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Introduction

The history almost never works out the way you want it, especially when you are
looking at it after the dust settles. The same is true in mathematics as well. There
are times when the solution of a problem is overlooked simply by accident, due to
a combination of some unfortunate circumstances. In a celebrated address [D4],
Freeman Dyson described several “missed opportunities”, in particular a story of
how he never discovered Macdonald’s eta-function identities. We present here the
history of Fine’s partition theorems and their combinatorial proofs. As the reader
shall see, many of the results could and perhaps should have been discovered a long
time ago if not for a number of “missed opportunities”...

The central event in our little story is a publication of a short note [F1] by Nathan
Fine. To quote George Andrews, “[Fine] announced several elegant and intriguing
partition theorems. These results were marked by their simplicity of statement and
[...]by the depth of their proof.” [A7] Without taking anything away from the depth
and beauty of the results, we will show here that most of them have remarkably
simple combinatorial proofs, in a very classical style. Perhaps, that’s exactly how
it should be with the important results...

Fine’s partition theorems could be split into two (overlapping) categories: those
dealing with partitions into odd and distinct parts, à la Euler, and those dealing
with Dyson’s rank. We shall separate these two stories as they have relatively little
to do with each other. The fortune and misfortune, however, had the same root in
both stories, as we are about to discover.

Fine’s note [F1] didn’t have any proofs; not even hints on complicated analytic
formulae which were used to prove the results. It was published in a National
Academy of Science publication, in a journal devoted to all branches of science.
Thus the paper was largely overlooked by subsequent investigators. The note con-
tained a promise to have complete proofs published in a journal “devoted entirely
to mathematics.” This promise was never fulfilled. What a misfortune!

Good news came rather unexpectedly. In the sixties, George Andrews, while
a graduate student at the University of Pennsylvania, took a course of Nathan
Fine on basic hypergeometric series. As he writes in his mini biography [A8], “His
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course was based on a manuscript he had been perfecting for a decade; it eventually
became a book [F2].” In fact, book [F2] was published only in 1988, exactly 40 years
after the publication of [F1]. It indeed contained the proofs of all partition results
announced in [F1]. In the meanwhile, Andrews kept the manuscript and used it
on many occasions before [F2] has appeared. Among other things, Andrews gave
new analytic proofs of many results, found connections to the works of Rogers and
Ramanujan, and, what’s important for the subject of this paper, gave combinatorial
proofs to some of the theorems. Much of the fame Fine’s long unpublished results
have owes to Andrews’s work and persistence (see [A1-A8]).

This is where the story splits into two, so the rest of the paper is largely mathe-
matical, dealing separately with each of the Fine’s partition theorems. To simplify
the presentation we change their order and use different notation. We conclude the
paper with Dyson’s proof of Euler’s Pentagonal Theorem and final remarks.

A few words about the notation. We denote partitions of n by λ = (λ1, λ2, . . . , λ`),
write λ ` n, or |λ| = n. Let λ′ be a conjugate partition to λ. The largest part and
the number of parts of λ are denoted by a(λ) and `(λ), respectively. We use Young
diagrams to represent partitions graphically. See [A3] for standard references, def-
initions and details.

Partitions Into Distinct Parts and Franklin’s Involution
We start with the following result straight from [F1]:

THEOREM 1 (Fine) Let D0
n and D1

n be the sets of partitions λ of n into distinct
parts, such that the largest part a(λ) = λ1 is even and odd, respectively. Then:

|D0
n| − |D1

n| =





1, if n = k(3k + 1)/2

−1, if n = k(3k − 1)/2
0, otherwise.

It it perhaps suggestive to compare Theorem 1 with a similar looking Euler’s
Pentagonal Theorem, which can be stated as follows:

THEOREM 2 (Euler) Let Q0
n and Q1

n be the sets of partitions λ of n into distinct
parts, such that the number of parts `(λ) = λ′1 is even and odd, respectively. Then:

|Q0
n| − |Q1

n| =

{
(−1)k, if n = k(3k ± 1)/2

0, otherwise.

