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Abstract

We study the problem of acute triangulations of convex polyhedra and the space Rn.
Here an acute triangulation is a triangulation into simplices whose dihedral angles
are acute. We prove that acute triangulations of the n–cube do not exist for n ≥ 4.
Further, we prove that acute triangulations of the space Rn do not exist for n ≥ 5.
In the opposite direction, in R3 we construct nontrivial acute triangulations of all
Platonic solids. We also prove nonexistence of an acute triangulation of R4 if all
dihedral angles are bounded away from π/2.
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1 Introduction

The problem of finding acute triangulations has a long history going back to the early
days of Discrete and Computational Geometry. It has a number of connections to other
areas and some real world applications, most notably the finite element method. Until
recently, most results dealt with the 2–dimensional case, where the problem has been
largely resolved; it is now known that every n–gon in the plane has an acute triangulation
into O(n) triangles (a combination of results in [BGR] and [Mae]).

In the last few years, several papers [ESÜ, Kř́ı, KPP, VHZG] broke the dimension
barrier in both positive and negative direction (see below). In this paper we continue
this exploration, nearly completely (negatively) resolving the problem in dimension 4 and
higher, and making further advancement in dimension 3. This extended abstract is based
on [KPP].

We must address one important limitation of our paper, essentially highlighting the
current poor state of art. The real problem (both in theory and in application) is to
find acute triangulations efficiently (say, in polynomial time). Instead, we prove that
such algorithm is theoretically impossible in dimension n ≥ 5, and in practice for n ≥ 4.
In a positive direction, we make the first real effort to prove that the general goal can
conceivably be accomplished in 3 dimensions.

1.1 Definitions and main results

For a polytope P ⊂ Rn, an acute triangulation is a subdivision of P into finitely many
acute simplices (i.e. with acute dihedral angles) which form a simplicial complex, so e.g.
in the plane, a vertex of one simplex cannot lie in the interior of an edge of another. (See
Figure 1, where on the left we have a subdivision of the square which forms a simplicial
complex, and on the right we have a subdivision which does not.) A triangulation is non-
trivial if it has at least one interior vertex. An acute triangulation of Rn is a subdivision
of Rn into acute (infinitely many) simplices which form a simplicial complex.

Fig. 1

Theorem A. Every Platonic solid in R3 has a non-trivial acute triangulation.

For an important example of the cube, we roughly do the following. We first triangulate
the cube into a regular 3–simplex and four standard 3–simplices. We then subdivide each
of these 3–simplices into 543 pieces, to obtain combinatorially what we call the special
subdivision (based on the 600–cell, see Section 2).

Theorem B. There are no non-trivial acute triangulations of polytopes in Rn, for all
n ≥ 5. In particular there are no acute triangulations of Rn, for n ≥ 5.

2



Theorem C. The 4–cube does not have an acute triangulation. Neither do the isosceles
4–orthoscheme1 and the Schläfli simplex D̃4.2

Together, Theorems A, B and C imply the following result which remained open for
nearly 50 years:

Corollary D. The n–cube has an acute triangulation if and only if n ≤ 3.

The next two theorems are successive far-reaching extensions of Theorem C.

Theorem E. The space R4 has no periodic acute triangulation.

Theorem F. The space R4 has no acute triangulation into simplices whose dihedral angles
are less than π/2− ε, for any given ε > 0.

Theorem F is a bounded geometry version of Kř́ıžek’s conjecture stating that R4 has no
acute triangulation [Kř́ı]. Theorems B, C and F are proved by a topological argument using
a (known) advanced extension of Dehn–Sommerville equations. The proof of the strongest
result (Theorem F) uses the concept of p–parabilicity of graphs, its recent properties, and
our new advanced isoperimetric type inequality.

1.2 Previous work

The problem of finding acute triangulations has a long history in classical geometry, and
is elegantly surveyed in [BKKS], which argues that it goes back to Aristotle. In recent
decades, it was further motivated by the finite element method which requires “good”
meshes (triangulations of surfaces) for the numerical algorithms to run. Although the
requirements for meshes largely depend on the algorithm, the sharp angle conditions seem
to be a common feature, and especially important in this context. We refer to [SF] for the
introduction to the subject, and to [She] for the state of art.3

It is important to emphasize that for a given convex polygon P ⊂ R2, the real difficulty
in the acute triangulation problem is finding the positions of Steiner points in the interior
and on the boundary of P . Once such set of points is fixed, the unique triangulation
on these vertices that can possibly be acute is the corresponding Delaunay triangulation
(see [Ede]), and the latter can be constructed efficiently (see [Aur, For]). This makes this
problem different from most problems in [DRS], where typically an optimal triangulation
is sought on a fixed set of vertices.

