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Abstract. It is known that one can fold a convex polyhedron from a non-overlapping
face unfolding, but the complexity of the algorithm in [MP] remains an open prob-
lem. In this paper we show that every convex polyhedron P ⊂ Rd can be obtained in
polynomial time, by starting with a cube which contains P and sequentially cutting
out the extra parts of the surface.

Our main tool is of independent interest. We prove that given a convex polytope
P in Rd and a facet F of P , then F is contained in the union ∪G 6=F AG. Here the
union is over all the facets G of P different from F , and AG is the set obtained from
G by rotating towards F the hyperplane spanned by G about the intersection of it
with the hyperplane spanned by F .

1. Introduction

The study of non-overlapping face unfolding of convex polyhedra was initiated in [ShS]
in R3 and was extended to higher dimension in [MP]. This is in contrast with the
better known and still open edge unfolding problem, sometimes called the Dürer con-
jecture (see [O2] for an elegant introduction). To appreciate the difference, consider
three unfoldings of a cube in Figure 1, where the first is the edge unfolding and
the next two are face unfoldings. Note however, that finding and verifying a non-
overlapping unfolding is not an easy task, and may not be the most practical thing
to do. In this paper we present a new approach to making the surface of a convex
polytope, by sequentially cutting it out of a cube (see below).

Figure 1. Foldouts of three unfoldings of a cube.

There are two kinds of non-overlapping unfolding of a convex polyhedron P ⊂ R3

known in the literature. First, there is a source unfolding defined as a cut locus (or
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geodesic Voronoi diagram) of a point on the surface. Second, there is an Alexandrov
(also known as star) unfolding constructed by cutting along shortest paths to all ver-
tices from a generic point. Both unfolding can be constructed in polynomial time
and have various properties which are well studied (see [AAOS, AO, ShS]), especially
in connection to the discrete geodesic problem [MMP]. Most recently, the source un-
folding was extended to higher dimensions in [MP], and there seem to be an evidence
that the Alexandrov unfolding does not extend (see [MP, §8.4]). Unfortunately, the
algorithm proposed in [MP] is yet to be fully analyzed and only conjectured to be
polynomial. In other words, as of now there is no proven polynomial time algorithm
for a non-overlapping unfolding in dimension d ≥ 4.

Let us now think of the surface of a convex polyhedron in R3 as made out of carton.
Then making a polyhedron out of a physical foldout would involve a rather involved
continuous folding procedure which requires non-intersection at all times. Whether
this is possible is a well known open problem due to Connelly and in the strong form
is usually called the blooming conjecture; we discuss it at length in Section 5. Given
these difficulties, from a practical point of view, an alternative approach can prove
useful.

Start with a cube B which contains a given convex polyhedron P ⊂ R3. Intersect
B with a plane H. Cut along the edges of B on one side of H. Cut out some portions
in each of the flaps, place them the onto H, and glue them together (see Figure 2).
Repeat the procedure. The question is whether one can obtain every polyhedron after
a finite sequence of such “cutouts” (see a formal definition in the next section).

Figure 2. Cutting out the surface of a heptahedron from the surface
of a cube. Dark right triangles are cut out of the back three faces, and
the pentagons from the front three faces. Colored hexagon shows how
these cutouts are folded onto a hexagonal face and fit together.

Of course, when the cube is sufficiently large, one can hope that its faces are large
enough so that eventually all faces of P can be cut out of them (whether this can
be done sequentially is less clear). We prove a much stronger claim, that this can be
done for any cube which contains P . Moreover, this can be done efficiently in a much
greater generality and in any dimension. Here is out main result:
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Theorem 1.1. Let P, Q ⊂ Rd be two convex polytopes, such that P ⊂ Q. Then the
surface of P can be cut out from the surface of Q in time NO(d), where N denotes the
total number of faces of P and Q.

In particular, every convex polyhedron P ⊂ Rd with m facets can be cut out from
a sufficiently large cube in time mO(d). A warning: we are counting the number of
cuts that are made, not the number of pieces into which the eventual surface of P
is divided. In fact, we conjecture (see Subsection 6.4) that the number of cut pieces
can grow exponentially even in R3. In this sense, one can view our main result as
a variation on a “one cut problem” in computational geometry (see e.g. [O1] for an
introduction).

