote a matrix D(σ) = (di,j), where di,j = 1,
j = σ(i) and di,j = 0 otherwise. Denote by E(i, j; a), where 1 ≤ i, j ≤ n, a matrix
with 1-s on diagonal, a ∈ Fq in place (i, j) and 0 elsewhere. Define

E(i, j) =
∑

a∈Fq

E(i, j; a) , where i 6= j

H(i) =
∑

a∈Fq,a 6=0

E(i, i; a)

E− =
−→∏

i=2...n

−→∏

j=1...i−1

E(i, j)

E+ =
−→∏

i=1...n−1

−→∏

j=i+1...n

E(i, j)

H =
∏

i=1...n

H(i)

An easy argument shows that

E− =
∑

M∈UT (n,Fq)

M

and
H ◦ E+ =

∑

M∈B(n,Fq)

M

Now consider a product

D =
−→∏

k=n−1...1

−→∏

i=1...k

(
qi

(i + 1)q
id +

(i)q

(i + 1)q
D(i, i + 1)

)

Recall that by §3.1.4 we have

D =
1

(n!)q

∑

σ∈Sn

q(
n
2)−inv(σ) ·D(σ)
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Thus the result in the previous subsection implies that

E− ◦ D ◦ H ◦ E+ =
∑

M∈GL(n,Fq)

M

which leads to another sampling algorithm, too sluggish to be useful.

5.6 Gaussian elimination algorithm

We would like to conclude this section by establishing the connection between
Gaussian elimination algorithm and the Bruhat decomposition

GL(n) =
∐

ω∈Sn

B(n)wB(n)

Indeed, it’s a common mistake to think that all the Gaussian algorithm does
is invert matrices. The other common mistake is to think that it breaks a matrix
into the product of an upper triangular and a lower triangular ones. What it really
does, is present a matrix as a product of a lower triangular, permutation matrix
and an upper triangular one, which is exactly what the Bruhat decomposition does
in case of the GL(n).

To see that, let us recall how Gaussian elimination algorithm works. If the first
upper left corner is non-zero, we subtract the first row from each of the rows below
it with some coefficients to place zeros in the first column everywhere but in the
upper left corner. Then we subtract the second row from each of the consecutive
rows, etc. This way we get an upper triangular matrix as a result of the subtractions
and a lower triangular matrix indicating what were the coefficients. Note however
that if the upper left corner is zero, the conventional wisdom says that it’s not
a problem since all we need to do is find a row with a nonzero entry in the first
column. Let it be the first nonzero entry. The same thing is repeated for the second
row etc. and at the end we also get a permutation matrix.

In other words what we just did was show how to break the set of all matrices
into cells using the Gaussian algorithm. One can proceed with this idea and prove
all the results contained in §4.1. We just think it easier to understand as described
here.

5.7 Remarks

Observe that the number of steps needed for algorithm 5.3.2 can be bounded by
the number of steps one needs to multiply two matrices. The number of random bits
required by the algorithm is about n2 i.e. the same as in the case of the algorithm
in §3.1.2.

Algorithm 5.2.2 originates in [CW]. Unfortunately the authors omitted many of
the details.

Algorithms 5.1.2 and 5.3.2 seem to be new. Algorithm 5.4.3 is brand new and
should be patented by somebody. Although known, the connection between Gauss-
ian elimination algorithm and the Bruhat decomposition became a part of mathe-
matical folklore nowhere to be found in print.

The subsection §5.1.5 is of theoretical impotence and is meant to answer a ques-
tion of Diaconis whether there are analogs of the identity in §2.1.4 for the full linear
group.
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6. How about taking a random walk?

This is another approach commonly used in practice for the purposes of random
generation. The idea is to start from somewhere and walk on the objects you wish
to generate at random. One may think that after some large number of steps the
walk is at a random state. It is actually true indeed and can be made precise and
proved in large generality. In this section we will study several interesting random
walks and show that up to a logarithmic factor they are almost as fast as the direct
generating algorithms (see §2, §5).

6.1 Definitions

6.1.1 Random walks
Define the nearest neighbor random walk as follows. Start at any vertex x and

flip a fair coin. If it’s heads, stay there. If it’s tails, move to a randomly chosen
vertex adjacent to x. This defines a reversible aperiodic Markov chain. Denote
P k(x) to be the probability of a walk being at a vertex x ∈ Γ after k steps. If Γ is
regular, the walk has a uniform stationary distribution, i.e.

P k(x) → 1
N

as k →∞ for all x ∈ Γ

where N = |Γ| is the number of vertices in Γ. For the rest of the paper we will
consider only regular graphs.

Let G be a finite group, S be its set of generators. We say that S is symmetric
if s ∈ S implies s−1 ∈ S. Define a Cayley graph Γ(G,S) to be a graph with group
elements g ∈ G as vertices and pairs (g, g · s) as edges, s ∈ S.

6.1.2 Separation distance and mixing times
There are several ways to measure how fast the random walk mixes, most notably

the total variation distance

tv(k) =
1
2

∑

x∈Γ

∣∣∣∣P k(x)− 1
N

∣∣∣∣

and the separation distance

s(k) = N ·max
x∈Γ

(
1
N
− P k(x)

)

For more general definitions, properties of these distances and references see e.g.
[AF, D1, P].

Although the total variation distance is used more often than the separation
distance, the latter will be better suited for our purposes. Here are a few properties
of the separation distance:

s(0) = 1

s(m + k) ≤ s(m) · s(k)

s(k) ≤ tv(k)
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for all m, k > 0.

It is useful sometimes to quantify the rate of convergence by a single number,
which is called mixing time. Again, several definitions are known, namely

n1/2 = min{i : s(i) ≤ 1
2
} = min{i : P i(x) ≥ 1

2N
for all x ∈ Γ}

and
ξ = 1 + s(1) + s(2) + · · · < ∞

The latter quantity is called the total separation. It is always finite and is of the
same order of magnitude as n1/2:

ξ ≤ n1/2 ≤ 2ξ

(see [P] for proofs and references). Note also that if the starting state of the walk is
x0, then ξ ≥ diam(Γ, x0), where d = diam(Γ, x0) is the maximal distance in graph
Γ between x0 and other vertices. Indeed, we have P 1(x0) = · · · = P d−1(x0) = 0 so
s(1) = · · · = s(d− 1) = 1 and therefore ξ ≥ d.

