
On growth of Grigorchuk groups

Roman Muchnik, Igor Pak

March 16, 1999

Abstract

We present an analytic technique for estimating the growth for
groups of intermediate growth. We apply our technique to Grigorchuk
groups, which are the only known examples of such groups. Our esti-
mates generalize and improve various bounds by Grigorchuk, Bartholdi
and others.
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1 Introduction

In a pioneer paper [3] R. Grigorchuk discovered a family of groups of inter-
mediate growth, which gave a counterexample to Milnor’s Conjecture (see
[3, 7, 13]). The groups are defined as groups of Lebesgue-measure-preserving
transformations on the unit interval, but can be also defined as groups act-
ing on binary trees, by finite automata, etc. While Grigorchuk was able to
find both lower and upper bounds on growth, there is a wide gap between
them, and more progress is desired.

In this paper we present a unified approach to the problem of estimating
the growth. We introduce an analytic result we call Growth Theorem, which
lies in the heart of our computations. This reduces the problem to combi-
natorics of words which is a natural language in this setting. We proceed
to obtain both upper and lower bounds in several cases. This technique
simplifies and improves the previous bounds obtained by various ad hoc ap-
proaches (see [2, 4, 5]). We believe that our Growth Theorem can be also
applied to other classes of groups.

Let G be an infinite group generated by a finite set S, S = S−1, and
let Γ be the corresponding Cayley graph. Let B(n) be the set of elements
g ∈ G at a distance ≤ n in graph Γ. The growth function of G with respect
to the set of generators S is defined as γG(n) = |B(n)|.
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We say that a function f : N → R is dominated by a function g : N → R,
denote by f 4 g, if there is a constant C > 0 such that f(n) ≤ g(C · n)
for all n ∈ N. Two functions f, g : N → R are called equivalent, denoted
by f ∼ g, if f 4 g and g 4 f . It is known that for any two finite sets of
generators S1, S2 of a group G, the corresponding two growth functions are
equivalent (see e.g. [10, 13]). Note also that if |S| = k, then γ(n) ≤ kn.

Growth of group G is called exponential if γ(n) ∼ en. Otherwise the
growth is said to be subexponential. For example, all non–amenable groups1

have an exponential growth, but not vice versa (see [1, 6]). Growth of group
G is called polynomial if γ(n) ∼ nc for some c > 0. The celebrated result of
Gromov implies that c must be an integer, and G is almost nilpotent. See
[8, 6] for details and references.

If γG(n) < nc for all c, the growth of G is said to be superpolynomial. If
the growth is subexponential and superpolynomial, it is called intermediate.
This is a very interesting, but hardly understood class of groups.

Let ω be an infinite sequence of elements in the set {0, 1, 2}. Grigorchuk
group Gω is a infinite profinite 2-group whose construction depends on ω
(see [4, 7]). Groups Gω are generated by 4 involutions, while the structure
and even the growth is different for different ω. We postpone definition of
Gω till section 3.

Since the original publication, much has been discovered regarding the
Grigorchuk groups. Recent advancements include improved upper and lower
bounds, solution of the word problem, abstract presentation, bond perco-
lation, etc. (see [5, 9, 11, 12]). We refer to review articles [7, 9] for the
references.

In this paper we present a new technique to estimate the growth of the
Grigorchuk groups. First, we present a simple proof of the lower bound

γ(n) < e
√
n

for Grigorchuk group Gω corresponding to non-flat sequences (see section
4). Using a different approach Grigorchuk showed in [5] that the result holds
in greater generality. While neither our bound nor the idea of the proof is
new, we believe that the technique may be proved useful in the future.

In section 5 we present an upper bound on the growth of Grigorchuk
group Gω such that every interval of ω of length k contains each element 0,

1Non–amenable group G can be defined as a group whose Cayley graphs have positive
Cheeger constant h > 0, where

h = inf
X∈G

|∂X|
|X|
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1, 2 at least once. We prove that the growth γ(n) in this case satisfies

γ(n) 4 exp(nα),

where α = log2/ν 2 and νk + νk−1 + ν = 2. In a special case when k = 3
we obtain the recent result of Bartholdi (see [2]). Interestingly, he gives the
exactly same estimate while using a totally different approach. We would
like to remark that one can try to improve our bounds if more information
is known about frequencies of generators ρb, ρc, ρd (see Section 5.)

We conclude with a improved bound for Grigorchuk p-groups. Without
going through the combinatorial estimates, we apply our Growth Theorem
to inequalities proved by Grigorchuk to obtain sharper upper bounds on
growth.
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2 Growth Theorem

In this section we present analytic estimates on growth of functions restricted
by the recurrence inequalities. We refer to the following result as Growth
Theorem.

Theorem 2.1 Let B : N → N be an increasing integer function with
B(n) → ∞ as n → ∞ and B(n) 4 en. Let sj < 1, cj be fixed constants and

let mj be fixed integers, 1 ≤ j ≤ l. Let π
(j)
i : N → N, 1 ≤ i ≤ mj, 1 ≤ j ≤ l

be integer functions such that

mj∑
i=1

π
(j)
i (n) ≤ sjn+ cj

In addition, let Fj : N → R+, 1 ≤ j ≤ l be positive functions such that

log(Fj(n))

nϵ
→ 0 as n → ∞ for all ϵ > 0.

