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Abstract

In this paper, we study percolation on finite Cayley graphs. A conjecture
of Benjamini says that the critical percolation pc of any vertex–transitive graph
satisfying a certain diameter condition can be bounded away from one. We
prove Benjamini’s conjecture for some special classes of Cayley graphs. We also
establish a reduction theorem, which allows us to build Cayley graphs for large
groups without increasing pc.

Introduction

Percolation on finite graphs is a new subject with a classical flavor. It arose from
two important and, until recently, largely independent areas of research: Percolation
Theory and Random Graph Theory. The first is a classical Bernoulli percolation on a
lattice, initiated as a mathematical subject by Hammersley and Morton in 1950s, and
which became a major area of research. A fundamental albeit elementary observation
that the critical percolation pc is bounded away from 1 on Z2 has led to a number of
advanced results and quests for generalizations. Among those most relevant to this
work, let us mention the Grimmett Theorem regarding the ‘smallest’ possible region
under a graph in Z2 for which one still has pc < 1. Similarly, percolation in finite boxes
has become crucially important as a source of new questions, as well as a tool (see [13]
for references and major results in the area.)

∗NSF Graduate Research Fellow
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In the past decade, much attention within the subject of percolation has been
devoted to the study of percolation on Cayley graphs, and, more generally, vertex–
transitive graphs. A series of conjectures by Benjamini and Schramm [6] would predict
an interplay of Probability Theory and Group Theory in which the probabilistic prop-
erties of the (bond or site) percolation depend heavily on the algebraic properties of
an underlying (infinite) group, but not on a particular generating set. We refer to [7]
for a description of recent progress in this subject.

Motivated by the study of percolation on infinite Cayley graphs, Benjamini in [5]
(see also [2]) extends the notion of critical probability to finite graphs by asking at which
point the resulting graph has a large (constant proportion size) connected component.
He conjectured that one can prove a new version of pc < 1− ε, under a weak diameter
condition. (Here and everywhere in the introduction, ε > 0 is a universal constant
independent of the size of the graph.) In this paper we present a number of positive
results toward this unexpected, and, perhaps, overly optimistic conjecture.

Our main results are of two types. First, we concentrate on special classes of groups
and establish pc < 1 − ε for these. We prove Benjamini’s conjecture for all abelian
groups with Hall bases as generating sets. We also prove that pc < 1 − ε for Cayley
graphs whose generating sets have enough short disjoint relations, a notion somewhat
similar to that in [4]. Our most important, and technically most difficult result is
the Reduction Theorem, which enables us in certain cases to obtain sharp bounds for
pc of a Cayley graph of a group G depending on those of a normal subgroup H / G
and a quotient group G/H. While the full version of Benjamini’s conjecture remains
wide open, the Reduction Theorem allows us in certain cases to concentrate on finite
simple groups (a sentiment expressed in [5]). By means of the classification of finite
simple groups [12], and a recent series of probabilistic results relying on classification
(see e.g. [18]), one can hope that our results will lead to further progress towards
understanding percolation on finite Cayley graphs.

Our Reduction Theorem requires that the index [G : H] not be too large in relation
to |H|. In the case where H has a complement K and G is the semidirect product
G = H oK, this condition can be dropped, and we simply require that both |H| and
|K| exceed some constant. Theorem 14 describes this situation.

Let us also describe a connection to Random Graph Theory. The pioneer paper [11]
of Erdős and Rényi considered random graphs either as random subgraphs of a complete
graph Kn, or as a result of a random graph process, in which edges are added one at
a time. We use only the first model here. Although one needs the probability p of an
edge to be roughly log n/n for the graph to become connected, a much smaller value
p = (1 + ε)/n suffices for the creation of a ‘giant’ (c(ε)n size) connected component.

The work of Erdős and Rényi led to the study of properties of random graphs, and
more recently, of random subgraphs of finite graphs (see e.g. [1, 9, 14]) In the past
years, connectivity and Hamiltonicity have remained the most studied properties, ever
since the celebrated Margulis’ Lemma, rediscovered later by Russo (see e.g. [15, 17].)
One can view our work as a new treatment of the existence of a giant component in a
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large class of vertex–transitive graphs.
Percolation on Cayley graphs seems to resemble percolation on a more general

class of vertex–transitive graphs. For infinite groups, this can be partially explained
by the fact that percolation properties such as pc < 1 − ε are invariant under quasi–
isometry [6]. In fact, it remains an open problem whether all vertex–transitive graphs
are quasi–isometric to Cayley graphs; the only potential counterexample was proposed
in [10]. In this paper we restrict ourselves to Cayley graphs, as their rich group theoretic
structure allows a combination of techniques to be applied.

A few words about notation: For the rest of the paper, G always will denote a finite
group, Γ will denote a finite graph, and |Γ| will denote the number of vertices in Γ. The
symbol log denotes the logarithm base 2. As in [13], we sometimes write real–valued
quantities in places where integers are required, in order to avoid extra notation.

1 Definitions and main results

Recall from [13] the definition of percolation on a lattice. Let Ld be the integer
lattice in d dimensions, with Zd its vertices and Ed = {((x1, . . . , xd), (y1, . . . , yd)) :
|x1 − y1| = . . . = |xd − yd| = 1} its edges. Consider the probability space with
outcomes Ω =

∏
e∈Ed{0, 1} and whose measurable sets are the elements of the smallest

σ–field in which the state of any finite set of edges can be tested. If ω ∈ Ω, we say that
an edge e remains (or is open) in the outcome ω if ω(e) = 1, and that e is deleted (or
is closed) otherwise. Let µe be the Bernoulli measure on the edge e in which e remains
with probability p. The product measure of the µe gives a measure on the probability
space, which we call p–percolation.