For the rest of the paper by the mixing time we will mean the total separa-
tion. Finally, note that the submultiplicativity of the separation distance and the
inequality above gives us

s(k) ≤ 2−bk/2ξc

which is usually a sharp upper bound.

6.1.3 Strong uniform times

Since the probability distribution P k can be very complicated, it is usually very
hard to compute the separation distance directly. Here we briefly describe how to
use the strong uniform time technique to get the sharp estimates.

Define a stopping time by a stopping rule which observes the walk and tells
us when to stop based on the previous observations and additional randomness if
necessary. We think of the stopping time of the walk as a random variable which
will be denoted T .

The stopping time T is called uniform if the probability of stopping at each
state is uniform. The stopping time T is called strong uniform time if the above
probability is uniform and independent on the time the walk stopped:

P (xt = z | T = t) =
1
N

Heuristically, even if we know the time when the walk stopped, we still don’t have
any information about where it stopped.

Let us consider an example. Suppose we walk on C4, a circle with four vertices.
Start at state 1. Define the stopping time as follows: choose a random state and
walk until we get there, then stop. It is easy to see that this is not a strong uniform
time because if it stopped after one step, it couldn’t possibly be the vertex 3, which
is opposed to the starting one. On the other hand here is a right strong uniform
time: walk till we hit either 2 or 4. Do one more step and then stop.
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The theorem due to Aldous and Diaconis (see [AD2,D1]) gives a bound for the
separation distance given the strong uniform time:

s(k) ≤ P (T > k)

From here for the total separation we have (see [P])

ξ ≤ E(T )

A strong uniform time for which the above inequality becomes an equality is
called perfect time. It is known that for every random walk there exist a perfect
time (see [AD2, D1]).

Given the random walk and a stopping time, define a halting state to be a vertex
x0 such that whenever the walks hits x0, it always stops there. In general, there
can be no halting states or there can be many of them. It is known (see [DF, P])
that if a strong uniform time has at least one halting state then it is perfect.

For example, recall the random walk on C4 and a construction of the strong
uniform time defined above. Observe that vertex 3 is a halting state, which means
the walk never leaves it. Therefore our stopping time is perfect and the total
separation is given by ξ = E(T ) = 2 + 1 = 3 (it takes on average two steps to hit
either 1 or 4).

6.1.4 Remarks

While very fast strong uniform times are known to exist in theory, they are
usually very difficult to construct in practice. To generate a graph vertex uniformly
it is sufficient to consider just uniform stopping times. Thus constructing strong
uniform times is generally a harder problem. It turns out, that in the classical cases
this problem can be solved in a way similar to generation algorithms.

The method of strong uniform times is originated in works by Aldous and Dia-
conis (see [AD1, AD2]) and was later developed in [DF, P, AP]. The notion of the
separation distance is also due to Aldous and Diaconis, while the total separation
was introduced by the author (see [AF, D1, P]). Halting elements were defined by
Diaconis and Fill in [DF] (see also [AF, P]).

6.2 Permutations

6.2.1 Random walk

Let R = {(1, 2), . . . , (1, n)} ∈ Sn be the set of star transpositions in Sn. De-
note by Γ(Sn, R) the corresponding Cayley graph. Rather than taking the nearest
neighbor random walk, take the probability of staying to be 1/n. We can think of
each walk steps as follows:

• Uniformly choose i, 1 ≤ i ≤ n. Exchange elements in places 1 and i.

In other words, multiply a permutation by a random transposition (1, i) where
1 ≤ i ≤ n.

The main result of this subsection is the computation of the total separation ξ
for this random walk:

ξ < 2 n ln n + γ n +
1
2
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where γ ≈ 0.5772156649 is the Euler-Mascheroni constant (see e.g. [BE], §1.1;
[WW], §12.1). We use an explicit construction of the strong uniform time to prove
this claim.

6.2.2 Strong uniform time construction

Start with the identity permutation. The stopping rule consists of marking
permutation elements according to walk movements. Once the element is marked,
it stays marked forever. We stop when all the elements are marked. Here is how
we mark elements:

• Mark the element n at the beginning.

Suppose the walk is at the state σ ∈ Sn and is moving to σ · (1, i), 1 ≤ i ≤ n.

• Mark σ(1) if it is unmarked and i = 1 or σ(i) is marked.

Stop when all n elements are marked.

6.2.3 Proof

Let us prove that the algorithm actually works which means that it indeed defines
a strong uniform time. Note the similarity of this algorithm with the one in §2.1.2.

We will use the induction on the number k of marked elements. The inductive
assumption is that all marked elements are in random order with respect to each
other. In other words, even if we know the stopping time, which elements are
marked and which k-subset of places they occupy, we still don’t have any knowledge
of their relative order. When k = 1 the condition is trivial.

Now suppose we have a k-subset A of marked elements. If the unmarked element
σ(1) is either exchanged with any of the marked ones or stays (as in §2.1.2) we can
mark this new element. Indeed, the element σ(1) after the walk step now has
an equal chance to be the first, the second, dots, the last in the relative order of
A ∪ {σ(1)}.

Suppose now we exchange either two marked or two unmarked elements. In
these cases we do not mark a new element. But then, the relative order of marked
elements is still equally likely to be any given linear order on A, so we come back
to the previous situation.

Recall that we stop when all the elements are marked. This means that the prob-
ability of stopping at any permutation conditioned the stopping time is uniform.
This proves the result.

6.2.4 Mixing time

In contrast with the algorithm in §2.1.2 the random walk takes longer than just n
steps, but only by a logarithmic factor. Indeed, let us compute the average stopping
time under this stopping rule.

