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Abstract. We investigate mixing of random walks on Sn and An generated by

permutations of a given cycle structure. The approach follows methods developed
by Diaconis, which requires certain estimates on characters of the symmetric group

and uses combinatorics of Young tableaux. We conclude with conjectures and open

problems.

Introduction

The subject of random walks on groups has been of intense interest in the past
two decades [D1,D2]. Various probabilistic, analytic and combinatorial techniques
were introduced in order to obtain sharp bounds in special cases. In this paper we
continue this study, analyzing mixing of the various random walks on Sn (and An)
by means of the noncommutative Fourier transform and combinatorics of Young
tableaux. This approach originated in the seminal paper [DS] and has been used
with great success in many publications (see review article [D2]). Our results im-
prove known upper bounds for a series of conjugacy-invariant generating sets of
symmetric groups.

Let G be a finite group, and let R be a generating set for G. Consider a random
walk {Xt} on G, defined as X0 = id, Xt+1 = Xt ·s, where s ∈ R is chosen uniformly

Key words and phrases. Random walks on groups, symmetric group, Young tableaux.

Typeset by AMS-TEX

1



2 NATHAN LULOV, IGOR PAK

and independently. Under mild conditions Xt converges to a uniform distribution
on G, and the mixing time mix can be defined (see section 1). Intuitively, the
mixing time is the first time when the probability distribution of the random walk
is close to uniform (in `1-distance.) A general bound

(∗) mix ≤ c∆(G,R)2 |R| log |G|

(see e.g. [AF, §15]) is often used to bound the mixing time, where ∆(G,R) is the
diameter of the corresponding Cayley graph, and c is a universal constant. This
bound can be sharpened when R is symmetric, i.e. transitive under the action of
Aut(G):

(∗∗) mix ≤ c∆(G,R)2 log |G|.

For example, when R is a conjugacy class, the above formula applies (see e.g. [AF]).
As was pointed out in [DS], the diameter ∆) in this case is easy to bound from a
ratio of character values.

The problem with bound (∗∗) is the factor log |G|, which is not tight in many
special cases. Some examples show that it cannot be removed completely, and the
best one could hope for is Ω(log log |G|) for general conjugacy classes. For example,
for G = Sn the mixing time is indeed θ(log n) for a random walk generated by
cycles of length n/2. Breaking the ‘log |G|’ barrier requires extreme delicacy and
has been done in very few special cases. The main purpose of this work is to extend
the family of examples for which mix = o(log log |G|).

We consider random walks on the symmetric group Sn generated by single-cycle
conjugacy classes [r1n−r] of r-cycles in Sn. Understanding these walks is crucial for
studying the behavior of general random walks on Sn. Many properties of [r1n−r]
walks may be extended to the broader type of [ρ1n−r] walks, ρ ` r, with a given
number of fixed points n−r. A single-cycle walk [r1n−r] turns out to be the easiest
to analyze among all walks of this type.

Roughly, we show that the mixing time is, up to a constant, the expected time
to touch all the elements in the permutation (the latter is an obvious lower bound
for the mixing time [D1].) This shows that the symmetric group is very ’robust’
with respect to mixing of random walks, a property of interest in both theoretical
and practical context.

A few words about the history of the problem. Several estimates are known
about mixing times of single-cycle walks. There is the pioneering result of Diaconis
and Shahshahani [DS] on the mixing time for random transpositions [21n−2] (the
case r = 2). The case of small r is treated in [R], and some results for large r (the
case n−r = O(1)) follow from [L]. In [R] (cf. [P]), a lower bound for the mixing time
of walks with all conjugacy classes and a given number of fixed points is proved.
We use it here to match our upper bound.

In this paper we compute asymptotic mixing times in case of all cycles of lengths
r = (1− o(1))n. Our results give tight upper bounds in this case. No upper bound
better than O(log n) was known before in this case (cf. [R]). Our primary tool of
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evaluating the total variation distance is a special case of the Upper Bound Lemma
of Diaconis and Shahshahani [DS]. We conclude with a fringe result on the mixing
time of the random walk generated by all cycles (i.e. a union of all single-cycle
conjugacy classes). Remarkably, this random walk mixes in exactly 2 steps!