Let Γ be a finite graph. We write its set of edges as E(Γ), and its set of vertices
(by abuse of notation) as Γ. In a p–percolation process on Γ, every edge e ∈ E(Γ)
is deleted with probability 1 − p, independently. Such a process defines a probability
distribution on subgraphs of Γ, in which each subgraph H ⊂ Γ is assigned the proba-
bility p|E(H)|(1− p)|E(Γ)|−|E(H)|, where | · | denotes the cardinality of a set. Later we
informally refer to edges of H as ‘p–percolated’.

For constants ρ, α, and p between zero and one, we let L(ρ, α, p) denote the col-
lection of finite graphs Γ, such that a random subgraph H ⊂ Γ as above will have a
connected component joining ρ|Γ| of their vertices, with probability at least α.

Let ρ and α be fixed, and let Γ be a finite graph. Define the critical probability
pc(Γ) as follows:

pc(Γ) = pc(Γ; ρ, α) := inf
{
p : Γ ∈ L(ρ, α, p)

}
.

From monotonicity of the percolation, Γ ∈ L(ρ, α, p) for all 1 ≥ p > pc(Γ).
We are interested in conditions which bound the critical probability away from 1,

as the size of graph Γ grows. Benjamini conjectured in [5]:
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Conjecture 1. (Benjamini) If Γ is a vertex–transitive graph with n vertices, and
diam(Γ) < n/ log n, then pc(Γ; ρ, α) < 1− ε(ρ, α).

As mentioned in the introduction, Cayley graphs are important examples of vertex–
transitive graphs. From this point on, we consider only finite Cayley graphs.

Let G be a finite group and let S = S−1 be a symmetric set of generators. A graph
with vertices g ∈ G and edges (g, g · s), s ∈ S is called the Cayley graph Γ(G,S) of the
group G with generating set S.

Definition 2. Suppose s1, . . . , sn are generators of a finite abelian group G, and let ai

be the order of si. We say that s1, . . . , sn is a Hall basis for G if the products si1
1 · · · sin

n

are distinct for all n–tuples (i1, . . . , in), where 0 ≤ ik < ak.

The following result establishes Benjamini’s conjecture for all Cayley graphs of
abelian groups whose generating sets are Hall bases:

Theorem 3. For any constants ρ and α between 0 and 1, there is a constant ε =
ε(ρ, α) > 0, such that for every Cayley graph Γ = Γ(G,S) of any finite abelian group

G and Hall basis S satisfying diam(Γ) < |G|
log |G| , we have pc(Γ; ρ, α) < 1− ε.

If the number of commuting generators is large in proportion to the diameter of the
graph, for each Cayley graph in a collection, we again can bound the critical probability
away from one. Precisely, let Γn = Γ(Gn, Rn) be a sequence of Cayley graphs with
diameters dn = diam(Γn). For each s ∈ Rn, let Tn(s) = {r ∈ Rn : [r, s] = 1}.
Theorem 4. If dn → ∞ as n → ∞, and each |Tn(s)| ≥ 4 log dn, then there exists
ε > 0 such that pc(Γ(Gn, Rn); 2

3
, 1

2
) ≤ 1− ε for all n.

Examples satisfying the conditions of Theorem 4 are given in sections 3 and 8.
Without information about the structure or the critical probability of G/H, it still

may be possible to bound the critical probability of G if the index of H in G is not too
large.

Theorem 5. (Reduction Theorem) Let Γ = Γ(G,S) be a Cayley graph of a finite
group, let H/G be a normal subgroup, and let ρ and α be positive constants with ρ, α < 1
and ρ > 1

2
. Suppose that R = H ∩ S generates H, and write pc = pc(Γ(H,R); ρ, α) for

the critical percolation of the Cayley graph of this subgroup. Suppose p > max( 1√
2
, pc

)
.

There exist constants β = β(ρ) < 1, η = η(α), and N = N(ρ, α), so that if α > β and
[G : H] > N , and (

ln [G : H] + η
)
[G : H] ≤ (2ρ− 1) |H| (1)

we have pc(Γ(G, S); ρ, α) ≤ p.

The Reduction Theorem can be applied iteratively to groups with a composition
series. Suppose we have

{1} = G0 / G1 / . . . / G`,
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and for each i > 0, equation (1) is satisfied for G = Gi+1 and H = Gi. If we have gen-
erating sets Si ⊂ Gi with Si ⊂ Si+1 for all i, then we may bound pc(Γ(G`, S`); ρ, α) ≤
pc(Γ(G1, S1); ρ, α), under the assumptions on ρ and α in the Theorem, supposing
pc(Γ(G1, S1)); ρ, α) > 1√

2
. See Section 8 for an example of such an application.

We prove these theorems in the sections that follow, and conclude with a few
examples and open problems.

2 Basic Results

Large components in finite graphs are the analogues of infinite clusters in infinite
graphs. The Benjamini conjecture appears to be inspired by Grimmett’s Theorem
(see, e.g., [13], pages 304–309), which guarantees the existence of infinite clusters in
certain subsets of the square lattice.

Theorem 6. (Grimmett) Let f be a function so that f(x)
log x

→ a as x →∞, for some

positive constant a. Let G(f) denote the region in the positive quadrant of the square
lattice under the function f(x). There exists p < 1 so that this region has an infinite
component after p–percolation almost surely.

The following lemma is a close version, though not a direct corollary, of the theorem.
We will prove it, and use the lemma in our proof of Theorem 3.

Lemma 7. Let Γ be an m×n box within the square grid, and let ρ, α < 1 and a ∈ R>0

be constants. Then there exists ε = ε(ρ, α, a) > 0 such that if n ≥ m > a log n, we have
pc(Γ; ρ, α) < 1− ε.

The following counting lemma provides one tool with which to bound the critical
probability of a vertex transitive graph. It is used in the proof of Theorem 4.

Proposition 8. Let Γ be a vertex transitive graph undergoing p–percolation. Distin-
guish a vertex z. Suppose that there are constants 0 < τ, ρ < 1 such that for every
vertex v ∈ Γ, the probability that z lies in the same connected component as v after
percolation is at least τ + ρ− τρ. Then the probability that z belongs to a configuration
of size at least ρ|Γ| is at least τ .