Of course, this similarity was not overlooked. Fine himself acknowledged that
Theorem 1 “bears some resemblance to the famous pentagonal theorem of Euler, but
we have not been able to establish any real connection between the two theorems.”
In the Math. Review article [L], Lehmer reiterates: “This results parallels a famous
theorem of Euler.”

As we shall show below, Theorem 1 has a proof nearly identical to the famous
involutive proof by Franklin of Theorem 2. Franklin was a student of Sylvester at
Johns Hopkins University, active in Sylvester’s exploration of the “constructive the-
ory of partitions”. He published his proof [Fr], right before a celebrated treatise [S1]
by Sylvester (for which Franklin also wrote few excerpts). These two papers laid a
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foundation of Bijective Combinatorics, a field which blossomed in the second half
of the twentieth century.

Of course, it is hard to blame Fine for not discovering the connection. In those
days bijections were still rarely used to prove combinatorial results. Since the late
sixties, however, the method became popular again, with a large number of papers
proving partition identities by means of explicit bijections. Franklin’s involution was
far from forgotten, and was used on many occasions to prove various refinements of
Euler’s Pentagonal Theorem [KP], and even most recently to prove a new partition
identity [C]. It is a pity that an application to Fine’s theorem remained unnoticed
for so many years.

Proof. Denote by Dn = D0
n∪D1

n the set of all partitions into distinct parts. Let
λ ∈ Dn, and let [λ] be a Young diagram corresponding to λ. Denote by s(λ) the
length of the smallest part in λ, and by b(λ) the length of a sequence of subsequent
parts: a, a− 1, a− 2, . . . , where a = a(λ) = λ1. One can view s(λ) and b(λ) as the
lengths of the horizontal line and diagonal line of squares of [λ], as in Figure 1. Now,
if s(λ) ≤ b(λ), move the horizontal line to attach to the diagonal line. Similarly,
if s(λ) > b(λ), move the diagonal line to attach below the horizontal line. If we
cannot make a move, stay put. This defines Franklin’s involution α : Dn → Dn.

� � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � �

α

Figure 1. Young diagram [λ] corresponding to a partition λ = (9, 8, 7, 6, 4, 3).
Here s(λ) = 3, b(λ) = 4, and α(λ) = (10, 9, 8, 6, 4).

m

m
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Figure 2. Fixed points of Franklin’s involution.

Note that α changes parity of the number of parts, except when λ is a fixed
point. Observe that the only fixed points of the involution and the Young diagrams
where the lines overlap, and s(λ)− b(λ) is either 0 or 1 (see Figure 2). The number
of squares in these diagrams are k(3k± 1)/2, which are called pentagonal numbers.
Therefore, |Q0

n| − |Q1
n| is 0 unless n is a pentagonal number, and is ±1 in that

case. This proves Theorem 2.
Similarly, note that α changes parity of the largest part. Thus again, we have

|D0
n| − |D1

n| is 0 unless n is a pentagonal number, and is ±1 in that case. This
completes the proof of Theorem 1. ¤
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Partitions Into Odd Parts and Sylvester’s Bijection

Euler’s theorem states that the number of partitions of n into odd numbers is
equal to the number of partitions of n into distinct numbers. Here is another gem
from [F1]:

THEOREM 3 (Fine) Let O1
n and D3

o be the sets of partitions λ of n into odd
parts, such that the largest part a(λ) is 1 and 3 mod 4, respectively. Then:

|O1
n| = |D0

n|, |O3
n| = |D1

n|, if n is even,

|O1
n| = |D1

n|, |O3
n| = |D0

n|, if n is odd.

Clearly, Fine’s Theorem 3 is a refinement of Euler’s theorem. As we shall see
below, the following result of Fine [F2] is an extension:

THEOREM 4 (Fine) For any k > 0, the number of partitions µ ` n into distinct
parts, such that a(µ) = k is equal to the number of partitions λ ` n into odd parts,
such that a(λ) + 2`(λ) = 2k + 1.