Another way to think of the theorem is to observe that it gives a direct way to
see that area(P ) < area(Q) for all P ⊂ Q, in the spirit of the Hilbert third problem
(see e.g. [Bol, Pak]). Of course, in R3 there is likely to be a more straightforward
proof of this corollary, in the spirit of a proof of the Bolyai–Gerwien theorem (cf.
Subsection 6.5).

The proof of the theorem is a direct consequence of a somewhat delicate collapsing
walls lemma (Lemma 2.1), which is of independent interest. We present the definitions
and the lemma in the next section. In Section 3 we present the proof of the collapsing
walls lemma, and in Section 4 the proof of the main result (Theorem 1.1). We then
outline a connection with Connelly’s blooming conjecture in Section 5, and conclude
with final remarks in Section 6.

2. Formal definitions and the collapsing walls lemma

We begin with some preliminary definitions. Let P be a convex polytope in Rd, and
let ∂P denotes its surface. For a facet F of P , we denote by HF the hyperplane
supporting P at the facet F . For two non-parallel facets F and G of P , we denote
by ΦF,G the affine transformation which is the rotation about HF ∩ HG of HG onto
HF . The rotation is performed in the direction dictated by P , so that throughout the
rotation HG intersects the interior of P . For convenience, when HF is parallel to FG,
denote by ΦF,G the projection of G onto F .

We are now ready to give a formal definition of the cutting out procedure described
in the introduction in dimension three. Let Q ⊂ Rd be a convex polytope and let H
be a hyperplane separating Q into polytopes Q+ and Q−. Denote by F the facet of
Q− which lies in H, and by G1, . . . , Gm the remaining facets of Q−. Suppose there
exist convex polytopes R1, . . . , Rm such that Ri ⊂ Gi, for all 1 ≤ i ≤ m, and such
that Xi = ΦF,Gi

(Ri) ⊂ F are non-intersecting and X1 ∪ . . . ∪Xm = F . We then say
that the surface ∂Q+ is cut out of ∂Q in one step. More generally, we say that ∂P
can be cut out from ∂Q if there is a finite sequence of polytopes

P = P0 ⊂ P1 ⊂ . . . ⊂ P` = Q,

such that ∂Pi−1 can be cut out of ∂Pi in one step, for all 1 ≤ i ≤ `.

Our main tool in the proof of Theorem 1.1 is the following result:
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Lemma 2.1 (Collapsing walls lemma). Let P ⊂ Rd be a convex polytope and let F
be fixed facet of P . Then

F ⊆
⋃

G 6=F

ΦF,G(G),

where the union is over all facets G of P , different from F .

In other words, if the walls of a (polyhedral) cage are collapsed onto the floor of
the cage, they cover the whole floor. At first, this may seem obvious, but if the walls
have non-right dihedral angles with the base, this is a rather delicate technical result
(see Figure 3). In fact, we believe it is a new result of independent interest even for
pyramids in R3.

Figure 3. An impossible configuration of four collapsing walls (sides
of a pyramid cannot collapse on the base and leave an uncovered hole
in the base).

Let us mention that the lemma by itself is insufficient to prove of the main theorem
as the same wall can be used to cover the base in several possibly disconnected places
(see Section 4). To avoid this, we use technical details from the proof of the lemma
presented in the next section.

3. Proof of Lemma 2.1

Consider Rd endowed with the standard Cartesian coordinate system. We denote
these coordinates by x1, . . . , xd. Without loss of generality assume that HF is the
hyperplane xd = 0, and P is contained in the half-space xd ≥ 0. Denote by AG =
ΦF,G(G) the rotation of the facet G of P onto F . We need to show that every point
in F lies in ∪G 6=F AG. Without loss of generality we can take this point to be the
origin O.

Denote by G1, . . . , Gm the facets of P different from F . To simplify the notation,
let Ai = AGi

, Hi = HGi
, and Φi = ΦF,Gi

, for all 1 ≤ i ≤ m. Denote by Li the
intersection of hyperplanes Hi∩HF . Let ri be the distance from the origin to Li, and
let αi be the dihedral angle of the cone between HF and Hi, and which contains P .