Proof: We prove the contrapositive: If the probability that z is in a component of
size smaller than ρ|Γ| is at least 1− τ , then there exists a vertex x whose probability
of being in a different component than z is at least 1− τ − ρ + τρ.

For each vertex v ∈ Γ, let m(v) denote the probability that v is connected to z after
percolation. Then ∑

v∈Γ

m(v) ≤ τ |Γ| + (1− τ) ρ |Γ| . (2)

Indeed, even if all the graphs with ρ–size connected component were entirely connected,
they would not contribute more than τ |Γ| to the sum, because such graphs occur
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with probability no more than τ . This gives the first term. The remaining graphs
contribute to m(v) for no more than ρ fraction of the vertices. This gives the second
term. Therefore, some vertex v must have m(v) ≤ τ + ρ− τρ. ¤

Example 9. Let ρ = 2/3 and τ = 1/2 in Proposition 8, and Γ = Γ(G,S) be a
Cayley graph undergoing p–percolation. Distinguish a vertex x ∈ Γ. If every g ∈ Γ
is connected to the identity with probability at least 5/6, then the probability that x
belongs to a configuration of size at least (2/3)Γ is at least 1/2. We use these special
values to simplify the calculations that follow.

We conclude this section with the following well–known bound, which we will use
repeatedly throughout the follows.

Theorem 10 (Chernoff). (See, e.g., [8].) Let Xi, i = 1, . . . , n0, be independent
Poisson trials, with outcomes 1 and 0 with probabilities p0 and 1− p0 respectively. Set
X =

∑n0

i=1 Xi and µ0 = E [X] = n0p0. Then for every δ0 > 0, the following bound
holds:

Pr (X < (1− δ0)µ0) < e−
µ0δ20

2

3 Commuting Generators

In this section, we prove Theorem 12, which generalizes Theorem 4 from the introduc-
tion. The following example illustrates our technique in a particularly simple case.

Let Γ = Γ(Sn, Rn) be the Cayley graph for the symmetric group, with Rn =
{(1, 2), (2, 3), . . . , (n− 1, n)} the Coxeter transpositions. We may bound the critical
probability of this Cayley graph using an idea that applies to any sequence of groups
with enough generators and short disjoint relations.

Proposition 11. There exists ε > 0 such that for all n, pc(Γ(Sn, Rn); 2
3
, 1

2
) ≤ 1− ε.

Proof: By our example following Proposition 8, it suffices to show that every
element g ∈ Sn remains connected to the identity 1 with probability at least 5/6.

Let d be the diameter of Γ(Sn, Rn); we have d =
(

n
2

)
. Fix a path from 1 to g of

length no more than d. Some edges of this path may be deleted by percolation.
Let us consider how to get around a deleted edge. Say the deleted edge joins a

vertex x to (i, i + 1)x. Observe that there are at least n − 4 generators of the form
(j, j + 1) that commute with (i, i + 1). Any of these generators allows us to replace
the edge from x to (i, i + 1)x by the three–edge sequence from x given by the word
(j, j +1)(i, i+1)(j, j +1). Each such three–edge detour is unbroken with probability
p3, and since they are disjoint from each other, the probability that all n − 4 detours
break is (1− p3)

n−4
.
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Even if every edge of the original path from 1 to g is deleted, we can find un-
broken detours in this way around all the deleted edges with probability at least
1− d(1− p3)

n−4
. Therefore, if

d(1− p3)
n−4

<
1

6
,

the proposition is proven. The left hand side goes to zero as n goes to infinity for every
p = 1− ε. ¤

We can generalize this result for other sequences of Cayley graphs as follows.
Let G be a finite group and R be a set of generators. Consider a relation of the form

r = s1 · · · sm, where si ∈ R. We say that its length is m. Two relations r = s1 · · · sm

and r = t1 · · · tn are disjoint if, viewed as paths around the edge from e to r, they share
no edges.

Theorem 12. Let Γn = Γ(Gn, Rn) be a sequence of Cayley graphs with diameters
dn = diam(Γn). Suppose that dn →∞, and that there is a constant C such that for all
n and all s ∈ Rn, there are at least 2 log dn disjoint relations for s, each having length
no more than C. There exists ε > 0 such that for all n, pc(Γ(Gn, Rn); 2

3
, 1

2
) ≤ 1− ε.

Proof: As above, we count disjoint detours around an edge {a, b} ∈ Γ. For
simplicity, we may assume a = 1 so that b ∈ S.

For each relation b = s1 · · · sn, we consider the detour that replaces the edge {1, b}
with the edges {1, s1}, {s1, s1s2}, . . . , {s1s2 · · · sn−1, b}, and apply Proposition 8 to
obtain our result. Consider a path of length at most dn from 1 to x. With probability

1 − e−
p2dn

2 , at most δ = 1 − p + p2 fraction of its edges are broken. For each of these
deleted edges {a, ar}, we have constructed at least 2 log dn disjoint detours of C edges.

The probability that all of these are broken is no more than (1− pC)
2 log dn . Thus, the

total probability we cannot patch the path from 1 to x with our detours is no more
than

e−
p2dn

2 + δdn(1− pC)
2 log dn

(3)

If p satisfies pC > 1
2
, then δdn(1− pC)

2 log dn < δdn

d2
n

. Since dn →∞ as n →∞, we have

e−
p2dn

2 → 0. Increase p so that Γ(Gn, Rn) has a large component in each of the finitely
many graphs where the expression (3) is greater than 1

6
. ¤

Proof of Theorem 4 Take a maximal subset T ′
n(s) ⊂ Tn(s) so that r ∈ Tn(s) ⇒

rs /∈ Tn(s). Then |T ′
n(s)| ≥ 1

2
|Tn(s)|, and the commutation relations between s and

the elements of T ′
n(s) are disjoint. Each commutation relation has length C = 3. Now

apply Theorem 12. ¤

4 An Intersection Lemma

We will need the following lemma in the proof of the Reduction Theorem.
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Let Γ = Γ(H, R) be the (unpercolated) Cayley graph of a group H with generating
set R. We call a subset of H connected if the induced subgraph of the corresponding
set of vertices in Γ is connected. Let A be the set of connected subsets of H having
cardinality exactly ρ|H|. Let µ0 be the probability that Γ has a ρ|H|–sized component
after p–percolation. If such a large component exists, choose, uniformly at random, a
subset of ρ|H| vertices of H that is connected after percolation, and call it A.