A few words are due about random walks generated by conjugacy classes with
no fixed points. The first results in this direction were obtained for n-cycles
(see [D1,S]). A breakthrough was made in [L], where the author was able to solve the
case of conjugacy classes [rn/r], r ≥ 2. We present here a few general conjectures
for further study.

The rest of the paper is constructed as follows. In section 1, we recall some
standard definitions and notation. We present our main results in section 2. In
section 3, we present an upper bound due to Diaconis and Shahshahani [D1,DS].
In a short section 4, we clarify the case of conjugacy classes with no fixed points.
In the remaining sections we give proofs of the results.
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1. Basic definitions

Let G be a finite group, let R be a generating set, and let W = {Xt}be a
random walk starting at id, and defined as in the introduction. One can think
of W = W(G,R) as a nearest neighbor random walk on the Cayley graph Γ =
Cayley(G,R). Denote by Qt the probability distribution of the random walk W:
Qt(g) = P(Xt = g), for all g ∈ G. Unless Γ is bipartite, the probability distribution
Qt converges to the uniform distribution U(g) = 1/|G|: Qt → U as t→∞ (see e.g.
[AF]). Denote by d(t) the total variation distance after t steps:

d(t) = ‖Qt −U‖ = max
A⊂G

∣∣∣∣Qt(A)− |A|
|G|

∣∣∣∣ =
1
2

∑
g∈G

∣∣∣∣Qt(g)− 1
|G|

∣∣∣∣ .
It is easy to see that d(t) is nonincreasing and has an exponential decay (see
[AD,AF]). Define the mixing time mixε = mixε(W) as follows:

mixε = min {t : d(t) < ε} .



4 NATHAN LULOV, IGOR PAK

It is known [AD] (see also [AF,D1,P]) that for t > 2 mixε, ε < 1/4, we have
Qt(g) > (1− 4

√
ε)/|G|, so the walk mixes in separation distance as well. A special

value mix1/e or mix1/4 is often defined as a mixing time (see [AF,LW,P]). For our
purposes here we use a different definition, corresponding to a somewhat stronger
notion of the mixing time.

Let {(Gn, Rn), n = 1, 2, . . . } be a sequence of finite groups and their generating
sets, and let Wn = W(Gn, Rn) be a sequence of random walks. We say that random
walks {Wn} have a cutoff at κ = (κn), if for every δ > 0, we have :

‖Q(1−δ)κn
n −Un‖ → 1 as n→∞ ,

‖Q(1+δ)κn
n −Un‖ → 0 as n→∞ ,

where Un is the uniform distribution on Gn.
Let us state the cutoff of {Wn} in the language of the mixing times mixε: for

every ε > 0, ε < 1/2, we have

mixε(Wn)−mix(1−ε)(Wn)
κn

−→ 0, as n→∞.

In general, whenever a sequence of random walks {Wn} has a cuttoff, one can
always take κn = mix1/4(Wn). Example of standard random walks without cutoff
are the standard random walks on Zn (see [D1]). The cutoff is a very strong notion
of mixing, actively studied in the recent years (see [D2] and references therein). It
roughly corresponds to phase transition and sharp threshold notions in Statistical
Physics and Probabilistic Combinatorics (cf. [PV]). Establishing cutoff is a delicate
matter, which usually involves obtaining sharp lower and upper bounds (see [D2]).

For the rest of the paper, unless specified otherwise, we will assume that Gn is
either an alternating group An or a symmetric group Sn, and that the generating
set Cn is a conjugacy class, corresponding to some partition λ ` n. We will refer to
“all transpositions” or “all cycles of length n/2” to indicate a sequence of conjugacy
classes.

There are two problems with random walks generated by conjugacy classes.
Recall that each odd conjugacy class in the symmetric group Sn (which belongs
to Sn r An) generates Sn, and each even class (except the identity) generates the
alternating group An ⊂ Sn (see e.g. [Dv]). In this paper we consider random walks
generated by the conjugacy classes in Sn, without indication whether the group
they generate An and Sn.