Assume that for all n ∈ N, at least one inequality is satisfied in the following
system: {

B(n) ≤ Fj(n) ·
mj∏
i=1

B
(
π
(j)
i (n)

)
, where j = 1, . . . , l.

Then B(n) 4 exp(nα), where

α = max
1≤j≤l

log(mj)

log(mj)− log(sj)
.

The proof requires the following technical result.

Lemma 2.2 For any 0 < s < 1, c > 0, ϵ > 0 and sequence (t1, . . . , tn)
of positive numbers such that

c

1− s
+ 1 < t1 < t2 < · · · < tn

and tk ≤ s · tk+1 + c we have

n∏
k=1

(1 +
1

tkϵ
) ≤ exp

(
1

1− sϵ

)
.
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Proof of Lemma 2.2 Observe that log(1 + x) < x for all x > 0. This
gives us

n∑
k=1

log

(
1 +

1

tkϵ

)
≤

n∑
k=1

1

tkϵ

Define a sequence (j1, . . . , jn) as follows: ji = ti−c/(1−s), 1 ≤ i ≤ n. Then

ji = ti −
c

1− s
≤ s · ti+1 + c− c

1− s
= s

(
ti+1 −

c

1− s

)
= s · ji+1

Therefore j1 ≤ s j2 ≤ · · · ≤ si−1 ji. By definition we have j1 = t1−c/(1−s) >
1 and ji ≥ s1−i, 1 ≤ i ≤ n.

From here for all ϵ > 0 we obtain
n∑

i=1

1

tiϵ
≤

n∑
i=1

1

ji
ϵ ≤

n∑
i=1

(sϵ)i−1 <
∞∑
i=1

(sϵ)i−1 =
1

1− sϵ

We conclude

n∏
i=1

(
1 +

1

tiϵ

)
= exp

(
n∑

i=1

log

(
1 +

1

tiϵ

))
≤ exp

(
n∑

i=1

1

tiϵ

)
< exp

(
1

1− sϵ

)
This proves the lemma. �

Proof of Theorem 2.1 Let f(n) = logB(n). Then f(n) satisfies at
least one of the inequalities in the following system{

f(n) ≤
mj∑
i=1

f(π
(j)
i (n)) + logFj(n) , j = 1, . . . l

Let 0 < υ ≤ 1 be such that supn f(n)/ n
υ = ∞. Let h(n) = f(n)

nυ .
Clearly, supn h(n) = ∞.

Define ĥ(n) = max{h(k) : 1 ≤ k ≤ n}. Clearly ĥ(n) is non-decreasing
and ĥ(n) = h(n) for infinitely many n. Observe that ĥ(t) = h(t) if and only
if ĥ(t) > ĥ(t− 1). Call an integer t of type (I) if ĥ(t) > ĥ(t− 1) and of type
(II) if ĥ(t) = ĥ(t− 1). Clearly for any integer m of type (II) there exist an
integer n ≤ m of type (I) such that ĥ(n) = ĥ(m).

Take a large integer a of type (I). Then f(a) = ĥ(a)aυ. Assume that for
a inequality j holds.

aυĥ(a) = aυh(a) = f(a) ≤
mj∑
i=1

f(π
(j)
i (a)) + logFj(a)
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≤
mj∑
i=1

[
π
(j)
i (a)

]υ
h(π

(j)
i (a)) + logFj(a)

≤
mj∑
i=1

[
π
(j)
i (a)

]υ
ĥ(π

(j)
i (a)) + logFj(a)

≤ max
i

(ĥ(π
(j)
i (a))) ·

mj∑
i=1

[
π
(j)
i (a)

]υ
+ logFj(a).

Since the max
(
ĥ(π

(j)
i (a))

)
is taken over a finite set, there exist an integer

b of type (I) such that ĥ(b) = max
(
ĥ(π

(j)
i (a))

)
and

aυĥ(a) ≤ ĥ(b) ·
mj∑
i=1

[
π
(j)
i (a)

]υ
+ logFj(a).

Trivially b ≤ sja+ cj . Dividing by aυĥ(b) we get

ĥ(a)

ĥ(b)
≤

mj∑
i=1

(
π
(j)
i (a)

a

)υ

+
logFj(a)

aυĥ(b)

Now since 0 < υ < 1, xυ is convex up, by Jensen inequality we have

ĥ(a)

ĥ(b)
− logFj(a)

aυĥ(b)
≤

mj∑
i=1

(
π
(j)
i (a)

a

)υ

≤ mj

(∑mj

i=1 π
(j)
i (a)

amj

)υ

≤ mj

(
sj
mj

+
cj

amj

)υ

Since 0 < υ ≤ 1 we have(
sj
mj

+
cj

amj

)υ

≤
(

sj
mj

)υ

+

(
cj

amj

)υ

Let us summarize what we have so far: for any integer a of type (I),
there exists j ∈ {1, . . . , l} and b ≤ sja+ cj of type (I) such that

(∗) ĥ(a)