For X ∈ A, let µX be the probability that when Γ(H, R) is percolated, a ρ|H|–sized
component exists and A = X. Then X → µX

µ0
defines a probability distribution on A.

Lemma 13. Let X be any fixed subset of H, and 0 < γ < ρ. Then

PrY ∈A(|X ∩ Y | ≥ γ|X|) ≥ 1− η where η =
1− ρ

1− γ
.

Proof: We say that two elements Y, Y ′ ∈ A are equivalent if Y = Y ′x for some
x ∈ H, and write A/H for the set of equivalence classes. Because Cayley graphs are
vertex transitive, for any A ∈ A and g ∈ H we have PrY (A = Y ) = PrY (A = Y g).
Consequently,

PrY

(|X ∩ Y | = n
)

=
∑

Ỹ ′∈A/H

PrY

(|X ∩ Y | = n |Y ∈ Ỹ ′) · PrY

(
Y ∈ Ỹ ′)

=
∑

Ỹ ′∈A/H

Prg∈H

(|X ∩ Y ′g| = n
) · PrY

(
Y ∈ Ỹ ′).

Here, Y ′ denotes any representative in A of the equivalence class Ỹ ′. Therefore, to
show that PrY (|X ∩ Y | ≥ γ|X|) ≥ 1 − η, it suffices to show for all fixed Y ∈ A that
Prg∈H(|X ∩ Y g| ≥ γ|X|) ≥ 1− η.

Fix Y ∈ A. We have ∑
g∈H

|X ∩ Y g| = |X||Y |. (4)

Let η be the fraction of g ∈ H for which |X ∩ Y g| < γ|X|. Substituting this condition
into equation 4 for these values of g, and |X ∩ Y g| ≤ |X| for the other values of g, we
obtain

γ|X| · η|H|+ |X| · (1− η)|H| ≥ |X| |Y |. (5)

Using |Y | = ρ|H|, equation 5 becomes

γη + 1− η ≥ ρ (6)

which shows

η ≤ 1− ρ

1− γ
(7)

as desired. This proves Lemma 13. ¤
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5 Proof of Reduction Theorem

Consider any p satisfying the hypothesis of the Theorem. Our analysis consists of three
steps, in which we demonstrate that:

1. With probability 1 − ε1, there exist at least α2 [G : H] cosets with a connected
component of size at least ρ|H|. In this event, we say that step 1 succeeded, and
the cosets with the large component are called good cosets. Using the outcome of
this step, another random process defines sets of ρ|H| vertices within every coset,
which we call the good part of the coset. The complementary subset in Hgi is
called the bad part.

2. Suppose step 1 succeeded. We show that the good parts of all the good cosets are
connected, with probability 1 − ε2. In this event, we say that step 2 succeeded,
and observe that Γ will have a connected component of size at least ρα2|G|.

3. Suppose step 1 and 2 succeeded. We show that more than (ρ− ρα2)|G| vertices
that are in the bad part of some coset are attached by an edge to the good part
of some good coset, with probability 1 − ε3. In this event, we say that step 3
succeeded, and observe that Γ has been p–percolated with a connected component
of size ρ|G| remaining.

In the sequel, we divide the p–percolation process into percolation on edges within
the same coset, which we address in step 1, and percolation on edges between distinct
cosets, which we address in steps 2 and 3. These percolations are independent. There-
fore, we regard percolation on edges between distinct cosets as occurring “after” the
definition of good cosets in step 1.

The theorem will follow once we compute values of β, η, and N as in the statement
of the theorem that guarantee that ε1 + ε2 + ε3 < 1− α.

Step 1. Let n = [G : H], and write G/H = {Hgi}n
i=1. Consider each coset as a

subgraph of Γ. Prior to percolation, each coset is isomorphic as a graph to Γ(H, R).
Because H is a normal subgroup, the only edges in Γ that join two vertices of a single
coset in Γ come from generators in R. Our assumption implies that after the edges
of each coset are percolated, each coset has a connected component of size at least
ρ|H|, with probability at least α. Moreover, the occurrence of these large components
are mutually independent. Call a coset with such a large component a “good coset.”
Applying the Chernoff bound with p0 = α, n0 = n, and δ0 = 1− α, we find that with

probability 1− e−
α(1−α)2n

2 , there are at least α2n good cosets. Thus ε1 = e−
α(1−α)2n

2 .
Let A be the set of connected subsets of H (before percolation) having cardinality

exactly ρ|H|. For every good coset Hgi, choose a ρ|H|–size subset of the vertices
of Hgi that is connected after percolation uniformly at random, and call it Ai. The
assumption that Hgi is good ensures that at least one such choice can be made.

Let g1 = 1 be the identity element, and let µ0 be the probability that the identity
coset is good. For X ∈ A, let µX be the probability that when Γ(G, S) is percolated, the
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identity coset H is good and A1 = X. Then X → µX

µ0
defines a probability distribution

on A. For every coset Hgi that is not good, select any subset Ai from A · gi according
to this distribution. Thus, we have selected a set of vertices Ai of cardinality ρ|H| for
every coset of G/H.

In either case, let the set Bi be the complement of Ai in Hgi. We will refer to Ai

as the good part of Hgi. For X ∈ A, we have Pr(Ai = X|Hgi is good) = Pr(Ai =
X|Hgi is not good).