Another obstacle is due to parity. For an odd conjugacy class Cn as the gener-
ating set, the random walk W(Sn, Cn) is supported on the subgroup An ⊂ Sn on
even steps and on the complementary subset Sn\An on odd steps. Speaking of uni-
form distribution on permutations, we always mean an appropriate specification,
i.e. uniform on An for even generating classes, and uniform on either An or Sn\An

after even or odd number of steps for odd generating classes.
In some cases the transition distribution may be slightly modified to include a

non-zero probability of the identity in order to have a truly uniform distribution on
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Sn as in [DS], but we do not consider such modifications, whose rate of convergence
depends heavily on the probability assigned to the identity (see [D1,P]).

We use the notation λ = (λ1, λ2, . . . ), λ ` n to denote partitions λ1+λ2+· · · = n,
where λ1 ≥ λ2 ≥ . . . . Let mj = mj(λ) = #{i : λi = j}. We use the notation
[1m12m2 . . . ] to denote the conjugacy class in Sn corresponding to the partition
λ. Denote by Tλ the corresponding irreducible representation of Sn, and let dλ =
dim(Tλ).

Denote by fλ the number of Standard Young tableaux of shape λ. It is well
known (see e.g. [M,JK]) that fλ = dλ. By χλ([µ]) denote the character value of
Tλ on the conjugacy class [µ]. The latter can be determined by the Murnagama-
Nakayama rule [M,JK].

Denote by λ′ the conjugate partition λ′1 ≥ λ′2 ≥ . . . , where λ′j = #{i : λi ≥ j}.
Clearly, (λ′)′ = λ. Let p(n) be the number of partitions λ ` n. It is well known
that p(n) = exp(O(

√
n)) (see e.g. [An]).

2. Main results

The main result of this paper is establishing cutoff for random walks on Sn

generated by the single-cycle conjugacy classes.

Theorem 2.1 Consider a sequence of single-cycle conjugacy classes Cn =
[rn1mn ], where mn = n− rn < n/2. Then a sequence of random walks W(Sn, Cn)
on Sn (An) generated by Cn has a cutoff at

κn =
log n

log n− logmn
.

The case when mn = n − rn = θ(n) was already investigated by Roichman in
[R], where he obtained the same asymptotic bounds for all conjugacy classes with
mn fixed points. However, when mn = n − rn = o(n), Roichman’s technique does
not work while Theorem 2.1 implies a sublogarithmic mixing time. Particularly, we
have the following result:

Corollary 2.2 Consider mixing times κn = mix1/4 of the random walks on
Sn generated by (sequence of) conjugacy classes [rn1mn ], where mn = n − rn is a
function of n.

1) If mn = O(n/ log n), then κn = O
(

log(n)
log log(n)

)
, as n→∞.

2) If mn = O
(
n/ exp(logα n)

)
, 1 > α > 0, then κn = O(log1−α n), as n→∞.

3) If mn = O(n1−ε), and 0 < ε < 1, then κn = O(1), as n→∞.

We would like to finish this section with the side result which is of independent
interest.
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Theorem 2.3 Let 0 < ε ≤ 1/4 be a fixed constant, and let κ = mixε be
the mixing time of the a random walk on Sn generated by a union of all cycles
R =

⋃n
r=2 [r1n−r]. Then κ = 2.

In other words, the theorem says that

d(2) = ‖Q2
n −Un‖ → 0 as n→∞.

Roughly, this means that in spite of slow mixing of random walks generated by
“small” cycles, the number of these cycles is small compared to the number of
“long” cycles, which dominate the generating set.

3. Upper and lower bounds

Our primary tool of evaluating the total variation distance is the following special
case of the Upper Bound Lemma of Diaconis and Shahshahani [DS].

Upper Bound Lemma 3.1 [DS] For a random walk on a group G generated
by a conjugacy class C 3 σ, the variation distance is bounded by the sum over all
nontrivial irreducible characters ρ ∈ Ĝ of the group G

‖Qκ −U‖2 ≤
∑

ρ∈Ĝ, ρ6=id

d2
ρφ

2κ
ρ (σ) ,

where dρ is the dimension and φρ(σ) = χρ(σ)/dρ is the normalized character.

This inequality translates a random walk problem into a problem of estimating
values of Sn-characters. The complete proof of Theorem 2.1 uses this combinatorial
technique and will be given in sections 5 and 6.

The lower estimate of the Theorem 2.1 is proved in [R] for any conjugacy class
[ρ1n−rn ], where ρ ` rn, with a given number (a sequence of numbers) of fixed points
mn = n− rn.