ĥ(b)
− logFj(a)

aυĥ(b)
−
(

cj
amj

)υ

≤ mj

(
sj
mj

)υ
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Let s = max(sj) < 1, c = max(cj), and L is large enough constant
(see below). Now recursively construct a sequence of integers of type (I)
t1 > t2 > · · · > tn−1 > L ≥ tn as follows. Take t1 > L such that

ĥ(t1)

ĥ(L)
> exp

(
1

1− sυ/2

)
By the process above, find t2 such that (∗) holds for some j, where in (∗)
a = t1, b = t2. Clearly, t2 ≤ s · t1 + c. Analogously find t3 such that (∗)
holds for some j′, where a = t2, b = t3, etc. Proceed until we find the first
n such that tn ≤ L. By construction, we have ti+1 ≤ s · ti+ c, 1 ≤ i ≤ n− 1.

Assume that
ĥ(ti)

ĥ(ti+1)
≤ 1 +

1

tiυ/2
.

Multiplying all these inequalities we get

ĥ(t1)

ĥ(L)
≤ ĥ(t1)

ĥ(tn)
≤

n−1∏
i=1

(
1 +

1

tkυ/2

)
≤ exp

(
1

1− sυ/2

)
,

which gives a contradiction. Therefore there exists an integer a of type (I)
such that

ĥ(a)

ĥ(b)
≥ 1 +

1

aυ/2
.

We claim that
ĥ(a)

ĥ(b)
− logFj(a)

aυĥ(b)
−
(

cj
amj

)υ

> 1

for sufficiently large a. Indeed, since ĥ(b) ≥ ĥ(1), we have

ĥ(a)

ĥ(b)
− logFj(a)

aυĥ(b)
−
(

cj
amj

)υ

≥ 1 +
1

aυ/2
− logFj(a)

aυĥ(1)
−
(

cj
amj

)υ

≥ 1 +
1

aυ/2

(
1− logFj(a)

aυ/2ĥ(1)
−
(

cj
mj

)υ

· 1

aυ/2

)
Now since the expression in parenthesis → 1 as a → ∞ the l.h.s. is strictly
greater than 1 for a large enough. This proves the claim.

Therefore we have

1 < mj

(
sj
mj

)υ
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for some j, 1 ≤ j ≤ l. From here υ < logmj/sj mj and therefore

υ < max
1≤j≤l

log(mj)

log(mj)− log(sj)

Let α = sup{β ∈ [0, 1] | supn
f(n)
nβ → ∞}.

Now if sup f(n)
nα < M , then take υ = α − ϵ. By result above υ <

log(mj)
log(mj)−log(sj)

. Taking ϵ → 0 we get α ≤ log(mj)
log(mj)−log(sj)

. and the result

of the theorem follows.

If sup f(n)
nα = ∞ take υ = α. Again, from the discussion above

α < max
1≤j≤p

log(mj)

log(mj)− log(sj)

and the theorem follows. �

The following corollary states the result in a special case when the system
contains just one inequality. This is probably the most useful case of all.

Corollary 2.3 Let B : N → N be an increasing integer function such
that B(n) → ∞ as n → ∞, and B(n) 4 en. Also assume that for all n large
enough,

B(n) ≤ F (n) ·
m∏
i=1

B
(
πi(n)

)
is satisfied, where m is a positive integer,

lim sup
πi(n)

n
< θi , such that

m∑
i=1

θi < 1

for some θi ≥ 0, and log(F (n))/ nϵ → 0 as n → ∞ for all ϵ > 0. Then

B(n) 4 exp(nα) where
m∑
i=1

(θi)
α = 1.

Observe that everywhere in the proof of Theorem 2.1 we can always
reverse signs and obtain a lower bound B(n) < exp(nα). The proof is
analogous up up slight changes of lim sup to lim inf, etc. Rather than state
the whole result, we will symbolically indicate it as follows.

Corollary 2.4 In the setup of Corollary 2.3 one can reverse signs.

We will use this lower bound in the next section.
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3 Grigorchuk Group

In this section we will describe a construction of Grigorchuk’s 2-group. For
a complete description and further results see [4].

Let ∆ be an interval. Denote by I an identity transformation on ∆ and
by T a transposition of two halves of ∆.

Let Ω be a set of infinite sequences ω = (ω1, ω2, . . . ) of elements of the
set {0, 1, 2}. For each ω ∈ Ω define a 3 ×∞ matrix ω by replacing ωi with
columns ωi where

0̄ =

 T
T
I

 , 1̄ =

 T
I
T

 , 2̄ =

 I
T
T


By Uω = (uω1 , u

ω
2 , . . . ), V

ω = (vω1 , v
ω
2 , . . . ),W

ω = (wω
1 , w

ω
2 , . . . ) denote

the rows of ω. Think of them as of infinite words in the alphabet {T, I}.
Define transformations aω, bω, cω, dω of an interval ∆ = [0, 1] \Q as fol-

lows:

aω :
0 1

T

bω :
0 1

◦
1
2

◦
3
4
. . .

uω1 uω2 . . .

cω :
0 1

◦
1
2

◦
3
4
. . .

vω1 vω2 . . .

dω :
0 1

◦
1
2

◦
3
4
. . .

wω
1 wω

2 . . .