Observe that once we get an unmarked element in the first place, the only way
to get a marked element there is by marking a new element. If we have k marked
elements, 1 ≤ k < n, this will take on average n

k+1 steps.
On the other hand, after we mark a new marked element we need to wait till

we get an unmarked element in the first place. If we have k marked elements,
2 ≤ k < n, this will take on average n

n−k steps. Therefore we can break the
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stopping time into 2 n − 2 periods described above. For the total separation we
have

ξ ≤ E(T ) =
n∑

k=1

n

k + 1
+

n−1∑

k=2

n

n− k
< 2 n h(n) = 2 n ln n + O(n)

where h(n) = 1 + 1
2 + 1

3 + · · · + 1
n . Now the estimate for ξ given in §6.2.1 follows

form the asymptotic expansion for hn (see e.g. [BE, WW]):

h(n) = ln n + γ +
1

2 n
+ . . .

An easy argument shows also that up to a constant this is the best one can get
from this random walk. Indeed, it takes on average n log n steps just to touch all
the elements. See [D1, P] on how to make this argument precise.

6.3 k-subsets of n-set

6.3.1 Random walk
Consider a graph Γ with all k-subsets of n-set as vertices. Connect two subsets

A,A′ by an edge if |A∩A′| = k− 1. We can think of the nearest neighbor random

walk on Γ as follows. Suppose the walk is at state A ∈
[

n
k

]
. Randomly choose a

pair (i, j), such that i ∈ A, j /∈ A. Flip a fair coin. If it’s heads, replace i by j. If
it’s tails, stay.

Here we will present a simple construction of a strong uniform time for this walk.
It will give us the exact value of the total separation

ξ = E(T ) = 2 k
n− k

n + 1
(
h(k) + h(n)− h(n− k)

)

where h(m) = 1 + 1
2 + 1

3 + · · ·+ 1
m .

6.3.2 Perfect time construction
Start with some k-subset A. Mark all the elements in [n] \ A. While walking

on Γ we will be marking some of its elements in A according to the following rule.
Suppose the walk is at a k-subset B with exactly m marked elements. Assume by
induction that all elements in [n] \ B are marked. This means we have a total of
m + n− k marked elements.

As in §6.3.1 we think of our walk in the following way. Randomly choose a pair
(i, j), such that i ∈ B, j /∈ B. Flip a fair coin.

• If heads, exchange i and j. If i is unmarked, mark it.
• If tails, stay and if i is unmarked, mark it with probability P = m+1

n−k .
• Go to the next step.

As before, we stop when all elements are marked.

We claim that this defines a perfect time.

6.3.3 Proof
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First let us proof that we have a strong uniform time. The proof is very much
similar to the one in §6.2.3 and is based on the same idea as §2.2.4. Some of the
numbers are different however.

Our inductive assumption is that at each time the m-set of marked elements in
our k-subset is drawn uniformly from the set of all m + n− k marked elements. In
other words, we want to prove that all the probabilities of having in our k-subset
a particular m-subset of an (m + n − k)-set of marked elements are equal even
conditioned that we know which elements are marked and time of the observation.
Of course, when m = k this condition is equivalent to the definition of a strong
uniform time.

The base of induction is obvious: we have no marked elements in our k-subset.
Consider what happens when the walk is at a k-subset B with m marked elements.
In the next step we can either increase the number of marked elements by one or
keep it the same. In the latter case we either stay at B or exchange two marked
elements i.e. inductive assumption still holds.

The case when we increase the number of marked elements is more complicated.
First of all it could happen either when the walk stays or when we exchange a
marked and an unmarked element. We use the same trick as in §2.2.4 thinking
that what we have is actually a permutation with elements in B placed on the
left in their natural order, and elements in [n] \ B are on the right. Following the
logic of §2.4.4 we can think of our step as picking a random unmarked element
and exchanging it with a randomly chosen marked element. Depending on whether
this marked element is in our set B or not, we either stay or exchange these two
elements (if both chosen elements are in B there is no point in exchanging them).
The conditional probability of the marked element being not in B (given the first
element is unmarked) is Q1 = n−k

m+n−k+1 .
The conditional probability of staying, whether because we want our new element

to stay or because we need to exchange it with the marked element in B, is P1 =
1−Q1

m+1
m+n−k+1 .

Therefore in order to compute the conditional probability of staying and marking
an unmarked element i we need to choose the probability of staying and marking
to be

P =
P1

Q1
=

m + 1
n− k

Let us repeat what we just did. We showed that conditioned we mark a new
element, the probability P of staying is chosen in such way that now we have in our
k-subset exactly m + 1 marked elements, which are chosen randomly from the set
of all m+n− k +1 marked elements. This implies that our time is strong uniform.

We have yet to prove that our time is perfect. Suppose the walk is started at
a k-subset A0. Consider any k-subset B ∈ [n] \ A0. Recall that k ≤ n − k so
B ∩ A0 = ∅. If the walk gets to B, it must have all the elements in [n] marked.
Thus the walks always stops at B and B is a halting state. Therefore our strong
uniform time is perfect. This completes the proof.

6.3.4 Mixing time

Let us now compute the expected number of steps for this algorithm to stop. We
assume that k ≤ n

2 , otherwise we can simply switch the set with its complement.
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Suppose we currently have m marked elements in our k-subset. Observe that
the probability of marking a new element is equal to

k −m

k

(
1
2

+ P

)
=

k −m

k

m + n− k + 1
2(n− k)

Therefore the expected stopping time of this algorithm is equal to

E(T ) = (2 k (n− k))
(

1
1 · n + · · ·+ 1

k (n− k + 1)

)

=
2 k (n− k)

n + 1

(
1
1

+
1
2

+ · · ·+ 1
k

+
1

n− k + 1
+ · · ·+ 1

n

)

= 2 k
n− k

n + 1
(h(k) + h(n)− h(n− k)) = 2 k

n− k

n + 1

(
ln

k n

n− k
+ O(1)

)

Since our stopping time T is perfect we have

ξ = E(T ) = 2 k
n− k

n + 1
(
h(k) + h(n)− h(n− k)

)

Note that when the ratio k
n is fixed and k grows, we have ξ = O(k log(k)).