Step 2. Fix a spanning tree on the (unpercolated) Cayley graph Γ(G/H, π(S)),
and choose the root to be a good coset. Although the parent of a good coset need
not be a good coset, we can take parents recursively until we reach one that is good.
We call this the good parent of the given coset. With high probability, say 1− ν, with
ν < 1

n
, every good parent is no more than m = 2 log n levels higher in the tree. Suppose

this to be the case.
The good parts of all the good cosets will be connected after percolation if each

one remains connected to that of its good parent. Suppose Hgj is the good parent of
Hgi. Then gj = gisi1 · · · sir for some string of generators si1 , . . . , sir ∈ S where Hgisi1

is the parent of Hgi, etc. We have r ≤ m. Right multiplication by si1 · · · sir gives a
bijection from Hgi to Hgj. By the inclusion–exclusion principle, at least (2ρ − 1)|H|
good points of Hgi hit the good part of Hgj. Therefore, in order for the good part
of Hgi to fail to be connected to the good part of Hgj, we would need each of the
(2ρ− 1)|H| paths of the form x, xsi1 , . . . , xsi1 · · · sir to break. Since these paths are all

disjoint, the probability that they all break is no more than (1− pr)(2ρ−1)|H|. Let P1

be the probability that some good coset fails to have its good part connected to that
of its good parent. Then

P1 ≤ n(1− pm)(2ρ−1)|H| ≤ n(e−pm

)
(2ρ−1)|H| ≤ n(e−p2 log n

)
(2ρ−1)|H|

≤ n(e−(2ρ−1)|H|p2 log n

) ≤ ne−
(2ρ−1)|H|

n

where the last inequality applies the hypothesis p > 1√
2
. If we take η(α) = ln 5

1−α
, then

the hypothesis relating [G : H] and |H| implies

(
ln

5

1− α
+ ln n

)
n ≤ (2ρ− 1) |H|

so that the failure probability P1 ≤ 1−α
5

.

Therefore, Step 2 succeeds with probability at least 1−ε2, where ε2 < 1
n
+ne−

(2ρ−1)|H|
n .

Step 3. We build a big forest in G/H as follows. Fix a generator s1 ∈ S −R, and
consider the cyclic subgroup C1 of G generated by s1. The subgroup C1 acts on G/H
by right multiplication. In each orbit that includes a good coset, fix one particular
good coset; let Hx1, . . . , Hxk be the good cosets chosen. Each orbit of C1 on G/H has
the same cardinality; indeed, if gsm

1 ∈ Hg for some g ∈ G, then sm
1 ∈ g−1Hg = H, so

g′sm
1 ∈ g′H = Hg′ for any g′ ∈ G. Let m be the cardinality of each orbit.
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For each good coset Hg in G/H such that Hgs1 6= Hxi for any i ∈ {1, . . . , k}, add
the vertices Hg and Hgs1 to the big forest, and add a directed edge from Hgs1 to Hg.
There are no cycles in the big forest, because every edge connects vertices within a
single orbit, each orbit is a cycle, and the edge between Hxis

−1
1 and Hxi is not in the

forest. Each tree in the big forest is a directed path, and we consider the vertex that
is a target but not a source of an edge to be the root of the tree. Because the root of
a tree is the target of an edge, it is a good coset. Each tree in the big forest contains
at least two vertices, because a vertex is added only when it is the source or target of
an edge.

We call the sources of edges in the big forest linkable cosets, and the targets es-
tablished cosets; each edge points from a linkable coset Hgj to an established neighbor
Hgi = Hgjs

−1
1 . Every established coset is a good coset. At most k of the good cosets

are not vertices in the big forest, but the good cosets Hx1, . . . , Hxk are roots of trees
in the big forest, so at least half of the good cosets belong to the big forest. Since
every path in the good forest contains at least two vertices, and every vertex of a path
except its root is linkable, at least 1

4
α2n linkable cosets exist.

We claim that the sizes of the intersections |Bj ∩ Ais1| for the linkable cosets Hgj

are mutually independent. Indeed, let I = {j1, . . . , jr} ⊂ {1, . . . , n} be a set of indices
of linkable cosets. Let i1, . . . , ir be the indices of the established neighbors of the cosets
indexed by j1, . . . , jr respectively. We argue by induction on r = |I| that for any values
x1, . . . , xr,

Pr(|Bj1 ∩ Ai1s1| ≤ x1, . . . , |Bjr ∩ Airs1| ≤ xr) =
r∏

l=1

Pr(|Bjl
∩ Ails1| ≤ xl).

Here, each Pr without a subscript means the probability over the selection of Ai inside
Hgi for all i, as defined in step 1.

If r = 1, there is nothing to prove. If r > 1, reorder I so that the distance of Hgir

from the root of its tree is maximal. Then Hgir cannot be the established neighbor of
any coset indexed by I. Thus ir 6= jl for all l. Hence

Pr
(|Bj1 ∩ Ai1s1| ≤ x1, . . . , |Bjr ∩ Airs1| ≤ xr

)

= Pr
(|Bj1 ∩ Ai1s1| ≤ x1, . . . , |Bjr−1 ∩ Air−1s1| ≤ xr−1

)

× PrX∈A
(|Bjr ∩Xgjr | ≤ xr

)

= Pr
(|Bj1 ∩ Ai1s1| ≤ x1, . . . , |Bjr−1 ∩ Air−1s1| ≤ xr−1

)

× Pr
(|Bjr ∩ Airs1| ≤ xr

)

=
r∏

l=1

Pr
(|Bjl

∩ Ails1| ≤ xl

)

applying the inductive hypothesis. This shows the mutual independence of the random
variables |Bj ∩ Ais1|.