Suppose now G1 is such that

τi = ri · tan
αi

2
is minimized at τ1 .

We will show that the origin O is contained in A1. In other words, we prove that if
O /∈ A1, then τi < τ1 for some i > 1.
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Let z ∈ H1 such that the rotation of z onto F is the origin: Φ1(z) = O. It suffices
to show that z ∈ G1. Let v = (v1, . . . , vd−1, 0) be the unit vector that in a normal
to L1 in the hyperplane HF . It is easy to see that

−→
Oz = r1(1− cos α1)v + (0, . . . , 0, r1 sin α1).

Assume to the contrary that z /∈ G1. Then there exists a facet of P , say G2, such
that H2 separates z from the origin. Denote by y the closest point to z on L2, and
by α′ the angle between the line (zy) and the hyperplane HF , where the angle is
taken with the half-hyperplane of HF which contains F (and thus the origin). In this
notation, the above condition implies that α′ > α2.

Without loss of generality we may assume that L2 is given by equations xd = 0
and xd−1 = r2. Then

y = (r1(1− cos α1)v1, . . . , r1(1− cos α1)vd−2, r2, 0),

and

cos α′ = cos Ôyz =
r2 − r1(1− cos α1)vd−1√

r2
1 sin2 α1 + (r2 − r1(1− cos α1)vd−1)2

.

Note that the function x/
√

a2 + x2 is monotone increasing as a function of x, and
that vd−1 ≤ 1. We get

cos α′ ≥ r2 − r1(1− cos α1)√
r2
1 sin2 α1 + (r2 − r1(1− cos α1))2

.

Applying cos α′ < cos α2, we conclude:

(1)
r2 − r1(1− cos α1)√

r2
1 sin2 α1 + (r2 − r1(1− cos α1))2

< cos α2.

Recall the assumption that τ1 ≤ τ2. This gives r1 tan α1

2
≤ r2 tan α2

2
, or

(2)
r2

r1

≥ tan α1

2

tan α2

2

.

The rest of this section is dedicated to showing that both (1) and (2) are impossible.
This gives a contradiction with our assumptions and proves the claim. We split the
proof into two cases depending on whether the dihedral angle α2 is acute or obtuse.
In each case we repeatedly rewrite (1) and (2), eventually leading to a contradiction.

Case 1. Suppose π
2

< α2 < π. In this case cos α2 < 0, and (1) is equivalent to

(3) 1 +
r2
1 sin2 α1

(r2 − r1(1− cos α1))2
<

1

cos2 α2

,

and

(4)
r1 sin α1

r2 − r1(1− cos α1)
> tan α2 .
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This can be further rewritten as:

(5)
r2

r1

< 1− cos α1 +
sin α1

tan α2

.

Now (5) and (2) together imply

tan α1

2

tan α2

2

< 1− cos α1 +
sin α1

tan α2

,

which is impossible. Indeed, suppose for some 0 < a, b < π, we have

(6)
tan a

2

tan b
2

< 1− cos a +
sin a

tan b
.

Dividing both sides by (tan a
2
), after some easy manipulations, we conclude that (6)

is equivalent to

(7)
1

tan b
2

< sin a +
1 + cos a

tan b
,

which in turn is equivalent to

(8)

(
1

tan b
2

− 1

tan b

)
sin b < cos(a− b) .

Since the left hand side of (8) is equal to 1, we get a contradiction and complete the
proof in Case 1.

Case 2. Suppose now that 0 < α2 ≤ π
2
. Then cos α2 ≥ 0, and 0 < tan α2

2
≤ 1. Let

us first show that the numerator of (1) is nonnegative, i.e. that r2 ≥ r1(1 − cos α1).
From the contrary, otherwise r2/r1 < (1− cos α1). Together with (2), this implies:

1− cos α1 >
r2

r1

≥ tan α1

2

tan α2

2

≥ tan
α1

2
,

which is impossible for all 0 < α1 < π.
From above, we can now exclude the case α2 = π

2
, for else the l.h.s. of (1) is non-

negative, while r.h.s. is equal to zero. Thus, cos α2 > 0. Therefore, the inequality (1)
in this case can be rewritten as

(9) 1 +
r2
1 sin2 α1

(r2 − r1(1− cos α1))2
>

1

cos2 α2

,

and

(10)
r1 sin α1

r2 − r1(1− cos α1)
> tan α2 .