6.4 k-subspaces of Fn
q

6.4.1 Random walk
Consider a graph Γ with all k-dimensional subspaces of Fn

q as vertices. Vertices
corresponding to subspaces V and V ′ are connected by an edge if and only if
dim(V ∩ V ′) = k − 1. We can think of the nearest neighbor random walk on Γ as
follows. Choose a random V ′ ∈ G(n, k,Fq), dim(V ∩ V ′) = k − 1. Flip a fair coin.
If heads, stay. If tails, move to V ′.

We assume that 2 k ≤ n since otherwise one can use a duality to walk on (n−k)-
dimensional subspaces. As before, we would like to analyze this walk by use of an
explicit construction of a perfect time.

6.4.2 Perfect time construction
As in §2.5.2, at the beginning we mark our k-dimensional subspace. Following

the walk we will be unmarking this subspace, leaving marked a subspace of a smaller
dimension.

Suppose the walk is at the k-dimensional space V , and W ⊆ V is its m-
dimensional marked subspace. Choose a random V ′ ∈ G(n, k,Fq), dim(V ∩ V ′) =
k− 1. Denote W ′ = W ∩ V ′. It is easy to see that the dimension d = dim(W ′) can
be either m or m − 1. The rules are different depending on which one of them is
the actual value of d. Flip a fair coin.

• If heads and d = m, stay.
• If tails and d = m, move to V ′.
• If heads and d = m − 1, stay. Unmark everything but W ′ with probability

P (m, k, n) given by

P (m, k, n) =
1 + q + · · ·+ qk−m

1 + q + · · ·+ qn−m
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• If tails and d = m− 1, move to V ′. Unmark everything but W ′.

Stop when m = 0 i.e. everything but 0 is unmarked.

6.4.3 Proof
Let us first prove that the constructed stopping time T is indeed strong uniform.

We need to recall what happened in §2.5.2. There we made the assumption that
at each time our k-subspace V is uniformly chosen given that it contains marked
m-subspace W . Moreover, it is uniformly chosen even conditioned we know W and
time of the event. The main difference is that in §2.5.2 we were able to decrease
m at each step, so it took us only k steps to get m = 0. Here we break the set of
all events into several distinct possibilities, some of them exactly like in §2.5.2 and
the others are different.

Start with the case when we get tails and d = m. It is clear, that if V ⊃ W
is randomly chosen, then so is V ′ ⊃ W . This means that the assumption remains
valid. Similarly to the cases when heads and we don’t unmark, we simply stay and
nothing changes.

At last, we have two cases when we do unmark and therefore decrease m by 1. We
claim that these are exactly the cases for which everything worked in §2.5.2. Indeed,
the only difference is that we restrict our attention to the cases when m = d − 1.
Therefore the inductive assumption should still work, and T is strong uniform.

To prove that our stopping time is perfect we shall exhibit a halting state. Sup-
pose we start at a k-dimensional subspace V . Recall that 2 k ≤ n. Consider any
k-dimensional subspace V ′ such that V ∩ V ′ = ∅ By analogy with §6.3.3, whenever
the walk gets into V ′ it must always stop there. Therefore T is perfect and this
completes the proof.

6.4.4 Mixing time
Since T is perfect, we need to find the expected stopping time. First, compute

the total number of k-dimensional subspaces V ′, such that dim(V ∩V ′) = k−1. In
other words we would like to compute the degree deg(Γ), i.e. the number of edges
going out of each vertex in Γ.

Denote U = V ∩ V ′. We can think of choosing V ′ as a two step procedure of
choosing U ⊂ V and then choosing V ′ ⊃ U , V ′ 6= V . The number of ways to choose
U is

(
k

k−1

)
q

= (1 + q + · · · + qk−1) (see §1.5). To compute the number of ways to
choose V ′ given U we can use the result in §2.5.4, which gives us c(k− 1, k, n; q) =(
n−k+1

1

)
q

= (1+q+ · · ·+qn−k). We also need to subtract 1 from the last expression
to satisfy the condition V ′ 6= V . Finally, we get

|{V ′ ∈ Gr(n, k,Fq) : dim(V ∩ V ′) = k − 1}| = q (k)q(n− k)q

= q
(
1 + q + · · ·+ qk−1

) (
1 + q + · · ·+ qn−k−1

)

Let us fix the m-dimensional marked subspace W . We need to compute the
probability of unmarking at the next step. Before we can do that we need to
compute the probability that the dimension d = dim(W ∩ V ′) is equal to m.

Observe that W ∩V ′ = W ∩U since U = V ∩V ′. The number of ways to choose
U , W ⊂ U ⊂ V is equal to

c(m, k − 1, k; q) =
(

k −m

k −m− 1

)

q

= (1 + q + · · ·+ qk−m−1)



36 IGOR PAK

Therefore the desired probability is given by the formula

P (d = m− 1) = 1− 1 + q + · · ·+ qk−m−1

1 + q + · · ·+ qk−1
= qk−m 1 + q + · · ·+ qm−1

1 + q + · · ·+ qk−1

Now, according to §6.4.2, the actual decrease in m happens with probability
more than 1/2 given d = m − 1. Indeed, it happens always when tails and with
probability P (m, k, n) when heads. To simplify the calculations we estimate it by
1/2 from the below. This will give us an upper bound. Analogously the lower
bound would be less than the upper bound by a factor of 2. We get

E(T ) < 2
k∑

m=1

1 + q + · · ·+ qk−1

qk−m (1 + q + · · ·+ qm−1)

which finally gives us

ξ = E(T ) < 2
1 + q + · · ·+ qk−1

qk

k∑
m=1

qm

(1 + q + · · ·+ qm−1)

The sum on the right hand side can be (and sometimes is, see remarks below)
considered as a q-analog of logarithm. When q = 1 we get the bound 2 k log(k)
which is the upper bound found in §6.3.3. This is not a coincidence. In §6.5 we
present a rigorous argument for that.