11



For each j, apply Lemma 13 to X = Bj with γ = 1
2

and η = 2(1 − ρ). Using the
Chernoff bound with δ0 = 1

2
and p0 = 2ρ− 1 on the n0 = 1

4
α2n linkable cosets, we find

that with probability at least 1 − υ1, there exist at least 1
4
(ρ − 1

2
)α2n linkable cosets

Hgj such that |Bj ∩ Ais1| > 1
2
(1− ρ)|H|, where υ1 = e−

(ρ− 1
2 )α2n

16 .
After step 3, the 1

2
(1 − ρ)|H| vertices of each of these linkable cosets attach, in-

dependently with probability p, to the large connected component of size ρα2|G| we
found in step 2. Again by the Chernoff bound, using p0 = 1

2
< p, δ0 = 1

2
, and

n0 = 1
8
(ρ− 1

2
)(1− ρ)α2|G|, this adds at least n0

4
vertices to the large component from

bad parts of linkable cosets, with probability at least 1−υ2, where υ2 = e−
(ρ− 1

2 )(1−ρ)α2|G|
128 .

Altogether, given that step 1 and step 2 succeeded, there is a connected component
of size

ρα2|G|+ n0

4
(8)

remaining after step 3 with probability at least 1 − ε3, where ε3 = υ1 + υ2. Write

ω = n0

4α2|G| . If α >
√

ρ
ρ+ω

, then expression 8 describes a component of size at least ρ,

and step 3 succeeds with probability at least 1− ε3.
To ensure that ε1 + ε2 + ε3 < 1− α, we require n > 128η

(ρ− 1
2
)(1−ρ)α2(1−α)2

and apply the

hypothesis relating n and |H|. This proves Theorem 5, with β =
√

ρ
ρ+ω

, η = ln 5
1−α

,

and N = 128η

(ρ− 1
2
)(1−ρ)α2(1−α)2

. ¤

6 Semidirect Products

Recall the construction of a semidirect product. Let K and H be finite groups. An
action of K on H is a homomorphism ϕ : K → Aut(H). Denote hk = ((ϕ(k))(h).
The semidirect product of H and K, denoted H oK, is the group defined on the set
of ordered pairs (h, k) ∈ H ×K with multiplication given by

(h1, k1) · (h2, k2) = (h1 · hk1
2 , k1 · k2) .

The homomorphisms h → (h, 1) and k → (1, k) identify H and K with subgroups of
G.

Theorem 14. Let constants ρ and α satisfy the conditions of the Reduction Theorem.
There exists a constant C so that if G = H o K, |H| > C, |K| > C, and p > 0,
and H and K have generating sets R and S for which Γ(H, R) and Γ(K, S) belong to
L(ρ, α, p), then Γ(G,R ∪ S) ∈ L(ρ, α, p).

Proof: We may write the elements of G uniquely as g = hk where h ∈ H and
k ∈ K. Given any h ∈ H, let Kh be the subgraph {hk : k ∈ K}, with edges joining hk
to hks for s ∈ S. For k ∈ K, let Hk be the subgraph {hk : h ∈ H}, with edges joining
hk to hkr for r ∈ R. The product structure in H oK is given by

h1k1 · h2k2 = (h1(k1h2k
−1
1 ))(k1k2)

12



Examining this product when k2 = 1 or h2 = 1, we see that the sets Hk and Kh are
closed under right multiplication by elements of H or K, respectively.

Clearly, for every h ∈ H, the graph of Kh is isomorphic to the Cayley graph of
K. For each k ∈ K, the graph of Hk is isomorphic to the Cayley graph of H, under
the isomorphism (khk−1)k = kh → h. Indeed, if h1r = h2, then (kh1)r = k(h1r) =
kh2. Thus, each Kh and each Hk has a component of size at least ρ|K| or ρ|H| with
probability at least α independently.

First, assume that |H| ≤ |K|. Proceed as in the proof of the Reduction Theorem,
with the following change: We show that Step 2 succeeds with probability 1−ε2, where

ε2 <

(|H|
2

)
(2(1− ρ))a′′|K| + e−

α(1−δ)2|H|
2 . (9)

The proof of this estimate follows.
We regard the sets Hk as the “columns” and the sets Kh as the “rows” of the

Cayley graph G. If some column Hk (or row Kh) has a connected component of size
ρ|H| (or ρ|K|) considering only the generators in R (or in S), we call the column (or
row) “good.” In this event, we choose a subset of size exactly ρ|H| (or ρ|K|) uniformly
at random among those that remain connected after percolation, and call this subset
the “good part.” Step 2 succeeds if the good parts of all good columns are connected.

At the end of Step 1, we established that with probability at least 1 − ε1, there
were at least α2|K| good columns. Suppose this to be the case. Pick δ < 1 so that
2αδ + 2ρ > 3. Put a = αδ. The Chernoff bound (Theorem 10) with p0 = α, n0 = |H|,
and δ0 = 1 − δ, shows that at least a|H| good rows exist, with probability at least

1 − e−
α(1−δ)2|H|

2 . All good columns form a single connected component in the Cayley
graph of G, with high probability. Indeed, the good part of any good column intersects
at least (a− (1− ρ))|K| good rows. Let a′ = a− (1− ρ). The good parts of any pair
of good columns intersect at least

(2a′ − 1)|K| = (2(a− (1− ρ))− 1)|K|
= (2a + 2ρ− 3)|K|

of the same good rows. Let a′′ = 2a + 2ρ− 3. If both columns touch the good part of
such a good row, then their large components are connected in the Cayley graph of G.
The probability that for some pair of good columns, this fails to happen in every such
good row is no more than (|H|

2

)
(2(1− ρ))a′′|K|.

Otherwise, the good parts of all good columns are connected in Γ(G,R∪S). This proves
inequality 9, whose right hand side goes to zero as |K| → ∞, assuming |H| ≤ |K|.