Observe that aω is independent of ω, and will be further denoted by
a. Let Gω be a group of transformations of the interval ∆ generated by
a, bω, cω, dω. This family of groups was introduced and analyzed by Grig-
orchuk in [4] (see also [9] for further references). We refer to Gω as Grig-
orchuk groups.

Observe that the generators of Gω satisfy the following relations:

a2 = b2ω = c2ω = d2ω = 1,

cωbω = bωcω = dω,

dωbω = bωdω = cω,

cωdω = dωcω = bω,

We call these simple relations. Under mild conditions, the groups Gω are
known to be not finitely presented (see [4, 9]).
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Denote by Γω a Cayley graph of the group Gω with respect to the gen-
erators a, bω, cω, dω. For every element g ∈ Gω by ∂(g) denote the smallest
distance between g and id in Γω. The paths in Γω correspond to words
in the alphabet {a, bω, cω, dω}∗. The shortest paths (there could be many
of them between two given elements) correspond to the reduced words in
the alphabet. Recall that the balls in the Cayley graph Γω is defined as
Bω(n) = {g ∈ Gω|∂(g) ≤ n}.

We define almost reduced words to be words obtained after application
of contractions which correspond to simple relations. We call these simple
contractions. It follows from the the simple relations that almost reduced
word w must be of the form ⋆ a ⋆ a ⋆ a . . . or a ⋆ a ⋆ a . . . , where by ⋆ we
denote any element of in {bω, cω, dω}.

Let σ : Ω → Ω be a right shift operator acting on the infinite sequences
as follows

σ : (ω1, ω2, ω3, . . . ) → (ω2, ω3, . . . )

Denote by ∆0 and ∆1 the half intervals ∆ ∩ [0, 1/2] and ∆ ∩ [1/2, 1].
Define Hω ⊂ Gω to be a stabilizer of ∆0. Clearly, g : ∆1 → ∆1 for all
g ∈ Hω. Analogously, define ∆k

i to be an interval ∆ ∩ [i/2k, (i + 1)/2k],
where 0 ≤ i < 2k. Denote by Hk

ω a stabilizer of all ∆k
i . Note also that

Gω acts on a set of ∆k
i by permuting them. This defines a representation

of Gω as a permutation group S2k . By definition, Hk
ω is the kernel of this

representation. Let Hk
ω(n) = Hk

ω ∩Bω(n).
Define ϕω

0 : Hω → Gσω by restricting h ∈ Hω to ∆0. Formally, while Hω

acts on ∆0 rather than ∆ we can rescale the interval to obtain transforma-
tions in Gσω. Similarly define ϕω

1 : Hω → Gσω by restricting to ∆1 and then
rescaling to the unit interval.

It is easy to see that Hω is a normal subgroup of index 2, which is gen-
erated by 6 elements bω, cω, dω, abωa, acωa, adωa. We will omit superscript
ω in ϕω

0,1 when it is clear on which Hω the map ϕω
i acts. The following table

summarizes the images of homomorphisms of ϕ0, ϕ1 on the generators of
subgroup Hω.

TABLE

bω cω dω abωa acωa adωa

ϕ0 uω1 vω1 wω
1 bσω cσω bσω

ϕ1 bσω cσω bσω uω1 vω1 wω
1

Define the following maps

ϕω
i1,...ık

= ϕik ◦ ϕik−1
◦ · · · ◦ ϕi1 ,
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where i1, . . . , ik ∈ {0, 1}. While these maps are not defined on Gω, they are
defined on Hk

ω and ϕω
i1,...ık

: Hk
ω → Gσkω.

4 Lower bounds

Let ω ∈ Ω. We call ω flat if for any k > 0 there exits an i such that
ωi = ωi+1 = · · · = ωi+k.

Theorem 4.1. Let Gω be a Grigorchuk group, and ω is not flat. Then for
the growth γ(n) of Gω we have

γ(n) < e
√
n

Proof: Denote by bn = bσnω, cn = cσnω, dn = dσnω the generators of
Gσkω. Since ω is not flat, there exists a k such that for any i there exists
j such that j − i < k and ωj ̸= ωi. Without loss of generality assume that
ω1 = 0 and ωs = 1 for 1 < s ≤ k .

Then (ad0)
4 = I and (ac0)

(4·2s) = I. This can be shown by restrict-
ing these group elements to subintervals ∆k

i and checking that they act as
identities.

Recall the maps ϕ0,1 : Gω → Gσω. Let us show that every element
h ∈ Bσω(n) ⊂ Gσω can be lifted to g ∈ Bω(2n + 1) ⊂ Gω such that
ϕ0(g) = h, and ϕ1(g) is in the finite subgroup ⟨a, c1⟩.