In a different direction, in [P] the lower bound for the rate of convergence was
given for every n > 2. Namely, it was shown that

‖Qκ
n −Un‖ >

1
32

where κ = κn =
⌊

hn

hn−hm

⌋
and hi = 1 + 1

2 + · · · + 1
i ∼ log i. We will not consider

the lower bound any further in this paper.
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4. Other conjugacy classes

In this section we investigate the special case of conjugacy classes in Sn with
no fixed points, as well as some other cases. Although we have no new results to
present here, we would like to recall the main result from [L] and state some general
conjectures for further study.

Let us start with an open problem, which was mentioned in [Lb], and erroneously
(or, perhaps, too optimistically?) referred to as a known result, and was attributed
to the first author. We present it here as the main conjecture.

Conjecture 4.1 Let Cn be a sequence of conjugacy classes in Sn with no fixed
points. Then the mixing time κ is either 2 or 3.

While this conjecture is supported by all the available evidence, we are unable
to prove even that κ = O(1) in most cases. We challenge the reader to make a
progress in this direction. Here is the main result from the thesis [L] of the first
author:

Theorem 4.2 [L] For the mixing time κ of the random walk on Sn generated
by [rn/r] (r ≥ 2 is fixed), we have κ = 3 for r = 2, κ = 2 for r ≥ 3.

The proof of Theorem 4.2 is based on sharp bounds of the characters. In fact,
one can reduce Conjecture 4.1 to the following innocent looking problem:

Conjecture 4.3 Let µ ` n such that µ′1 = µ′2, i.e. µ1 ≥ µ2 ≥ · · · ≥ µl ≥ 2.
Then for every λ ` n we have:∣∣χλ([µ])

∣∣ ≤ c n1/4
√
dλ,

where c is a universal constant.

The conjecture is known for µ = [rn/r] and r ≥ 2 [FL,L], but not in the general
case. We believe that it is true also for skew Young diagrams λ (with χλ([µ])
defined appropriately [M,JK]). Trying to generalize Theorem 2.1 for other conjugacy
classes, it is natural to assume that the upper bound in the theorem holds for all
µ = [1m12m2 . . . ] with m1 = o(n). We believe that this is true indeed. This
would imply an O(1) bound for the mixing time when m1 = 0 (i.e. [µ] has no fixed
points), and would have a number of other interesting consequences. Unfortunately
this problem is beyond the reach of our technique at this point.

Let us add that the problem of finding mixing times of random walks generated
by “large” conjugacy classes, not covered by [R], has been of interest even before
[R]. Let us mention here an early paper [S] which investigates the case of long
cycles. Also, recently the analogues of the main theorem in [R] have appeared for
simple groups of Lie type [LS]. Let us conclude with another somewhat speculative
conjecture:

Conjecture 4.4 Let Γ be an edge transitive graph with diameter ∆. Then
mix(Γ) = O(∆2 log log |Γ|).
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The bound mix(Γ) = O(∆2 log |Γ|) is known and follows from (∗∗) in the in-
roduction (see e.g. [AF]). All known results seem to support this conjecture. We
believe that one can attempt to prove it for all distance transitive graphs Γ.

5. Proof of Theorem 2.1.

In order to estimate the number of steps κ sufficient to drive the variation dis-
tance ‖Qκ −U‖ to zero we apply the Upper Bound Lemma and a simple argument
allowing to do calculations in Sn instead of An (see [L]), where

(�) ‖Qκ
[r1n−r] −U‖2 ≤

∑
ρ∈Ân, ρ6=[n]

d2
ρψ

2κ
ρ ([r1n−r]) ≤ 2

∑
λ`n

λ6=[n],[1n]

f2
λφ

2κ
λ ([r1n−r]),

where ψρ(·), φρ(·) denote the reduced characters in An and Sn, respectively.
Estimating characters will rely on the following combinatorial lemma (proved in

section 6).

Lemma 5.1 For any Young diagram λ, with λ ` n there exists at most one way
to remove a rim hook of length r > n

2 .

After removing this unique r-rim hook from λ we obtain a diagram denoted λ̃,
such that |χλ([r1n−r])| = fλ̃. If there is no r-rim hook to remove from λ, then
|χλ([r1n−r])| = 0. To be able to use the above character-via-dimension expression
in this case also, we simply assume fλ̃ = 0, where the diagram λ̃ is not defined.