Let ε1 and ε3 be as in the proof of the Reduction Theorem. For C sufficiently large,
ε1 + ε2 + ε3 < 1− α. This proves Theorem 14 in the case |H| ≤ |K|.
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In the case where |H| > |K|, we may proceed in the same manner, with the symbols
H and K interchanged. Because K might not be a normal subgroup of G, the Reduction
Theorem does not formally apply. However, the proof only uses the fact that subgraph
Kh is isomorphic to the Cayley graph of K, which we verified above. ¤

7 Cayley Graphs of Abelian Groups

7.1 Correlation Length

Our proof resembles that of Theorem 6 in Grimmett [13]. To follow it, we must intro-
duce some notation. We write Pp(A) for the probability of an event A in a p–percolation
process on the square lattice. Let B(n) be a box inside the square lattice, centered
at the origin, and with side length 2n. Let Pp(0 ↔ ∂B(n)) denote the probability
that there exists an open path from 0 to some point on the boundary of B(n) after
p–percolation on the edges of B(n). Let ξ : (0, 1

2
) → (0,∞) be the correlation length,

i.e. the continuous, increasing function ξ defined by the property that

ln Pp(0 ↔ ∂B(n))

− n
ξ(p)

→ 1

as n →∞. The function ξ converges to 0 as p → 0 and converges to ∞ as p → 1
2
. We

refer to [13] for detailed explanations of these properties, history, and further references.
A p–percolation process on the square lattice Z2 can be viewed a (1−p)–percolation

process on the dual lattice, whose points are ordered pairs of the form (a+ 1
2
, b+ 1

2
) for

a, b ∈ Z, and whose edges run from (a + 1
2
, b + 1

2
) to (a + 1

2
± 1, b + 1

2
± 1). Under this

identification, an edge of the dual lattice is deleted (“closed”) if and only if the unique
edge of the square lattice intersecting it is not deleted (“open”).

Lemma 15. Let a be a positive real number, and k be a positive integer, and p > 1
2
.

Let Dk be the box of the dual lattice with center (k + 1
2
, 1

2
) and side length 2a log k. Let

Ek be the event that the vertex (k + 1
2
, 1

2
) is joined by a closed path of the dual to a

vertex on the surface ∂Dk of Dk. Then

log Pp(Ek)

− a
ξ(1−p)

log k
→ 1

as k →∞.

This lemma follows immediately from the definitions.

7.2 Proof of Lemma 7

Consider the real number a, the integer n, and the box Γ given in our hypothesis. The
p–percolation process on Γ can be regarded as the restriction of p–percolation on the
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square lattice to the box [n, 2n] × [0,m]. We also call this box Γ. Choose ε > 0 so
that a > ξ(ε), and suppose p > 1− ε. From the Lemma, it follows that there exists an
integer M such that

∑
k>M Pp(Ek) < 1−α

2
. In the event that no Ek occurs for k > M ,

then for every x2 > M , there exist y1 and y2 such that there is an open path from
(M, y1) to (x2, y2) under the curve f(x) = a log x. We call this path a long path. In
particular, if n > M , there exist y1 and y2 satisfying y1, y2 ≤ a log(2n) ≤ m, such that
there is a path from (n, y1) to (2n, y2) inside the box Γ = [n, 2n]× [0, m].

First, suppose m = a log n and n > M , and suppose that a long path occurs. Put
γ = γ(p) = P1−p(Ek). Either the entire top or the entire bottom of the box

Bx,y = [x− a log k, x + a log k]× [y − a log k, y + a log k]

is separated from (x, y) by the long path. Let Fk be the event that (x, y) is connected
to this side of the box by an open path. If Fk occurs, then (x, y) is connected to the
long path. Let F ′

k be the event that (x, y) is connected to ∂Bx,y by an open path.
Observe that Pp(F

′
k) = P1−p(Ek). We have

Pp(Fk) ≥ 1− 4Pp(F ′
k)

≥ 1− 4(1− Pp(F
′
k))

≥ 1− 4(1− P1−p(Ek))

≥ 1− 4(1− γ).

This quantity tends to one as p → 1, so by decreasing ε and requiring p > 1 − ε, we
may assume Pp(Fk) ≥ 1− 1−α

2
, proving the theorem in this situation.

Now allow m > a log n. Let r = n
a log m

. By hypothesis, n > m > a log n >
a log m, so r > 1. Because r > n

a log n
, the ratio r tends to infinity as M → ∞. For

integers i in the range 0 ≤ i < r, apply the theorem independently to the boxes
[n + i a log m,n + (i + 1)a log m]× [0,m] to find a long path and components of size ρ1

in each, with probability α1, independently. We have chosen M so that the probability
that [n, 2n]× [0, a log n] has a long path is at least 1− 1−α

2
. Assuming that such a path

exists, the large components in each box [n + i a log m,n + (i + 1)a log m]× [0,m] are
joined together in [n, 2n]× [0,m] (see Figure 1). By the Chernoff bound, α1δ fraction of

the r boxes have components of size ρ1a m log m, with probability at least 1−e−
rα1(1−δ)2

2 .
In this case, there is a component of size

r (α1δ)(ρ1am log m) = α1ρ1δ m n

in [n, 2n]× [0,m], with probability 1− 1−α
2
− e−

rα1(1−δ)2

2 .
Choose δ, ρ1, and α1 less than 1 so that α1ρ1δ > ρ. There exists an integer r0 such

that for r > r0, e−
r(1−δ)2

4 < 1−α
2

. Increase M to guarantee that r > r0. This proves
the theorem in the case n > M , with the value of ε coming from the first case of the
theorem for a, α1, and ρ1. There are finitely many boxes of the given form with n ≤ M ,
so ε can be decreased so that the theorem holds in all cases. ¤
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n 2n

f(x) = a log x

m }a log m

Figure 1: Connecting the large components from the m× a log m boxes.

7.3 Proof of Theorem 3

We wish to embed the Cayley graph Γ = Γ(G,S) of an abelian group G into a two–
dimensional box, so that we can apply our form of Grimmett’s Theorem (Lemma 7).

The generators s1, . . . , sn in the Hall basis define a homomorphism ϕ : Zn → G,
given by

ϕ(x1, . . . , xn) = sx1
1 · · · sxn

n .