Indeed, observe that Gσω is generated by elements a b1, a c1, a d1, a.
From the TABLE in section 3, we have ϕ0(c0 a b0 a) = a b1, ϕ0(c0 a c0 a) =
a c1, ϕ0(c0 a d0 a) = a d1, ϕ0(c0) = a. Let h ∈ Bσω(n). Since ϕ0 is a
homomorphism there exists g ∈ Bω(2n + 1) such that ϕ0(g) = h. Observe
that since ω1 = 0 we have ϕ1(g) ∈ ⟨a, c1⟩. On the other hand,

⟨a, c1⟩ = ⟨a, b | a2 = b2 = (a b)4·2
s⟩ = D(4·2s)

is a dihedral group of order 2 · (4 · 2s) ≤ 2k+3 By the symmetry, a similar
argument is valid for the lifting of ϕ1.

Now take h0, h1 ∈ Bσω(n). There exist g0, g1 ∈ Bσω(2n + 1) such that
ϕ0(g0) = h0 ϕ1(g1) = h1 and ϕ1(g0) = z0, ϕ0(g1) = z1, where z0, z1 ∈ ⟨a, c1⟩.
Now to each pair (h0, h1) we associate an element g = g0g1 ∈ Bσω(4n+ 2).
This g has the following property: ϕ0(g) = h0z1, ϕ1(g) = z0h1.

Now if (h0, h1) and (h′0, h
′
1) are associated to the same element g. Then

h−1
0 h0

′, h′1h1
−1 ∈ ⟨a, c1⟩, i.e there are at most |⟨a, c1⟩|2 ≤ 4k+3 pairs that

could be associated to the same element g in Bω.
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Thus we obtain an inequality |Bσω(n)|2 ≤ 4k+3|Bω(4n+ 2)|.

Now let |B(n)| = infs |Bσsω(n)|. For a fixed n we have |Bσsω(n)| is an
integer number bounded from above by 4n. Therefore, |B(n)| is well-defined
and there exists s(n) such that |B(n)| = |Bω′(n)|, where ω′ = σs(n)ω. Thus
we obtain

4k+3|B(4n+ 2)| = 4k+3|Bω′(4n+ 2)| ≥ |(Bσω′(n))|2 ≥ |B(n)|2

In particular, |B(n)| satisfies |B(n)|2 ≤ 4k+3|B(4n+2)| and by Corollary
2.4 we have |Bω(n)| ≥ |B(n)| ≥ 2M

√
n. This proves the result. �

5 Upper bounds

Let bi, ci, di ∈ Gσiω be as in previous section. Let w be any word represen-
tation of an element g ∈ Gω. Recall that w is almost reduced if w is reduced
with respect to simple contractions.

Denote by ρ(w) the length of the word w. For a word τ denote by ρτ (w)
the number of times τ appears in word w. We will be working with ρa(w),
ρbi(w), ρci(w), ρdi(w) in the group Gσiω. To simplify the notation, we will
omit the index i whenever possible.

We will extend the definition of maps ϕ0, ϕ1 to almost reduced words w
which correspond to elements g ∈ Hω. First, we apply ϕ0, ϕ1 to w by using
the TABLE, and then apply simple contractions (cf. [9]). Similarly, from
an almost reduced word w representing an element g ∈ Hn

ω we can obtain
almost reduced word ϕi1,...,in(w) corresponding to ϕi1,...,in(g).

Denote by

ρn(w) =
∑

i1,...,in∈{0,1}

ρ(ϕi1,...,in(w)) .

Similarly, for an element τ we can define

ρnτ (w) =
∑

i1,...,in∈{0,1}

ρr(ϕi1,...,in(w)) .

Observe that in these notation ρ0τ (w) = ρτ (w) As before, we will be working
with ρna , ρ

n
b , ρ

n
c , ρ

n
d .

Lemma 5.1 Let w represent an almost reduced word of g ∈ Hn+1
ω then

ρn+1
b (w) + ρn+1

c (w) ≤ ρnb (w) + ρnc (w),
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ρn+1
d (w) + ρn+1

c (w) ≤ ρnd (w) + ρnc (w),

ρn+1
b (w) + ρn+1

d (w) ≤ ρnb (w) + ρnd (w).

Proof: Let us prove the first inequality. Observe that after application of
maps ϕi1,...,in the number of b’s and c’s stays the same. In order to obtain a
new b, one c should contract with d leaving ρn+1

b (w) + ρn+1
c (w) unchanged.

Similarly, to obtain a new c, at least one d should contract with d. This
proves the first inequality. Note also that some simple contraction may
actually reduce ρn+1

b w((g)) + ρn+1
c (w).

Proof of the second and third inequality is similar and will be omitted.
�

Lemma 5.2 Let w represent an almost reduced word of g ∈ Hs
ω, for

some s > 0.

If ws = 0, then ρs(w) ≤ 2 ρb(w) + 2 ρc(w) + 2s.

If ws = 1, then ρs(w) ≤ 2 ρb(w) + 2 ρd(w) + 2s.

If ws = 2, then ρs(w) ≤ 2 ρd(w) + 2 ρc(w) + 2s.

Proof: Let us prove the first inequality. From the representation of the
almost reduced word w we have ρ(w) ≤ 2ρa(w)+1 for every almost reduced
word w. Since ρs(w) is a sum of the length of 2s almost reduced word we
have ρs(w) ≤ 2ρsa(w) + 2s. Now for ws = 0, every a is an image of some
bs−1 or cs−1. Hence ρsa(w) ≤ ρs−1

b (w) + ρs−1
b (w). Now, by Lemma 5.1,

ρsa(w) ≤ ρb(w) + ρb(w). Hence ρs(w) ≤ 2 ρb(w) + 2 ρc(w) + 2s. This proves
the first inequality.