Introduce a parameter t to denote the vertical coordinate of the leftmost node of
the unique r-rim hook removed from λ, 1 ≤ t ≤ λ̃′1 + r. The pair (λ̃, r) completely
defines λ = λ̃∪Rt, where Rt is the r-rim hook with the tail at the level t (counting
down from the first row of λ̃).

The right-hand side of (�) may be rewritten as follows (the asterisk indicates
that the sum omits the terms for trivial characters)

∗∑
λ`n

f2
λφ

2κ
λ ([r1n−r]) =

∗∑
λ`n

f2
λ

(
χλ([r1n−r])

fλ

)2κ

=
∗∑

λ`n

f2
λ

(
fλ̃

fλ

)2κ

=

∗∑
(λ̃,t)

f2
λ̃

(
fλ̃

fλ

)2κ−2

=
∑

λ̃`n−r

λ̃′1+r∑
t=1

f2
λ̃

(
fλ̃

fλ

)2κ−2

≤
n∑

t=1

∑
λ̃`n−r

f2
λ̃

(
fλ̃

fλ

)2κ−2

.

In the last sum the terms with t > λ̃′1 + r appear, which do not correspond to any
rim hooks and should be simply disregarded.

To estimate the resulting sum we bound from above the values of fλ̃ and the
ratio fλ̃

fλ
. We use the following two lemmas.

Lemma 5.2 For any µ ` m, we have fµ ≤ m!

µ1!
√

(m−µ1)!
.
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Lemma 5.3 [L] Fix a natural number l ≤ m. Consider all diagrams λ̃ ` m

with λ̃1 = l and all possible r-rim hooks Rt added to λ̃, λ̃ ∪ Rt = λ ` n = m + r.
Then
1. for l < m

2 , fλ̃

fλ
≤ (m

l )
( n

l−1)
,

2. for l < m
2 , fλ̃

fλ
≤ (m

l )
( n

m−l)
.

Lemma 5.2 is proved in section 4. Lemma 5.3 (in a slightly different form) was
proved by the first author in his thesis [L]. The proof is a subtle application of the
hook length formula. We refer to [L] for details.

From Lemma 5.3, the maximal values of the ratio fλ̃

fλ
correspond to hook dia-

grams λ̃ = [l 1m−l] with r-rim hook Rt extending the longer of the leg or the arm
of λ̃: t = 1 or t = m− l + r.

Using the inequalities in Lemmas, we can estimate the right-hand side of the
Upper Bound Lemma:

n∑
t=1

∑
λ̃`n−r

f2
λ̃

(
fλ̃

fλ

)2κ−2

≤
n∑

t=1

m∑
l=1

∑
λ̃`m
λ̃1=l

m!
l!
√

(m− l)!
·max

( (
m
l

)(
n

l−1

) , (ml )(
n

m−l

)) =

m/2∑
l=1

np(m− l)

(
m!

l!
√

(m− l)!

)2(
m!
n!

(n− l)!
(m− l)!

)2κ−2

+

+
n∑

l=m/2

np(m− l)

(
m!

l!
√

(m− l)!

)2(
m!
n!

(l + n−m)!
l!

)2κ−2

≤

≤ m!2κ

n!2κ−2
np(m)

m/2∑
l=1

(n− l)!2κ−2

(m− l)!2κ−1l!2
+

m!2κ

n!2κ−2
np(m)

n∑
l=m/2

(n+ l −m)!2κ−2

l!2κ−1(m− l)!
.

Denote by A =
∑

lAl the terms in the last summation. Consider the term for
l = m

2 :

Am
2

= n p(m)
m!2κ

n!2κ−2

(n−m/2)!2κ−2

(m/2)2κ+1
.

Compute the value of κ necessary for Am/2 = o(1/n) as n → ∞. The calculation
of other terms Al can be treated in the same way.