Let the generators have orders a1, . . . , an. The homomorphism ϕ maps the box B =
[0, a1 − 1] × · · · × [0, an − 1] bijectively onto G. To flatten B into a two–dimensional
box, we will select k dimensions and choose Hamiltonian paths in the Cayley graphs
of a section and a cross section. Unwrapping these Hamiltonian paths each into one
dimension will produce the desired two–dimensional box.

We claim that there exists I ⊂ {1, . . . , n} such that
∏

i∈I ai > log |G|
2

and
∏

i/∈I ai >
log |G|

2
. These constraints will allow us to apply Grimmett’s Theorem to the resulting

two–dimensional box. Indeed, choose the smallest k such that a1 · · · ak > log |G|
2

. If

a1 · · · ak < 2|G|
log |G| , then we may take I = {1, . . . , k}, and we are done. If k = 1, this

inequality is assured by the diameter assumption, since diam(Γ) = (a1 + · · ·+an)/2. If

k > 1 and yet a1 · · · ak > 2|G|
log |G| , then ak > 4|G|

log2|G| > log |G|
2

, assuming |G| is large enough.

The diameter condition ak < |G|
log |G| implies that a1 · · · ak−1ak+1 · · · an > log |G|, so

I = {k} has the desired property.
Now choose Hamiltonian paths β1 and β2 in boxes B1 =

∏
i∈I [0, ai] and B2 =∏

i/∈I [0, ai] (see, e.g., [16]). One can view these paths as maps β1 : [0, x− 1] → B1 and
β2 : [0, y − 1] → B2. Let A be the box [0, x − 1] × [0, y − 1]. Observe that ϕ ◦ (g, h)
is a graph homomorphism mapping A bijectively onto G, so that A is isomorphic to a
spanning subgraph of Γ. Therefore, it suffices to show that A ∈ L(ρ, α, 1 − ε). This

follows immediately from Lemma 7, since x and y are each at least log |G|
2

. ¤
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8 Examples

1. Our first example is a hypercube Cn, which is a Cayley graph of the group Zn
2 with

the usual set of generators R = {r1, . . . , rn}. In this case, diam(Cn) = n = o(2n

n
).

Therefore, pc(Cn) < 1− ε for some ε > 0, by Theorem 3. Of course, this bound
is much weaker than pc = (1 + o(1))/n established in [1].

2. Consider Gn = Sn n Zn
2 , with the generating set

Rn = {((i i + 1), 0), (id, rj); i = 1, . . . , n− 1; j = 1, . . . , n}

where {r1, . . . , rn} are the usual generators for Zn. From the previous example,
Proposition 11, and Theorem 14,

pc(Γ(Gn, Rn)) < max
{
pc(Cn), pc(Γ(Sn, Rn))

}
< 1− ε

for some ε > 0.

3. Fix a prime power q. Let Gn = U(n,Fq) be the group of n × n upper triangu-
lar matrices over the finite field with q elements, with ones along the diagonal.
Consider the set Ln = {E±

i,j : 1 ≤ i < j ≤ n} of all elementary transvections E±
i,j

with ±1 in position (i, j), ones along the diagonal, and zeros elsewhere. For each
m ≤ n, let Hm be the subgroup of Gn generated by the E±

i,j with j > i + (n−m)
(consisting of matrices with zero on the first n−m superdiagonals).

For m < n
2
, Hm is isomorphic to F

m(m+1)
2

q . Therefore, pc(Γ(Hm, Ln∩Hm)) < 1− ε
for some ε that is independent of m and n. For n sufficiently large and m ≥ n

2
,

the subgroup Hm−1 of Hm in Gn will satisfy the index condition (1), and the
Reduction Theorem 5 will show that pc(Γ(Hm, Ln ∩Hm)) < 1− ε for the same ε
as before. Since Gn = Hn, this gives a bound pc(Γ(Gn, Ln) < 1− ε for a value of
ε that is independent of n.

4. Let Gn = B(n,Fq) be the set of upper triangular n by n matrices with entries
in Fq, and let Hn = U(n,Fq). Let Rn be any generating set for the diagonal
subgroup. Then Rn ∪ Ln generates Gn, and equation (1) is satisfied for large n.
The Reduction Theorem 5 gives pc(Γ(Gn, Rn ∪ Ln)) < 1− ε.

5. Let Gn = U(n,Fq) and Rn = {E±
i,i+1 : i = 1, . . . , n − 1}. Theorem 4 applies in

the same manner as in Proposition 11.

6. Consider Sn with the star transpositions Rn = {ri = (1 i) : i = 2, . . . , n}. None
of these generators commute, so we cannot apply Theorem 4. However, the short
relations (ri rj)

3 = 1 can be used in Theorem 12 to obtain pc(Γ(Sn, Rn); 2
3
, 1

2
) <

1− ε.
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9 Concluding Remarks

We are unable to prove the Benjamini conjecture in its full generality, even for abelian
groups. It would be nice to prove the Benjamini conjecture for all generating sets of
finite abelian groups.

In view of the Reduction Theorem, it is important to study simple groups with small
generating sets. For example, any simple group can be generated by two elements, one
of which is an involution (see [12]). The corresponding Cayley graph may provide
interesting test cases for Benjamini’s conjecture.

It is well known (see [3]) that all Cayley graphs Γn of the symmetric group Sn have

a diameter eo(
√

n log n) = o
(

n!
n log n

)
. Proving Benjamini’s conjecture in these cases is the

ultimate challenge for the reader. Even for the generating set {(1 2), (1 2 · · ·n)±1}, we
are unable to bound pc away from 1.

Acknowledgements

We would like to thank Itai Benjamini for telling us about his conjecture, reading
an early draft of the paper, and providing reference [2]. The extended abstract of
this paper originally appeared in the proceedings of Random 2002, and we thank an
anonymous referee for pointing out an error in the original draft. We thank another
anonymous referee for extensive suggestions regarding a later draft.

References

[1] Ajtai, M., Komlós, J., and Szemerédi, E. Largest random component of a
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