In his early paper [A1], Andrews proved combinatorially Theorem 4, but never
noticed that it implies Theorem 3. The reason could be the fact that Theorem 3 was
coupled together with Theorem 1 in [F1], while the proofs use two different classical
combinatorial arguments. The proofs of both Theorem 3 and Theorem 4 follows
from Sylvester’s celebrated bijection, sometimes called a fish-hook construction.
This bijection is a map between partitions into odd and distinct numbers, and
gives a combinatorial proof of Euler’s theorem (see [A1,A3]).

Sylvester’s bijection is another fixture in the combinatorics of partitions. It has
been restated in many different ways (e.g. by using Frobenius coordinates and
2-modular diagrams [A6,B,PP]), was used to prove other refinements of Euler’s
theorem [KY]. Had Theorem 3 been better known and not omitted in [L], the
following proof could have been standard.

Proof. Denote by On = O0
n ∪ O1

n the set of all partitions into odd parts.
Define Sylvester’s bijection ϕ : On → Dn as shown on Figure 3. Observe that
a(µ) = (a(λ) − 1)/2 + `(λ), for all µ = ϕ(λ). Now rewrite this formula as a(λ) +
2`(λ) = 2a(µ) + 1. This proves Theorem 4

Figure 3. Sylvester’s bijection ϕ : (7, 5, 3, 3) → (7, 6, 4, 1).

Note that `(λ) ≡ n mod 2 for all λ ∈ On. From the above equation, we conclude:
ϕ : O1

n → D0
n, O3

n → D1
n, when n is even, and ϕ : O1

n → D1
n, O3

n → D0
n, when n is

odd. This proves Theorem 3. ¤

Rank and Dyson’s Map
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This story started in 1944 with Dyson’s paper [D1], which appeared in Eureka, a
publication of mathematical students in Cambridge. Motivated by Ramanujan’s
identities for divisibility of the partition function, Dyson introduced the rank of a
partition, which he conjectured would give a combinatorial interpretation of these
identities. Still an undergraduate, Dyson did not prove these conjectures. They
were resolved in 1948 by Atkin and Swinnerton-Dyer [At], although their celebrated
paper [AS] appeared some years later.

Fortunately, Dyson moved to the US and published his conjectures as a short
problem in the American Mathematical Monthly [D2]. Nathan Fine became inter-
ested in the problem and devoted three theorems in [F1] to enumeration of partitions
with given rank (see below.) Taken out of context, his results seemed completely
mysterious and would have remained in this state if not for a publication of the
book [F2] and Dyson’s paper [D3]. We know now that Fine’s results were based
on the third order mock theta function identities due to Watson [W], a technique
used in [AS] as well.

Dyson’s paper [D3] (see also [D6]) was aimed at finding a simple proof of the
formula for a generating function for partitions with given rank. This formula was
used as a tool for practical calculations in [D1] and later was established in [AS].
Unaware of Fine’s work, Dyson rediscovered one of the Fine’s then unpublished
equations, called it a “new symmetry”, and proved it combinatorially. He then
deduced the desired formula, and obtained a new proof of Euler’s Pentagonal The-
orem (see below). We refer to [D5] for Dyson’s personal and historical account of
these discoveries.

Unfortunately, except for Andrews’s paper [A5], nobody seems to have noticed
that in fact Dyson’s map, sometimes called Dyson’s adjoint [BG], can be used to
give combinatorial proofs of Fine’s results. But even Andrews himself did not seem
to realize that Dyson’s map proves two other Fine’s theorems as well. We return
to that Andrews’s paper in the next section.

Define the rank of a partition λ as r(λ) = a(λ)− `(λ). Denote by Pn,r the set of
partitions of n with rank r, and let p(n, r) = |Pn,r|. Similarly, denote byHn,r (Gn,r)
the set of partitions of n with rank at most r (at least r). Let h(n, r) = |Hn,r|,
g(n, r) = |Gn,r|. Clearly, p(n, r) = h(n, r) − h(n, r − 1), and g(n, r) = h(n,−r).
Also, h(n, r) + g(n, r + 1) = π(n), where π(n) = h(n, n) =

∑
r p(n, r) is the total

number of partitions of n.