Now consider what happens when q ≥ 2, which is very common among powers
of primes. First, take q = 2. We get

ξ < 2
2k − 1

2k

k∑
m=1

2m

2m − 1
< 4 k

On the other hand ξ ≥ k since k = diam(Γ, V ). Thus the total separation ξ = O(k)
where the constant varies between 1 and 4 and depends on q, n and k.

Note also that for fixed n and k the mixing time ξ is decreasing as q is increasing.

6.5 Back to k-subsets of n-set

6.5.1 We would like to conclude this section by explaining why the random walk
on k-subspaces of an n-space behaves like a q-version of a random walk on k-subsets
of an n-set. It turns out that there is a formal argument for that.

Suppose that our random walk on k-subspaces starts at V0. Notice that by
symmetry the only invariant of a k-subspace V is the dimension V0 ∩ V . Observe
also that this dimension can either remain the same or change by at most 1 at each
step. This means that we basically can make this walk into a birth and death chain
by simply projecting the walk. This simplifies the problem significantly.

Here is a different way of doing the same kind of procedure. Recall that each
k-subspace lies in a Schubert cell corresponding to exactly one of the k-subsets.
Suppose our basis E = (e1, . . . , en) was chosen in such a way that the starting
k-subspace V0 was a span of (e1, . . . , ek). Then by definition all the elements of the
Schubert cell should have the same dimension βk = dim(V0 ∩V ). It implies that at
each time the probability of the walk being at V is constant on all V in the same
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Schubert cell. Therefore we can project our walk on a set of k-subsets of an n-set.
It would not be a random walk of course, but rather some new Markov chain, which
can be described.

6.5.2 First observe that since the stationary distribution for the random walk
on k-subspaces is uniform, the stationary distribution of the projected chain must
be proportional to the size of the Schubert cell. Recall the definitions and results
in §4.2. We have the stationary distribution:

π(A) =
qk (n−k)−inv(A)

(
n
k

)
q

Observe also that we can move from any k-subspace in the Schubert cell corre-
sponding to A to at least one k-subspace in the Schubert cell corresponding to A′ if
and only if |A∩A′| = k− 1. One can actually compute the transition probabilities
of this Markov chain:

p(A → A′) =
qd3(A,B)

q (1 + q + · · ·+ qk−1) (1 + q + · · ·+ qn−k−1)

where d3(A,B) is defined as in §3.2.4, 3). From here one can get a combinatorial
interpretation for d3 in terms of the number of k-dimensional subspaces with certain
properties.

This gives us a complete description of the projected Markov chain.

6.5.3 Now we can use the following trick. We can now extend the definition of

the Markov chain described in §6.5.2 to any q > 0. Fix n and k and consider
[

n
k

]

as the set of states of the chain. Define transition probabilities using formulas in
§6.5.2.

First we need to show that they indeed define transition probabilities for any
q > 0, not just powers of primes. In other words we need to show that they
indeed add up to 1 in each state. Multiply these probabilities by the denomina-
tor g(n, k; q) = q

(
1 + q + · · ·+ qk−1

) (
1 + q + · · ·+ qn−k−1

)
. We know that these

corrected probabilities are polynomial in q and add up to g(n, k; q) for the infinite
number of values of q. Since the degree of polynomials is bounded by n, we imme-
diately get that these polynomials are equal to g(n, k; q) and therefore their ratio is
1 for all q > 0. Therefore the Markov chain is indeed correctly defined.

Using a similar argument we can prove that the stationary distribution is given
by

π(A) =
qk (n−k)−inv(A)

(
n
k

)
q

for any q > 0. Moreover, given the right definition of separation distance in case
of non-uniform stationary distribution, strong stationary time, etc. (see [AF, DF]),
one can show that the bounds found in §6.4.3 will work in this case as well. The
reason for that is that the stopping time like everything else in this section is
”polynomial in q” which means it can be defined and proved for any q.

6.5.4 Now we can finally formalize the connection between random walk on
k-subsets and on k-subspaces announced earlier.
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Clearly when q = 1 all transition probabilities in the Markov chain defined in
§6.5.2 become equal. Also the stationary distribution becomes uniform. In fact our
Markov chain becomes a random walk on k-subsets of an n-set (see §6.3.1). But by
the argument given in §6.5.3 this means that we can get ”for free” both stopping
time and bounds for this random walk (see §6.3.2, 3). By simply substituting q = 1
in all the formulas we get in §6.4.2, 3. Moreover, one can show that we get precisely
the same stopping time and bounds. The details are left to the reader.

6.6 Other random walks and remarks

6.6.1 The theory of Markov chains and random walks in particular is very
extensive. See [F] for an introduction into the field and [AF] for an up to the
date study of the random walks on graphs. For the total variation distance there
exist a coupling technique which is another probabilistic argument for working with
general Markov chains See [AF, D1] for the definition references and applications.

6.6.2 The case of the random walk on Sn generated by all transpositions has
been heavily studied. The mixing time ξ = O(n log n) in this case. See [D1, D3] for
the references and history of the subject. In this case there are several known strong
uniform time constructions (see [D1, Ma, P]). The walk by star transpositions was
earlier studied in [FOW]. The construction in §6.2.2 first appeared in [P] in a more
general context. See also [DSa, P] for other random walks on Sn.

Random walk on k-subsets was introduced and analyzed in [DSh3] (see also [Be,
D1, Gr]). The strong uniform time construction given here is the only known and
was given in [P]. Note that the upper bound found in [DSh3] is asymptotically tight
only when k = Ω(n).

Random walk on k-dimensional subspaces was studied in [Ari]. Again we follow
[P] in our treatment.