The proof of two remaining inequalities in analogous and will be omitted.
�

Lemma 5.3 Let w represent an almost reduced word of g ∈ Hs+t
ω . Then

ρs+t(w) ≤ ρs(w) + 2s+t + 2s.

Proof: Without loss of generality assume ws+t = 0. Similarly, as in
Lemma 5.2, we have

ρs+t(w) ≤ 2 ρs+t
a (w) + 2s+t ≤ 2 ρs+t−1

b (w) + 2 ρs+t−1
b (w) + 2s+t

≤ 2 ρsb(w) + 2 ρsc(w) + 2s+t .
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Using the representation of almost reduced word w, we have 2 ρb(w) +
2 ρc(w) ≤ ρ(w) + 1. As ρs(w) is a sum of the length of 2s almost reduced
words, we get 2 ρsb(w) + 2 ρsc(w) ≤ ρs(w) + 2s. This proves the result. �

Denote by Ωr the set of all ω ∈ Ω such that for all i > 0 a subsequence
(ωi+1, ωi+2, . . . , ωi+r) contains all the elements 0, 1, 2.

Notice that if w is a reduced word of g, then ∂(g) = ρ(w). For each
element g ∈ Gω fix a lexicographically first reduced word w = w(g) of g.

Proposition 5.4 Let ω = (ω1, ω2, . . . ) ∈ Ω, s ≥ 1. Then for any
g ∈ Hs+t

ω we have

∑
∂(ϕi1,...,is+t(g)) ≤ ∂(g) + 2s+t + 2s+1 + 1−


2 ρd(w(g)) if ωs = 0

2 ρc(w(g)) if ωs = 1

2 ρb(w(g)) if ωs = 2

where the sum is over all i1, . . . , is+t ∈ {0, 1}.

Proof: Let ωs = 1. By definition of ρk(w) we have∑
i1,...,is+t∈{0,1}

∂
(
ϕi1,...,is+t(g)

)
≤ ρs+t(w(g))

By Lemma 5.3 we have

ρs+t(w(g)) ≤ ρs(w(g)) + 2s + 2s+t

Lemma 5.2 gives us

ρs(w(g)) ≤ 2(ρb(w(g)) + ρd(w(g))) + 2s

From the representation of reduced words we have

(∗) 2 ρb(w(g)) + 2 ρd(w(g)) + 2 ρc(w(g)) ≤ ∂(g) + 1

Here we use the condition that w(g) is reduced.

Combining these three inequalities we obtain the middle case. The other
two cases are similar. �

Definition 5.5 For any ϵ > 0 and any element τ ∈ {b, c, d} define a set

F ϵ
τ =

{
g ∈ Gω | 2 ρτ (w(g)) +

1

3
≥ ϵ ∂(g)

}
.
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Lemma 5.6 Let ϵ+ ϵ′ + ϵ′′ = 1. Then

Gω = F ϵ
b ∪ F ϵ′

c ∪ F ϵ′′
d .

Proof: Assume that exists g ∈ Gω \ F ϵ
b ∪ F ϵ′

c ∪ F ϵ′′
d . Then

2 ρb(w(g))+
1

3
< ϵ ·∂(g), 2 ρc(w(g))+

1

3
< ϵ′ ·∂(g), 2 ρd(w(g))+

1

3
< ϵ′′ ·∂(g).

Adding these inequalities we get

2 ρb(w(g)) + 2 ρc(w(g)) + 2 ρd(w(g)) + 1 < ∂(g)

However from a representation of reduced word w(g) we have opposite in-
equality. This gives a contradiction. �

Proposition 5.7 Let ϵ + ϵ′ + ϵ′′ = 1, k ≥ 1. Then at least one of the
following inequalities holds:

|Bω(n)| ≤ 3C ·
∣∣∣F ϵ

b ∩Hk
ω(n+ C)

∣∣∣ ,
|Bω(n)| ≤ 3C ·

∣∣∣F ϵ′
c ∩Hk

ω(n+ C)
∣∣∣ ,

|Bω(n)| ≤ 3C ·
∣∣∣F ϵ′′

d ∩Hk
ω(n+ C)

∣∣∣ ,
where C = (2k)!