THEOREM 5 (Fine) For all n > 0, we have: h(n, 1 + r) = h(n + r, 1− r).

Proof. We shall construct an explicit bijection ψr : Hn,r+1 → Gn+r,r−1, which
implies the result. Start with a Young diagram [λ] corresponding to a partition
λ ∈ Hn,r+1. Remove the first column with ` = `(λ) squares. Add the top row with
(` + r) squares. Let [µ] be the resulting Young diagram (see Figure 4.) We call the
map ψr : λ → µ the Dyson’s map.

By assumption on λ, we have r(λ) = a(λ)− ` ≤ r+1, so a(µ) = `+r ≥ a(λ)−1.
Thus µ is a partition indeed. Clearly, |µ| = |λ| − ` + (` + r) = n + r. Also,
r(µ) = a(µ)− `(µ) = `(λ) + r− (λ′2 + 1) ≥ r− 1. Therefore, µ = ψr(λ) ∈ Gn+r,r−1,
which completes the proof. ¤

We call the result of Theorem 5 the Fine-Dyson relations. The rest of the paper
is built upon these relations and Dyson’s map. Let us first prove the following four
Fine’s equations, which are listed in [F1] as one theorem as well.
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ψ2

Figure 4. Dyson’s map ψr : λ → µ, where λ = (9, 7, 6, 6, 3, 1) ∈
H32,r+1, µ = (8, 8, 6, 5, 5, 2) ∈ G32+r,r−1, and r = 2.

THEOREM 6 (Fine) We have:
1) p(n + 1, 0)− p(n, 0) + 2p(n− 1, 3) = π(n + 1)− π(n), for n > 1,
2) p(n− 1, 0)− p(n, 1) + p(n− 2, 3)− p(n− 3, 4) = 0, for n > 3,
3) p(n, 0)− p(n− 1, 1) + p(n− 1, 2)− p(n− 2, 3) = 0, for n > 2,
4) p(n, r + 1) − p(n − 1, r) + p(n − r − 2, r + 3) − p(n − r − 3, r + 4) = 0, for
n > r + 3.

Proof. Taking r = 0 and r = −1 in the equation 4), and by using p(m, r) =
p(m,−r) we obtain 2) and 3), respectively. By Theorem 5, and from the formula
π(n) = h(n, 0) + g(n, 1) = h(n, 0) + h(n,−1), we deduce equation 1):

π(n + 1)− π(n) =
(
h(n + 1, 0) + h(n + 1,−1)

)− (
h(n, 0) + h(n,−1)

)

=
(
h(n + 1, 0)− h(n + 1,−1)

)− (
h(n, 0)− h(n,−1)

)

+ 2 h(n + 1,−1)− 2 h(n,−1)

= p(n + 1, 0)− p(n, 0) + 2
(
h(n− 1, 3) + h(n− 2, 3)

)

= p(n + 1, 0)− p(n, 0) + 2 p(n− 1, 3).

Equation 4) follows in a similar manner:

p(n− r − 3, r + 4)− p(n− r − 2, r + 3) =
(
h(n− r − 3, r + 4)

− h(n− r − 3, r + 3)
)− (

h(n− r − 2, r + 3)− h(n− r − 2, r + 2)
)

= h(n,−r − 2) − h(n− 1,−r − 1) − h(n,−r − 1) − h(n− 1,−r)

= −(
h(n,−r − 1)− h(n,−r − 2)

)
+

(
h(n− 1,−r)− h(n− 1,−r − 1)

)

= −p(n,−r − 1) + p(n− 1,−r) = −p(n, r + 1) + p(n− 1, r).

This completes the proof. ¤

Since equations in Theorem 6 follow immediately from the Fine-Dyson relations,
one can obtain combinatorial proofs for these equations as well, by separating terms
with positive and negative signs and then using Dyson’s map to obtain identical
sets of partitions on both sides. We present a variation on such a proof in case of
another Fine’s theorem from [F1].