There are various other random walks on GL(n,Fq) which have a property of
rapid mixing. Most notably, the random walk on trasvections which generate
SL(n,Fq) was analyzed in [Hi]. By transvection we mean the linear transformation
that fixes a hyperplane. It turns out that the random walk is rapidly mixes after
O(n) steps. Since generation of a transvection is fast and multiplication of a matrix
by a transvection takes O(n2) multiplications, this gives us a random matrix gener-
ating algorithm in O(n3) steps. See [Gl] for walks on other linear groups generated
by conjugacy classes.

6.6.3 Although much of the technical details were omitted, we believe that the
section §5.5 has a philosophical importance. We showed how to construct a Markov
chain which would simultaneously generalize both random walk on k-subsets and
on k-dimensional spaces over the finite field. This explains the similarities one can
observe throughout the paper. One can also make the same kind of argument for
permutations and complete flags.

7. Black box groups

7.1 Definitions

Suppose the elements of a group are given as binary stings of a fixed length, say
N , and a ”black box”, also called an oracle performs group operation: multiplica-
tion, taking an inverse, and recognition of the identity element. Such a group G
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is called a black box group. Note that the encoding need not be bijective: differ-
ent strings may correspond to the same group element while some strings may not
correspond to group elements at all. Note also that |G| ≤ 2N .

Suppose we are also given a set S of generators of a black group G. The first
problem is to find an algorithm in such a generality for generation of the uniform
group elements. In general, this must take an exponential time (in N), since the
problem is harder than computing the order |G| and the latter was proved to be
exponentially hard in [Ba1]. However, if we weaken the problem to finding nearly-
uniform group elements the problem can be resolved in a polynomial time. This is
the result of Babai we describe in §7.2. Thus in a sense the situation is similar to
the approximate counting problem.

By nearly-uniform group elements we mean that all group elements are generated
with probability at least 1/2|G|. Of course, if we repeat the algorithm several times
and take a product of the resulting group element, we can get as close to the uniform
distribution as we need. Formally if we achieve near-uniformity after N steps, then
after k N steps we get the probability of each element at least (1− 1/2k)/|G| (see
§6.1.2 above).

The second problem is the black group recognition problem. Given a black box
group G we would like to test whether it is isomorphic to a fixed finite group H.
Here in §7.3, 4 we describe algorithms for recognition of Sn and SL(n,Fq) given as
lack box groups.

Unfortunately, black group recognition problem in general is again too hard to
have a polynomial solution. It is useful sometimes to assume the existence of an
oracle which computes the order of group elements. Amazingly, one can tell a lot
just by the order of the group elements. We call G a gray box group then.

We give a constructive solution for the recognition problem. This means that
me not only prove that G ' H, but also construct such an isomorphism φ : G → H
explicitly. This approach is called constructive recognition.

About the algorithms. It is important to distinguish algorithms that are correct
most of the time from algorithms that are correct all the time. The latter are called
Las Vegas algorithms while various formulations of the former are called Monte
Carlo algorithms. When appropriate we will specify the type of our algorithms.

Everywhere in this section µ is the time necessary to multiply two group elements.
For simplicity, we will suppress most of the constants using notation O(f(n)) in-
stead. The right constants can be found in the literature.

7.2 Generating random group elements

7.2.1 Reducing the number of generators
Let G be a finite black box group and let S be its set of generators. At this stage

we construct another set of generators S1 such that |S1| = O(log |G|). Of course,
any increasing subgroup chain of G must have length at most l = log2 |G| so having
more than l generators would be redundant. Here is how the this can be done in
practice.

Let S = {s1, . . . , sm}. By a random subproduct denote a product w = sε1
1 ·. . .·sεm

m

where εi ∈ {0, 1} are chosen by independent flips of a fair coin.

Lemma Let S generate group G and let H ⊂ G be an arbitrary proper subgroup
of G. Then a random subproduct w on S is not a member of H with probability
at least 1/2.
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Proof Consider a largest i such that si /∈ H. Then w can be decomposed into
the form u sεi

i v, where v ∈ H.
We have two cases. If u ∈ H then with probability 1/2, εi = 1 and w = u si v /∈

H. If u /∈ H then with probability 1/2, εi = 0 and w = u v /∈ H. This proves the
lemma. ¤

Now one can show that with a large probability O(log |G|) random subproducts
will generate the whole group G. This will be our new set of generators S1. See
[BCFLS,CF] for details and further references.

Note that the complexity of our subroutine is O(µ |S| log |G|). We assume that
S is reasonably small (e.g. |S| = O(log3 |G|)) which is often the case in practice.
Otherwise even reading the set S might take time longer than the rest of the
algorithm.

7.2.2 Constructing fast generators
For a finite group G and its set of generators S define the length of an element

l = lS(g) to be the minimum length of a decomposition g = si1si2 . . . sil
. The

diameter D = diam(S) is defined as the maximum length lS(g) among all group
elements g ∈ G.

Here we will present an algorithm which will construct a set of generators S2

such that |S2| = O(log |G|) and D = diam(S2) = O(log |G|). The idea is to start
with set of generators S1 and repeatedly take a random walk on g and at the end
of each walk add the last element into our set of generators.

For a symmetric set of generators S = {s1, . . . , sm} (see §6.1) denote by g ←
rand(G,S, t) the state of the nearest neighbor random walk on a Cayley graph
Γ(G,S) after t steps.

Algorithm
1)Input L, N , S := S1 ∪ S−1

1 ;
2)For j = 1 to N Do:

• Choose t ∈ [L] uniformly; Let g ← rand(G, S), S ← S ∪ {g, g−1};
End Do;

3)Output S2 := S.

Now take N = O(log |G|) and L = O(log3 |G|). A hard and tedious analysis of
random walks on finite groups shows that we do get a generating set S2 such that
the diameter diam(S2) = O(log |G|) with large probability (see [Ba1]).