Note now that (10) coincides with (4). Since (6) holds for all 0 ≤ a, b < 1, we obtain
the contradiction as in Case 1. This completes Case 2 and finishes the proof of the
lemma. ¤
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4. Proof of Theorem 1.1

We cut polytope Q with hyperplanes containing facets of P , one by one. Start with a
hyperplane H spanned by a facet in P , and let F = Q∩H. Apply the collapsing wall
lemma (Lemma 2.1) to the polytope Q−. Let us show that the proof of the lemma
implies that Q+ can be cut out from Q in one step.

As in the proof of the lemma, denote by G1, . . . , Gm the facets of Q− other than F .
For a point z ∈ F , define τi = |zAi| tan αi

2
, where Ai = F ∩ Gi is a facet of F , and

|zAi| is the distance to a subspace spanned by Ai from z. Let Xi ⊂ F be a subset
of the facet F on which τi ≤ τj, for all j 6= i. Let us first prove that Xi is a convex
polytope. Define η = mini τi. Clearly, η is a convex piecewise linear function which
is zero on the boundary ∂F = ∪iAi. Then each Ri is a projection of a facet of a cone
{(z, t) | z ∈ F, t ≤ η(z)}, and thus a convex polytope. Therefore, convex polytopes
Ri = Φ−1(Xi) ⊂ Gi give the desired cutout of Q+.

It remains to compute the complexity of the algorithm. There are O(N) iterations
of the cut out procedure. Each time, function η can be computed in time NO(d), and
thus so are all Ri (see e.g. [PS]). The details are straightforward. ¤

5. Connection to continuous blooming

Consider the process of folding the boundary of a convex polyhedron: if someone
provides a polyhedral nonoverlapping foldout made of hinged steel, is it always pos-
sible to glue its corresponding edges together? Because steel is rigid, we need not
only a nonoverlapping property on the foldout as it lies flat on the ground, but also
a nonintersecting property as we continuously fold it up to be glued (see Figure 4).
The reverse process was introduced by Bob Connelly (with some extra conditions),
who called it continuous blooming, and proposed the following conjecture:

Conjecture 5.1 (Connelly’s continuous blooming conjecture). Every convex polyhe-
dral boundary has a continuous blooming.

Figure 4. An example of a continuous blooming of the surface of the cube.

We refer to [MP, §9] for the background, precise definitions, and a formal statement
of the conjecture. In this section we discuss the connections between out cutting out
procedure and the the continuous blooming.

First, observe that in R3, in notation of the proof of the Theorem 1.1, we have
convex polygons Xi ⊂ F which are attached along the edges to the faces adjacent
to F . Therefore, here is an attractive but incorrect scheme on how the blooming can
be obtained. Think of a polytope P ⊂ R3 defined as the intersection of halfspaces
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corresponding to its facets. Removing a halfspace corresponding to the facet F of P
gives a bigger convex polytope Q.1 Sequentially rotate polygons Xi away from F to
the surrounding walls to obtain a partial blooming. It is easy to see that this can be
done without intersection. Now repeat until a tetrahedron is obtained, which can be
then easily bloomed onto a plane.

The problem with this scheme is that while the first step is indeed an honest partial
blooming, the subsequent steps can fail as the new subdivision of the faces can give
disconnected pieces. The next two examples show both positive and negative cases
of this connection.

Example 5.2 (Archimedean solids). It is well known and easy to see that Platonic
solids (regular polytopes in R3) have a continuous blooming (see e.g. [Pol]). Similarly,
it is easy to see that every Archimedean solid can be obtained from a Platonic solid
by a sequence of truncations. One can use the symmetry and check directly that the
above unfolding procedure gives a correct continuous blooming in each case. We leave
the details to the reader.

Example 5.3 (Disconnected cutout). Consider a decahedron shown in Figure 5.
Removing the top face produced a nonahedron, whose top view is as in the middle
figure. The resulting blooming cuts out the original surface to two pentagons and two
hexagons, located symmetrically on the sides. Removing one of the large quadrilateral
faces makes the hexagonal unfolding disconnected as in the figure. As a result, the
the next blooming iteration cannot be made.