THEOREM 7 (Fine) For r ≥ n− 3, we have π(n)−π(n− 1) = p(n+ r +1, r).

Proof. Denote by Fn the set of partitions λ ` n with the smallest part s(λ) ≥ 2.
Observe that |Fn| = π(n) − π(n − 1). Indeed, one can always add a part (1) to
every partition ν ` n− 1 to obtain all partitions of n, except for those in Fn.
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Now, to a partition λ ∈ Fn apply Dyson’s map ψr+1 : λ → µ, corresponding to
the rank (r + 1). We have µ1 = 1 + `(λ) + r ≥ 2 + (n− 3) = n− 1. On the other
hand, µ2 = λ1− 1 ≤ n− 1 by construction. Therefore µ1 ≥ µ2, and µ is a partition
indeed. Note that r(µ) = (`(λ) + r + 1) − (`(λ) + 1) = r, so µ ∈ Pn+r+1,r. Since
the map is clearly reversible, we obtain the result. ¤

The Iterated Dyson’s Map
As we mentioned before, Andrews in [A5] proved combinatorially the following
theorem from [F1]:

THEOREM 8 (Fine) Let Dn,r be the set of partitions µ ∈ Dn with rank r(µ) = r.
Let Un,2k+1 be the set of partitions λ ∈ On, such that the largest part a(λ) = 2k+1.
Then:

|Un,2r+1| = |Dn,2r+1| + |Dn,2r|.

One can view Theorem 8 as another refinement of Euler’s theorem on partitions
into odd and distinct parts. Andrews showed in [A5] that the theorem follows easily
from the properties of Dyson’s map ψr. It is rather unfortunate that Andrews’s
proof was published in a little known journal and have never been studied further.
Below we present a direct bijection between On and Dn, which is different from
Sylvester’s and Glaisher’s bijections [A3], and which proves Theorem 8. Naturally,
our construction is motivated by [A5].

Let λ = (λ1, λ2, . . . , λ`) ∈ On be a partition into odd parts. Consider a sequence
of partitions ν1, ν2, . . . , ν`, such that ν` = (λ`), and νi is obtained by applying
Dyson’s map ψλi to νi+1. Now let µ = ν1. We shall call a new map ξ : λ → µ the
iterated Dyson’s map. See Figure 5 for an example.

Figure 5. The iterated Dyson’s map ξ : λ → µ, where λ = (5, 5, 3, 3, 1) ∈ U17,5

and µ = (8, 6, 2, 1) ∈ D17,4.

THEOREM 9 The iterated Dyson’s map ξ defined above is a bijection between
On and Dn. Moreover, ξ(Un,2r+1) = Dn,2r ∪ Dn,2r+1, for all r ≥ 0.

Clearly, Theorem 9 implies Theorem 8. It would be interesting to find further
applications of the map ξ to other partition theorems.

Proof. First, note that |νi| = λi +λi+1+ . . .+λ`. Therefore |µ| = |ν1| = |λ| = n,
as required. Let us prove by induction that νi is a partition into distinct parts, such
that r(νi) is either λi or λi − 1. The base of induction, when i = ` and νi = (λ`),
is obvious.

Suppose the claim holds for νi+1, i.e. a(νi+1)−`(νi+1) is either λi+1 or λi+1 +1,
depending on the parity. Since a(νi) = `(νi+1) + λi, we have

(νi)1 = a(νi) ≥ (
a(νi+1)− λi+1

)
+ λi > a(νi+1)− 1 = (νi)2,
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which implies hat νi is indeed a partition into distinct parts. Now, observe that
`(νi) = `(νi+1) or `(νi+1)− 1. We have:

r(νi) = a(νi)− `(νi) =
(
`(νi+1) + λi

)− `(νi) ∈ {λi, λi − 1},

which proves the induction step.
Note that we never used the fact that λ ∈ On. This becomes important in a

construction of the inverse map ξ−1. Define the map ξ−1 by induction, starting
with µ = ν1 and applying the inverses of Dyson’s maps ψ−1

r . Clearly, the only
freedom in the construction comes from the choice of r. But since we need to have
r = a(νi)−`(νi) or r = a(νi)−`(νi)−1, and r has to be odd, this makes the choice
of r unique. Therefore the map ξ−1 is well defined, and ξ is a bijection. The second
part of the theorem is immediate from the arguments above. This completes the
proof. ¤