Note that the complexity of the algorithm is O(µ log4 |G|)

7.2.3 Final random walk
Now we have a generating set S2, |S2| = O(log |G|) for which we have an upper

bound on diameter D = diam(S2) = O(log |G|) (with high probability). Again
consider a random walk on Cayley graph Γ(G,S2). It is a known result in the
theory of random walks (see e.g. [DSa,Ba1]) that the total separation

ξ ≤ 16 |S2|D2 log |G| = O(log4 |G|)

Recall that n 1
2
≤ 2ξ (see §6.1.2). Then after O(log4 |G|) steps of the walk we get

each group element with probability at least 1/2.
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To summarize, we constructed an algorithm which with large probability will
produce the nearly-uniform group elements taking O(log4 |G|) group multiplication
on each. Also, assuming |S| = O(log3 |G|) the preprocessing stage will also take
O(log4 |G|) group multiplications.

7.2.4 An Erdös-Rényi machine

Here is the last trick one can employ when there is a large number of random
group elements needed to be generated. We will show that when O(µ log5 |G|) time
used for preprocessing, then one can produce nearly-uniform group elements in time
O(µ log |G|).

Let k = O(log |G|) and using the random walk on Γ(G,S2) compute k nearly-
uniform group elements g1, . . . , gk.

Lemma Random subproducts u = gε1
1 · . . . ·gεk

k are nearly-uniformly distributed
in G.

The Lemma is due to Erdös and Rényi. It implies that having spent (µ log5 |G|)
time for finding k random group elements, we get a algorithm for producing nearly-
uniform group elements at a cost of k multiplications.

7.2.5 Remarks

the first two parts of the algorithm above are Monte Carlo. We had no way of
checking whether it does what it is supposed to. Put it this way, after §7.2.2 the
algorithm outputs the fast generators with probability 1− δ for some δ which can
be made as small as desired. On the other hand our objective was not a uniform
distribution but a near-uniform distribution. So after part §7.2.2 we get some
symmetric generating set which is fast with probability > 1 − δ. Thus combined
with the part §7.2.2 we always get near-uniform random group elements at the end.
Thus our algorithm is Las Vegas.

Situation with Erdös-Rényi machine is different. Our machine is either works or
it doesn’t (say, the random elements we get could generate only a subgroup of G).
Thus this is a Monte Carlo algorithm.

In our short presentation of the algorithm above we followed the pioneer work
[Ba1] of Babai. The random subproducts were invented by Erdös and Rényi in [ER]
where they also discovered the machine. The result of §7.2 originated in [BCFLS,
CF].

It might be worth noting that the algorithm takes too much time to be practical.
Recently there has been an attempt in [CLMNO] to find a fast alternative approach.
See [Ba3, CG] for more on this algorithm.

7.3 Recognition of the black box group isomorphic to Sn

Suppose we have a black box group G. Let µ be the time necessary to multiply
two elements, and let ρ be the time to generate nearly-uniform random elements of
G. Assume that it takes ν time to find an order of an element on G. In the worst
case we can always keep multiplying until get an identity (see also §7.3.3 below).
Here we present a constructive recognition algorithm which compares G with Sn.

7.3.1 Goldbach elements



42 IGOR PAK

Fix the number n. Observe that if n is a prime, then every element of order n
is a long cycle. On the other hand, every n-th element of Sn is a long cycle (so has
an order n) so in this case we can get a long cycle just by checking the order of an
element. For general n this idea wouldn’t work, so we must find an alternative.

Let n be any even number and suppose n = p1 +p2 where p1, p2 are distinct odd
primes. Then every permutation σ ∈ Sn of the order p1× p2 is must have cycles of
length p1 and p2. On the other hand the probability that a random permutation
is of this type is equal to 1

p1p2
> 4

n2 , so there must be many of such elements in a
group. We call them Goldbach elements.

Now, let us estimate the number of Goldbach elements in Sn, where n is even.
Unfortunately even their existence is an unsolved problem. The Goldbach conjec-
ture states that there must be some, but heuristically it is clear that there must
be many. Indeed, if there are about n

ln n primes less than n they must form n2

ln2 n
pairs and therefore if sums of pairs were ”uniformly distributed”, we would have
Const

(
n

ln2 n

)
solutions of the equation n = p1 + p2. Sylvester was the first to ob-

serve that this must be the case(see [Sy]). Later Hardy and Littlewood proved that
this formula is correct for almost all n (see [HL]), so there is a reason to believe
that it is true in general. In [BP] the authors computed that the number of such
solutions is > n

3 ln2 n
for all even n, 20 < n < 106. We will assume here that this is

generally the case.
From the estimates above we conclude that a permutation is a Goldbach element

with probability at least
(

4/3
n ln2 n

)
.

7.3.2 Constructing an isomorphism

Here is a general description of the algorithm.

Suppose n is even and G ' Sn. Pick a random element x and compute its
order d(x). Repeat the process until d(x) = p1 p2 where p1 + p2 = n. Then x
is a Goldbach element with cycles of lengths p1 and p2. Compute these cycles:
x1 = xp1 , x2 = xp2 .

Repeat picking random group elements y until d(y) = 2 p3 p4 where p3 +p4 +2 =
n. Then y2 is a Goldbach element in Sn−2 with cycles of lengths p1 and p2. Thus
z = yp3p4 is a transposition.

Observe that for random g ∈ G a conjugate gzg−1 is a random transposition.
Repeat picking random elements g until b = gzg−1 does not commute with neither
of the cycles x1 and x2.

Now observe that a = x1bx2 is a long cycle. Then a map φ : a → (1, 2, . . . ) and
φ : b → (1, 2) defines an isomorphism.

Compute the average expected time of this algorithm. Since finding a transposi-
tion which does not commute with x1 and x2 takes on average at most O(ρn+µn)
steps, the expected time is bounded by a constant times the expected time to get
a Goldbach element. Thus the total expected time is O

(
ρ + µ + ν)n log2 n

)
steps.

7.3.3 Gray → black

Let us present an argument here that we having G presented as a gray box
group was not unreasonable. In other words, we will show that there is a fast way
to compute the order of black box group elements.
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First, observe that never in the algorithm we needed to compute the order d
which was larger than n2. Therefore a simple idea would be simply keep multiplying
until we get the identity and if we don’t get it before n2, move to the next element.
There is a trick, however, how one can achieve O(n) multiplications instead of n2.