Proof: AsGω/H
k
ω is isomorphic to a subgroup of a group of permutations

of ∆k
i , i = 0, . . . , 2k − 1, we have |Gω/H

k
ω| ≤ (2k)! Fix a Schreier system

of representatives of the right cosets of Hk
ω in Gω. Then every element

g ∈ Gω can be written as g = l h where l is a Schreier representative and
h ∈ Hk

ω. As ∂(l) ≤ (2k)! and ∂(g) ≤ n. Thus ∂(h) ≤ n+ (2k)! In particular,
|Bω(n)| ≤ (2k)! |Hr

ω(n+(2k)!)|. Let C = (2k)! Now Lemma 5.6 immediately
implies the result. �

Theorem 5.8 Let β + γ + δ = 1. Assume that each of elements
0,1,2 appears in the sequence (ω1, . . . , ωr). Then there exist polynomials

p1(n), p2(n), p3(n) and functions π
(1)
i , π

(2)
i , π

(3)
i : N → N which satisfy the
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following conditions

2r∑
i=1

π
(1)
i (n) ≤ (1− β)n+ 3 · 2r + 2,

2r−1∑
i=1

π
(2)
i (n) ≤ (1− γ)n+ 3 · 2r−1 + 2,

2∑
i=1

π
(3)
i (n) ≤ (1− δ)n+ 8,

such that at least one of the following inequalities holds

|Bω(n)| ≤ p1(n)
2r∏
i=1

∣∣∣Bσrω

(
π
(1)
i (n)

)∣∣∣ ,
|Bω(n)| ≤ p2(n)

2r−1∏
i=1

∣∣∣Bσr−1ω

(
π
(2)
i (n)

)∣∣∣ ,
|Bω(n)| ≤ p3(n)

2∏
i=1

∣∣∣Bσω

(
π
(3)
i (n)

)∣∣∣ ,
Proof: Without loss of generality we can assume that w1 = 0, ws =

1, and wt = 2, where 1 < s < t ≤ r. Then if g ∈ F δ
d ∩ Hr

ω then by
Proposition 5.4 we have

∂(ϕ0(g)) + ∂(ϕ1(g)) ≤ ∂(g)− 2 ρd(w(g)) + 7

Since 2 ρd(w(g)) + 1 ≥ δ ∂(g), we get

∂(ϕ0(g)) + ∂(ϕ1(g)) ≤ (1− δ) ∂(g) + 8

Observe that every g ∈ Hr
ω is uniquely defined by its restriction to subin-

tervals ∆0,1. We claim that

∣∣∣F δ
d ∩Hr

ω(n)
∣∣∣ ≤ ∑

i1+i2=⌊(1−δ)n⌋+8

2∏
h=1

|Bσω(ih)|

Indeed, the sum counts how many pairs (ϕ0(g), ϕ1(g)) can possibly be images
of g, where g ∈ F δ

d ∩Hr
ω. Denote m3 = ⌊(1− δ)n⌋+ 8.
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Therefore,

|F δ
d ∩Hr

ω(n)| ≤
(
m3 + 2− 1

2− 1

)
max

i1+i2=m3

2∏
h=1

|Bσω(ih)|

where the binomial coefficient gives the number of summands in the sum.

Denote by π
(3)
h (n) : N → N integer functions which satisfy π

(3)
1 (n) +

π
(3)
2 (n) = m3 and such that

∣∣∣Bσω(π
(3)
1 (n))

∣∣∣ · ∣∣∣Bσω(π
(3)
2 (n))

∣∣∣ = max
i1+i2=m3

2∏
h=1

|Bσω(ih)|

We conclude

|F δ
d ∩Hr

ω(n)| ≤
(
m3 + 2− 1

2− 1

) 2∏
h=1

∣∣∣Bσω

(
π
(3)
h (n)

)∣∣∣ ,
where π

(3)
1 (n) + π

(3)
2 (n) = m3.

Similarly we can prove

|F γ
c ∩Hr

ω(n)| ≤
(
m2 + 2r−1 − 1

2r−1 − 1

) 2r−1∏
h=1

∣∣∣Bσr−1ω

(
π
(2)
h (n)

)∣∣∣
where π

(2)
1 (n)+ · · ·+π

(2)
2r−1(n) = m2 = ⌊(1−γ)n⌋+3 ·2r−1+2. Analogously

|F β
b ∩Hr

ω(n)| ≤
(
m1 + 2r − 1

2r − 1

) 2r∏
h=1

∣∣∣Bσrω

(
π
(1)
h (n)

)∣∣∣
where π

(1)
1 (n) + · · · + π

(1)
2r (n) = m1 = ⌊(1 − β)n⌋ + 3 · 2r + 2. Now apply

Proposition 5.7 to obtain the result. �

In order to apply Theorem 2.1 we need to remove the dependence on ω
in Theorem 5.8. We use the following result.

Theorem 5.9 Let ω ∈ Ωr. Then for the growth γ(n) of Gω we have

γ(n) ≼ exp(nα),

where

α =
ln 2

ln 2− ln νr
,
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and νr satisfies the equation

xr + xr−1 + x = 2.

Proof: Observe that σkω ∈ Ωr. Let |B(n)| = maxl≥0 |Bσlω(n)|. Recall
that for all n there exist l = l(n) such that

|B(n)| = |Bσlω(n)|.

Since Theorem 5.8 holds for all σkω ∈ Ωr, it also holds for B(n) (cf. section
4).