In the opposite direction, start with a brick circumscribing the nonahedron, and
apply the cutting out procedure first for the four side quadrilaterals, and then for
the top face. It is then easy to see that the resulting cutout on the decahedron will
consist of disconnected pieces from the surface of the brick.

Figure 5. An example of polyhedron with a disconnected cutout.

6. Final remarks

6.1. The title of the paper may seem similar to that of a classical paper [Tve] by
Tverberg. This resemblance is intensional, since the underlying idea is indeed similar.
It has been known for centuries that a convex polytope can be dissected into simplices.
Tverberg shows that such a dissection can be obtained sequentially, by cutting a

1In general, an unbounded convex polyhedron is also possible, but in fact for polytopes P whose
facets lie in hyperplanes in general position, one can always avoid this by choosing an appropriate F .
This is an easy corollary of the Helly theorem (see e.g. [Pak, §1]).
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polytope with hyperplanes. In a similar manner we show that the unfolding which
can be obtained sequentially, by cutting out extra pieces every time a new hyperplane
is introduced.

6.2. An interesting interpretation of the main theorem was proposed by Ezra Miller.2

Think of a convex polytope P given as a gift inside a box Q, which is a bigger
polytope. Then one can gift wrap P in a paper in which Q was previously gift
wrapped (presumably, to be regifted later).

6.3. Subdivision of the facet F into Xi given in the proof of the theorem is in fact
a weighted analogue of the dual Voronoi subdivision (see [Aur, For]). As a conse-
quence, computing this subdivision can be done more efficiently, both theoretically
and practically.

6.4. Following the idea of Example 5.3, it would be interesting to find the upper
bound for the number of disconnected pieces of a cutout of a polyhedron with n
facets. It would be particularly interesting if this number is polynomial rather than
exponential, at least in R3.

6.5. In the spirit of the remark under Theorem 1.1, it would be interesting to give
a simple more direct proof of the monotonicity area(P ) < area(Q) for 3-dimensional
convex polytopes P ⊂ Q. In fact, it would be interesting to investigate whether one
can keep the number of pieces polynomial (in the total number of faces of P and Q).
Note that although there is an elementary proof of the Bolyai–Gerwien theorem (see
e.g. [Pak, §15]), it does not produce polynomial size dissections of polygons.

In a similar direction, for convex polyhedra P ⊂ Q, there is a classical monotonicity
of the total mean curvature: M(P ) < M(Q) (see e.g. [BZ, §7] and [Pak, §28]). It
would be interesting to prove this inequality in R3, by a direct argument in the spirit
of Theorem 1.1.

6.6. The collapsing walls lemma (Lemma 2.1) in the special case of a pyramid in R3,
was first proposed in a preprint [PP] by the authors, as a generalization of the following
classical result: every point in a convex polytope has an orthogonal projection into
the interior of a facet.

To see how the lemma implies the above result, suppose P ⊂ Rd is a pyramid over
a convex polytope F ⊂ H with a very large height. Then all facets G 6= F in P are
adjacent to F and are nearly orthogonal at EG = F ∩ G. The lemma then implies
that every point z ∈ F has an orthogonal projection into the interior of some facet
EG of F . We refer to [Pak, §9] for a simple proof and various extensions of this result.

6.7. In connection with Lemma 2.1, let us note the following much easier analogue.
Suppose the walls of the polytope P collapse “outside” of the facet F . We claim
that this gives pairwise disjoint (but not necessarily continuous) set of cutouts (see
Figure 6).

2Personal communication.
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Formally, let P be a convex polytope. Fix a facet F of P , and assume that no facet
G 6= F of P is parallel to F . For every facet G of P , different from F , denote by Φout

F,G

the affine transformation which is the rotation about HF ∩HG of HG onto HF . The
rotation is performed in the direction dictated by P , so that throughout the rotation
HG does not intersect the interior of P . Then the sets Φout

F,G(G), for all facets G of P ,
have pairwise disjoint (relative) interiors. We leave the proof to the reader.

Figure 6. Walls of a pyramid collapsing outside the base do not intersect.
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