Dyson’s Proof of Euler’s Pentagonal Theorem
We already mentioned that Dyson used his map to obtain a simple proof of Euler’s
Pentagonal Theorem. He writes, “This combinatorial derivation of Euler’s formula
is less direct but perhaps more illuminating, than the well-known combinatorial proof
of Franklin.” [D3] Twenty years later he adds, “This derivation is the only one I
know that explains why the 3 appears in Euler’s formula.” [D5]

Here is how Dyson’s proof goes. Let P (t) and Gr(t) be the generating functions
for all partitions of n, and all partitions of n with the rank ≥ r :

Gr(t) =
∞∑

n=1

g(n, r) tr , P (t) = 1 +
∞∑

n=1

π(n) tn =
∞∏

i=1

1
(1− ti)

.

Write the relations h(n, r) + g(n, r + 1) = π(n) and Fine-Dyson’s relations h(n, 1 +
r) = h(n + r, 1− r) in terms of g(·) alone:

g(n, r) + g(n, r − 1) = π(n), g(n, r) = g(n− r − 1,−2− r).

In the language of generating functions, these relations imply the following two
equations:

1 + Gr(t) + G1−r(t) = P (t) , Gr(t) = tr+1
(
1 + G−2−r(t)

)
.

Here 1 in both equations comes from taking into account the “empty” partition.
Thus we have:

Gr(t) = tr+1 P (t) − tr+1 Gr+3(t) .

Iterating the above equation, we obtain:

Gr(t) = tr+1 P (t) − tr+1 Gr+3(t)

= tr+1 P (t) − t2r+5 P (t) + t2r+5 Gr+6(t)

= tr+1 P (t) − t2r+5 P (t) + t3r+12 P (t) − t3r+12 Gr+9(t)
. . .

=
∞∑

m=1

(−1)m−1t
m(3m−1)

2 +rm P (t) .
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Substituting this into P (t) − G0(t) − G1(t) = 1, we deduce Euler’s Pentagonal
Theorem:

∞∏

i=1

1
(1− ti)

(
1 +

∞∑
m=1

(−1)m t
m(3m−1)

2 +
∞∑

m=1

(−1)m t
m(3m+1)

2

)
= 1 .

Dividing both sides by the product P (t) and equating the coefficients gives us
Theorem 2. In fact, Euler [E] was interested in the recurrence relation for the
number of partition π(n). The above formula implies:

π(n) = π(n− 1) + π(n− 2)− π(n− 5)− π(n− 7) + π(n− 12) + π(n− 15)− . . .

By analogy, Dyson [D5] obtained the following refinement of Euler’s recurrence:

g(n, r) = π(n− r − 1) − π(n− 2r − 5) + π(n− 3r − 12) − . . .

Naturally, one is tempted to convert the above simple analytic proof into a bijective
proof of both recurrences. This is possible indeed. Denote by Pn the set of all
partitions of n. Write Dyson’s recurrence as follows:

|Hn,−r| =
∣∣Pn−r−1

∣∣ −
∣∣Pn−2r−5

∣∣ +
∣∣Pn−3r−12

∣∣ − . . .

=
∣∣Gn−r−1,−r−2 ∪Hn−r−1,−r−3

∣∣ − ∣∣Gn−2r−5,−r−5 ∪Hn−2r−5,−r−6

∣∣
+

∣∣Gn−3r−12,−r−8 ∪Hn−3r−12,−r−9

∣∣ − . . .

= |Gn−r−1,−r−2| +
(|Hn−r−1,−r−3| − |Gn−2r−5,−r−5|

)

− (|Hn−2r−5,−r−6| − |Gn−3r−12,−r−8|
)

+ . . .