Given a black box group element a, compute two sets of elements an, a2n, . . . ,
an2

and id, a−1, a−2, . . . , a−n. Now if akn+i = id then we would have two identical
elements in both sets. But comparing lists of elements can be done very fast since
we do not have to use all the information but just a few randomly chosen bits. If
they coincide, we can check them in full then. This hashing idea is now commonly
used in Computer Science (see e.g. [MR]). We conclude that in the algorithm one
can assume that ν = O(µn).

7.3.4 Miscellanea

Our algorithm is defined when n is even. When n is odd, one can find a Goldbach
element and two transpositions that connect the cycles with a fixed point. The
details are given in [BP].

Note that we have yet to check that we do indeed have an isomorphism. Simply
compute the Coxeter transpositions and check whether the relations are satisfied.
There are only O(n) relations. This proves only that Sn ⊂ G.

Now let us find the action of the original generators. First reconstruct the
underlying set [n] by acting on transpositions and checking whether they commute
or not. Now if all the original generators are mapped to permutations, then G ' Sn.
This makes the algorithm Las Vegas. The cost is O(|S|µn2).

One can also use Goldbach elements in trying to determine n if it is unknown
at the beginning. Simply repeat picking elements and adding their prime divisors.
After about O(ρn ln2 n) steps we shall get either n or n − 1 because of the large
number of Goldbach elements in Sn. Distinguishing between the two possibilities
is easy again. Thus if n is unknown but we have an upper bound N on n (say, the
length of the binary string that presents black box group elements) we can get a
Monte Carlo algorithm for finding n.

7.4 Recognition of the black box group isomorphic to SL(n,Fq)

Suppose we have a black box group G. As before, we assume that it is isomor-
phic to SL(n,Fq). Then, when we find such an isomorphism, check whether our
assumption was valid.

Let µ be the time necessary to multiply two elements, and let ρ be the time
to generate nearly-uniform random elements of G. Assume that it takes ν time
to find an order of an element on G. In [CL] authors present an algorithm for
finding the order of elements in linear groups. Their algorithm works in time
log |G| log log |G| group multiplications. Thus in our case |SL(n,Fq)| ∼ qn2

and we
have ν = O(n2 log n log q log log q) which is sufficient for our purposes.

7.4.1 Finding a transvection and coinciding primitive element

A transvection is a nontrivial linear transformation of Fn
q that fixes an (n − 1)-

dimensional subspace (a hyperplane). The transvections play a role in linear groups
that is similar to the role of transpositions in Sn. In this section we will find a
transvection in a gray box G ' SL(n,Fq).
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For a pair q and m define a primitive prime divisor (ppd) to be a prime p such
that p|qm− 1 and p - qi− 1 for 1 ≤ i ≤ m− 1. A known result of Zsigmondy shows
that such ppd exist for all pairs (q,m) 6= (2, 6).

Lemma If x ∈ SL(n,Fq), q = pl and the order d(x) = p · p′ · r p′ is a primitive
prime divisor for a pair q and n − 2, then xr p′ is a transvection. Moreover, the
probability that an element of SL(n,Fq) satisfies the conditions above is O

(
1

n q

)
.

The proof which is a combination of number theoretic arguments and some linear
algebra results (see [BCFL]).

Now the algorithm for finding a transvection follows directly from Lemma.
Choose a random element of a gray box group G. Compute the order. Repeat
the process until an element x which satisfies conditions of the lemma is found.
Output xd(x)/p.

By the second part of the lemma the running time of the algorithm is O((ν +
ρ)n q) steps. We assume here that the decomposition into prime is relatively fast
compared to the finding a random group element. The reason lies in a special
structure of the numbers qm− 1 which have been studied heavily in computational
number theory.

Consider a coinciding primitive element z = xp. We will need it in the next
section for the final construction. Heuristically it plays the same role as an (n− 2)-
cycle in the case when (n− 2) is a prime.

7.4.2 Finding elementary transvections
The idea is to construct an isomorphism which maps certain gray box group

elements into elementary transvections. By elementary transvections we mean ma-
trices in SL(n,Fq) with ones on diagonal and only one nonzero element elsewhere.

The technique presented in [BCFL] is nice but rather laborious so we will just
give a short overview.

First, authors observe that by conjugating transvection x with by random ele-
ment one gets random transvections. Second, a commutator x y x−1y−1 of x with
a random transvection with probability about 1/q is a transvection which fixes the
same hyperplane as x. The last property is also not hard to check. Now, after such
a transvection y is found taking commutators of y with powers of the coinciding
primitive element z will lead to n − 1 ”linearly independent transvections” that
all fix the same hyperplane. The authors in [BCFL] then define a linear algebra
technique for working with transvections.

Now the process is repeated for n other hyperplanes and finally authors employ
a version of orthogolization algorithm to get the desired elementary transvections.
This is just the rough idea of the technique used.

The overall algorithm takes O(n3ε + n2qµ + ρµ) where ε is the time for field
operations in Fq. The way the algorithm is presented, it is a Monte Carlo algorithm.
It can be made Las Vegas by checking the relations at the end. This can be done
at low cost. The minimal set of relations for SL(n,Fq) can be found in [CM].

7.4 Remarks

The recognition problem of the black box groups has been recently studied in a
number of papers (see e.g. [CFL,NP1,KS]).
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In our presentation of the recognition algorithm of the gray box group isomorphic
to Sn we follow the paper [BP]. A similar idea can be used to find a recognition in
case of the alternating group An.

The sketch of the recognition algorithm of the gray box group isomorphic to
SL(n,Fq) follows the paper [BCFL]. The paper generalizes the approach started in
[CFL]. The alternative version of the recognition algorithm for all Chevalley groups
was developed in [KS]. Their result is quite general but in case of SL(n,Fq) the
algorithm is significantly slower.
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