Taking the logarithm of the product in A and using the Stirling asymptotic
formula

log x! = x log x− x+
1
2

log x+
1
2

log 2π +O

(
1
x

)
,

we obtain a sum of many terms. We treat separately the leading terms coming
from x log x and the smaller terms coming from the rest of the Stirling formula.
Let’s first dispose of the sum of small terms starting with the linear one,

(2κ−2)
(
−
(
n− m

2

)
+ n

)
+2κ

(
−m+

m

2

)
+
m

2
= (2κ−2)

m

2
+2κ

(
−m

2

)
+
m

2
= −m

2
.
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The leading terms sum is

(2κ−2)
((
n− m

2

)
log
(
n− m

2

)
− n log n

)
+2κ

(
m logm− m

2
log

m

2

)
−m

2
log

m

2
=

(2κ−2)
(
n log

(
1− m

2n

)
− m

2
log
(
n− m

2

))
+2κ

(m
2

logm− m

2
log 2

)
−m

2
log

m

2
=

(2κ−2)
(
n
(
−m

2n
+ o

(m
2n

))
− m

2
log
(
n− m

2

))
+2κ

(m
2

logm− m

2
log 2

)
−m

2
log

m

2
=

(2κ− 2)
(
−m

2
+ o(m)

)
− m

2
log
(
n− m

2

)
+ 2κ

(m
2

logm− m

2
log 2

)
− m

2
log

m

2
=

κ

(
−m log

(
n− m

2

m

)
−m+ o(m) +m log 2

)
+m−o(m)+m log

(
n− m

2

m

)
+
m

2
logm =

κ

(
−m log

(
n

m
− 1

2

)
+O(m)

)
+m log

(
n

m
− 1

2

)
+
m

2
logm+O(m) .

This quantity tends to minus infinity whenever

κ >
m log( n

m − 1
2 ) + m

2 logm+O(m)
m log( n

m − 1
2 ) +O(m)

= 1 +
logm

2 log( n
m − 1

2 )

>
logm

2 log(2n−m)− 2 log 2m
=

1
2

log n
log n− logm+O(1)

=: K(m,n).

Now take κ > (1 + δ)K(m,n). From above and log p(m) = O(
√
m), we obtain

Am/2 = expO(−
√
n). This is stronger than the desired Am/2 = o(1/n) bound. For

the other terms we obtain similar bounds verbatim. Namely, the constant 1/2 is
replaced by (1− β) for the term Al, l = m(1− β). Therefore κ > 2(1 + δ)K(m,n)
will always suffice for Al = o(1/n). This implies Theorem 2.1 �

6. Proofs of lemmas.

We start with a definition used in [L].

Definition 6.1 A diagram λ is called thick, if first two rows of λ are of equal
length and first two columns of λ are of equal length: λ1 = λ2, λ

′
1 = λ′2 .

For an arbitrary non-hook diagram λ define its thick core λ̂ as a thick subdiagram
of λ with first row and first column cut down to the size of the second row and
column respectively: λ̂1 = λ2, λ̂

′
1 = λ′2. All other rows and columns are of the

same length as in λ. Define the thick core of a hook diagram to be empty. Denote
a = λ′1 − λ′2, b = λ1 − λ2. Any diagram λ ` n is uniquely defined by a triple:
λ = (a, λ̂, b). We sometimes refer to a and b as the “thin” parts of diagram λ.

Example 6.2 [965412] is defined by (2, [6254], 3) in this notation.
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l b

a

⊙ ⊙ ⊙

⊙⊙
Proof of Lemma 5.1.

Consider the entire border of λ, denote its length br(λ) = λ1+λ′1−1. If br(λ) < r,
then there is no way to remove an r-rim hook. If br(λ) ≥ r > n

2 , then λ cannot
be a thick diagram (since for any thick diagram |λ| ≥ 2 br(λ)) and may be (up to
transposing) either λ = (0, λ̂, b), b 6= 0 or λ = (a, λ̂, b), a, b 6= 0, where λ̂ is the thick
core of λ.

The entire border of λ consists of two parts: the thin part and the border of
the thick core λ̂. Any rim hook of λ may not have its leftmost (rightmost) point
at any point of the vertical (horizontal) thin part, but at the end one. For a rim
hook of length k > n

2 the ending points cannot both lie on the boundary of λ̂, since
br(λ̂) < n

2 , therefore it starts at the ending point of a thin part.
If λ has only one thin part, i.e. λ = (0, λ̂, b), this uniquely determines the

rim hook. In case λ = (a, λ̂, b), suppose we have two rim hooks of length r, one
starting at the end of the vertical thin part, another starting at the end of the
horizontal thin part. By the above both end at some nodes on the boundary of
λ̂, which has length br(λ̂) < n

2 . Hence, br(λ) ≥ 2r − br(λ̂) > n − br(λ̂), therefore
br(λ) + br(λ̂) > n⇒ br(λ) + |λ \ br(λ)| > n. Contradiction. �

Proof of Lemma 5.2.