Now Dyson’s map ψ−r−1 gives a bijection between the left hand side and the first
term on the right hand side of the equation. Similarly, maps ψ−r−4, ψ−r−7, etc.,
give bijections for the terms in the brackets. Thus we have a simple bijective proof of
Dyson’s recurrence. One can view the above bijection as a sign-reversing involution
on the set of partitions λ ∈ Hn,−r, or λ ` n− rm−m(3m− 1)/2, where m ≥ 1.

Similarly, after combining two involutions for r = 0 and 1, we easily obtain an
involution γ proving Euler’s recurrence:

γ :
⋃

m− even

Pn−m(3m−1)/2 −→
⋃

m− odd

Pn−m(3m−1)/2 ,

where m on both sides is allowed to take negative integers, and the map γ (see
Figure 6) is defined by the following rule:

for λ ∈ Pn−m(3m−1)/2 , γ(λ) =

{
ψ−3m−1(λ), if r(λ) + 3m ≤ 0,

ψ−1
−3m+2(λ), if r(λ) + 3m > 0.

Now comes a final surprise. Bijection γ is in fact well known! In this exact form
it was discovered in 1985 by Bressoud and Zeilberger [BZ], for the sole purpose
of finding a simple proof of Euler’s recurrence. The authors seemed completely
unaware of Dyson’s proof, but managed to rediscover a version of Dyson’s map
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γ

m

m

m

m

m m

m

m

Figure 6. Bijection γ proving Euler’s Pentagonal Theorem.

anyway. It seems, Fine-Dyson’s relations and Dyson’s map ψr are simply too
fundamental to be offset by the “missed opportunities”...

Final Remarks

There remains one last Fine’s partition theorem in [F1] without a simple combi-
natorial proof. Let L(n) be the number of partitions λ ` n with odd smallest
part s(λ). The theorem states that L(n) is odd if and only if n is a square. We
suggest that one should look for an involution proving this result. An interested
reader is advised to read [A2] for an involutive proof of Rogers-Fine identity and
an inspiration.

The conditions in Fine’s theorems 6, and 7 are slightly changed either to correct
or simplify the results (so as not to define p(n, r) for n ≤ 0). Dyson’s map as
defined and used in the literature is in fact conjugate to ours. We find this version
somewhat easier to work with.

The iterated Dyson’s map ξ appears to be new. It is basically a recursive appli-
cation of Andrews’s recurrence relation for |Un,2k+1| and |Dn,r| (see [A5]). Whether
this bijection between partitions into odd and distinct numbers has other nice ap-
plications or not, the map ξ seems to give a natural proof of Theorem 8, just like
Dyson’s map gives a natural proof of Theorem 5. Unfortunately, the iterative con-
struction of ξ is perhaps also a part of the nature. As Xavier Viennot once told
the author, “Sometimes, a recursive bijection is the only possible and one cannot
do better.”

Note that Dyson’s proof of Euler’s recurrence relation [D3] produces a bijection
almost immediately once one is employs Dyson’s map. A different bijection, based
on Franklin’s involution, was obtained by means of the involution principle by
Garsia and Milne [GM]. These two “automatic” approaches challenge Sylvester’s
paradigm that bijections “should rather be regarded as something put into the two
systems by the human intelligence that an absolute property inherent in the relation
between the two [sets]” [S2].

In a recent paper [BG], Berkovich and Garvan defined a 2-modular version of
Dyson’s map. They used this new map to give a combinatorial proof of Gauss’s
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famous identity. It would be interesting to convert this proof into a fully bijective
proof of the identity and compare with Andrews’s involutive proof [A2]. Similarly,
one can consider an iterated version of this map and try to find new partition
theorems this construction may prove.

This paper was motivated in part by the following quote: “ [A5] seems to be the
only known application of Dyson’s transformation” [BG]. We must add that had
the preprint [BG] never been put on the internet, this paper may have never been
written. That would have been another “missed opportunity”...
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