Fix β + γ + δ = 1. By Theorem 2.1, Bω(n) ≤ |B(n)| ≤ C · 2dns
, where

s = s(β, γ, δ) is given by

s = max

{
log 2

log 2− log(1− δ)
,

(r − 1) log 2

(r − 1) log 2− log(1− γ)
,

r log 2

r log 2− log(1− β)

}
This holds for every β + γ + δ = 1. Take

α = min
β+γ+δ=1

s(β, γ, δ)

A direct computation shows that the minimum is achieved when

α =
log 2

log 2− log(1− δ)
=

(r − 1) log 2

(r − 1) log 2− log(1− γ)
=

r log 2

r log 2− log(1− β)

In this case (1 − δ)r = 1 − β and (1 − δ)r−1 = 1 − γ. Since β + γ + δ = 1,
we get νr = 1− δ is a positive real root of the equation

xr + xr−1 + x = 2

We conclude

α =
log 2

log 2− log νr

This finishes the proof. �

In a special case r = 3 we obtain a bound which was earlier and inde-
pendently obtained by Bartholdi (see [2]).

Corollary 5.10 (Bartholdi) Take r = 3 and ω = (012012012 . . . ) we
have γ(n) 4 exp(nα), with α = log 2

log 2−lognu3)
, where ν3 is a solution of x3 +

x2 + x = 2.
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6 Generalization to p-groups

In this section we will give an estimate on the growth of Grigorchuk p-
group. These groups are defined similarly to Grigorchuk 2-groups defined
in section 3. In this case the group Gω is again generated by aω, bω, cω, and
ω ∈ Ω, where Ω is a space of all infinite sequences from the set {0, . . . , p}.
Now the transposition T is substituted by a p-permutation cycle of p equal
subintervals. For a complete definition of these group we refer to [5].

Fix an integer m ≥ p. Consider a sequence ω such that every symbol
{0, . . . , p} occurs at least once in any subsequence (ωn, ωn+1, . . . , ωn+m). It
was proved by Grigorchuk in [5] (see Formula 12) that

|B(n)| ≤ (pm)!
∑

|Bσmω(i1)| |Bσmω(i2)| . . . |Bσmω(ipm)| ,

where the summation on the right hand side runs over the multi-indices
(i1, i2, . . . , ipm) such that i1, i2, . . . , ipm > 0 and

i1 + i2 + · · ·+ ipm ≤ 3n

4
+ (pm)! + pm

Applying similar arguments as in the proof of Theorem 5.1, 5.2 we obtain

|Bω(n)| ≤ 2n
α
,

where

α =
log(pm)

log(pm)− log(3/4)

This implies the following result.

Theorem 6.1. Let ω ∈ Ω be as above, and let Gω be the corresponding
Grigorchuk p-group. Then growth γ of Gω satisfies

γ(n) 4 exp(nα)

where α = α(m, p) is as above.

The result of Grigorchuk gives a bound γ 4 exp(nβ), where

β < 1 + inf
N

log

(
3

4
+

(pm)! + pm

N

)
+ ϵ

for any ϵ > 0. A straightforward calculation shows that β > α for all ϵ, p
and m > p. The gap between bounds is particularly wide for relatively small
values of p. For example, when p = 3, m = 4 we have α ≈ .9385574519. On
the other hand, Grigorchuk’s result gives β ≈ .9989950236.

19



References

[1] G. M. Adel’son–Velskii, Yu. A. Shreider, The Banach mean on groups,
Uspehi Mat. Nauk (N.S.) 12 (1957), no. 6, 131–136

[2] L. Bartholdi, The growth of Grigorchuk’s torsion group, Internat. Math.
Res. Notices 20 (1998), 1049–1054

[3] R. I. Grigorchuk, On the Milnor problem of group growth, Soviet Math.
Dokl. 28 (1983), no. 1, 23–26

[4] R. I. Grigorchuk, Degrees of growth of finitely generated groups and the
theory of invariant means, Math. USSR-Izv. 25 (1985), no. 2, 259–300

[5] R. I. Grigorchuk, Degrees of growth of p-groups and torsion-free groups,
Math. USSR-Sb. 54 (1986), no. 1, 185–205

[6] R. Grigorchuk, P. de la Harpe, On problems related to growth, entropy,
and spectrum in group theory, J. Dynam. Control Systems 3 (1997), no.
1, 51–89

[7] R. I. Grigorchuk, P. F. Kurchanov, Some questions of group theory
related to geometry, in Algebra. VII. Combinatorial group theory. Ap-
plications to geometry, Encyclopaedia of Mathematical Sciences, vol.
58, Springer, Berlin, 1993

[8] M. Gromov, Groups of polynomial growth and expanding maps, Inst.
Hautes Études Sci. Publ. Math. No. 53 (1981), 53–73

[9] P. de la Harpe, Topics on Geometric Group Theory, book in preparation
(1998)

[10] G. R. Krause, T. H. Lenagan, Growth of algebras and Gelfand–Kirillov
dimension, Research Notes in Mathematics, 116, Pitman, Boston, 1985

[11] I. G. Lysenok, A set of defining relations for the Grigorchuk group,
Math. Notes 38 (1985), 784–792

[12] R. Muchnik, I. Pak, Percolation on Grigorchuk groups, Comm. Algebra,
to appear (2000)

[13] V. A. Ufnarovskij, Combinatorial and asymptotic methods in algebra,
in Algebra, VI, 1–196, Encyclopaedia Math. Sci., 57, Springer, Berlin,
1995

20