Denote by ν the subdiagram [µ2, µ3, . . . µk] ⊂ µ, i.e. the diagram µ with the first
row [µ1] removed. Obviously, hook lengths with vertices inside ν are the same for
µ and ν: hν(t) = hµ(t), t ∈ ν. By the hook length formula (see e.g. [M,JK]) for the
dimension of an irreducible Sn-character

fν =
(m− µ1)!∏

t∈ν hν(t)
.

By the Burnside lemma [JK], we have∑
ξ`m−µ1

f2
ξ = (m− µ1)!.

Hence f2
ν < (m− µ1)!, i.e.

(m− µ1)!2∏
t∈ν hν(t)2

< (m− µ1)! .
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Therefore
1∏

t∈ν hν(t)2
<

1√
(m− µ1)!

.

From the hook length formula for µ and
∏

t∈[µ1]

hµ(t) > µ1!, we obtain:

fµ =
m!∏

t∈µ

hµ(t)
=

m!∏
t∈[µ1]

hµ(t)
∏
t∈ν

hν(t)
<

m!
µ1!
√

(m− µ1)!
. �

7. Proof of Theorem 2.3

As before, let λ be a partition of n, and let fλ denote the dimension of the
irreducible representation πλ of the symmetric group Sn. By Burnside’s identity,
fλ = dλ <

√
n!. By χλ(µ) we denote value of the character of πλ on a conjugacy

class with cycle structure (µ).
By the Upper Bound Lemma 3.1, we obtain

d(2) ≤ 1
4

∑
λ:|λ|=n,λ6=(n)

f2
λ

(
p+

n∑
l=2

pl
χλ(l, 1n−l)

fλ

)2 m

= (�)

where p is the holding probability and

pl = (1− p)

(
n
l

)
(l − 1)!
Dn

≤ C n

l (n− l)!
,

Dn is the total number of cycles, and C is a universal constant.
To estimate the right hand side of (◦) we break the inner summation inside

into two parts : l ≤ n/2 and l > n/2. In the first case we simply bound each
ratio by 1. In the second case, the value of the character turns out to be 0 except
when Lemma 5.1 applies. This will simplify the problem and eventually give us the
desired bound.

Indeed, the proof of Lemma 5.1 and the Murnaghan-Nakayama rule immedi-
ately imply that if l > n/2, we have |χλ(k1n−k)| = fλ̃ if k = λ1 + l(λ) − 1, and
|χλ(k1n−k)| = 0 otherwise. We have:

(�) ≤
n∑

k=1

∑
λ6=(n), l+λ1−1=k

f2
λ

pk

fλ̃

fλ
+

dn/2e∑
j=2

pj

2 m

Now let m = 2. Using the formula for pk, and
∑dn/2e

j=2 pj ≤ Cn2

dn/2e! , we have

(�) ≤
n∑

k=1

∑
λ6=(n), l+λ1−1=k

f2
λ

(
Cn

k (n− k)!
·
√

(n− k)!
fλ

+
Cn2

dn/2e!

)4
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≤
n∑

k=1

∑
λ6=(n), l+λ1−1=k

(
C n

k
√

(n− k)!
√
fλ

+
Cn2

√
fλ

dn/2e!

)4

,

where the last inequality follows from fλ̃ <
√

(n− k)!. Recall that (a + b)4 ≤
8(a4 + b4). This breaks each summand into two, which breaks our double sum into
two double sums. The second double sum goes to 0 as n→∞, which easily follows
from

√
fλ < (n!)1/4, Stirling’s formula, and since the total number of partitions

p(n) = exp O(
√
n).

For the first double sum, it was shown by the first author in [L] that∑
λ6=(n),(1n); |λ|=n

1
fλ

→ 0 as n→∞

It is not hard to see that this implies that the first double sum also goes to 0 as
n→∞. This completes the proof. �
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