Let us mention also a motivation coming from the recreational literature, where the
subject of dissections has been popular in general (see [Lin]), and of acute triangulations
in particular [CL, Man]. In this context, the problem of acute triangulations of a square,
cube, and hypercubes seem to be of special interest [Epp]. It is crucial in this context that
the simplices must be acute rather than non-obtuse (when the angle π/2 is allowed), since
in the latter case every n–cube can be triangulated into n! non-obtuse (path-) simplices.

1This is a path-simplex in R4 with intervals of unit lengths, which can be defined by the inequalities
0 ≤ x1 ≤ x2 ≤ x3 ≤ x4 ≤ 1.
2This 4–simplex is sometimes called cube corner and can be defined by x1 + x2 + x3 + x4 ≤ 1, and

x1, x2, x3, x4 ≥ 0.
3Proceedings of recent International Meshing Roundtable conferences, specifically their tetrahedral

meshes sections, provide further up-to-date results on both theoretical and practical aspects of this im-
portant problem.
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In one of the first papers on the subject, Burago and Zalgaller proved in [BZ] that
any non-convex polygon (possibly, with holes) has an acute triangulation. Unfortunately,
their argument was largely forgotten as it was inexplicit and did not give a bound on the
number of triangles required. In a long series of papers [BE, BGR, BMR, Mae, Sar, Yuan]
first polynomial, and then linear bounds were obtained for non-obtuse, and, eventually,
for acute triangulations. We refer to [Zam] for the historical outline, a short survey, and
further references.

In higher dimensions, several results have been recently obtained. First, Eppstein,
Sullivan and Üngör [ESÜ] showed that the space R3 has a periodic acute triangulation.
Then, Kř́ıžek [Kř́ı] showed that no vertex in Rn for n ≥ 5 can be surrounded by a finite
number of acute simplices (as in Theorem B),4 and conjectured that the space R4 also
cannot be triangulated into acute tetrahedra. Finally, most recently (and independently
form our [KPP]), VanderZee, Hirani, Zharnitsky and Guoy [VHZG] used an advanced
numerical simulation technique to find an acute triangulation for the (usual) cube in R3

(as in Theorem A). Their construction is ad hoc, but better suitable for applications (it
uses 1370 tetrahedra as opposed to 2715 tetrahedra in our construction).

The main approach in our paper is topological, both in motivation of the positive
results, and in the tools for negative results. A variation on the use of 600–cell to obtain a
topological version of Theorem A was used previously by Świątkowski and the third named
author in [PŚ], to construct the so called flag-no-square subdivisions in dimension 3, used
originally to construct Gromov hyperbolic groups with prescribed boundaries. A variation
on Theorem B was previously obtained by Kalai in [Kal] (in fact, both results are extension
of the same special case).

Finally, the idea behind both the statement and the proof of Theorem F is based
on large body of work on tessellations of the space by convex polyhedra with bounded
geometry. Perhaps the earliest, is the result of Alexandrov that in every triangulation of
the plane into bounded triangles the average degree of vertices (when defined) must be
at least 6 [Ale]. Another is a classical result by Niven that convex n–gons of bounded
geometry cannot tile the plane for n ≥ 7 [Niv] (see also [Ful]). The idea is always to
use the isoperimetric inequalities compared with direct counting estimates, an approach
which works in higher dimensions as well (see e.g. [KS, LM]). Our proof of Theorem F is
a variation on the same line of argument. We refer to [GS] for historical background and
further references.

1.3 Implications of our work for the finite element method

This paper has both good and bad news for the finite element method practitioners. We
start with the good. Until now, a typical (far from optimal) practical approach to getting
an acute triangulation of a given (non-convex) polyhedron, would be to start with the
triangulation of the interior along the fundamental tetrahedron in the BCC lattice, and
then improve and refine the triangulation near the boundary.5 This tetrahedron, one of
the Sommerville’s tetrahedra, tiles the space, but although not acute, it is non-obtuse and
highly symmetric. The acute triangulation in [ESÜ] suggests that at a cost of creating less
symmetric triangles, one can ensure that the same approach can make all but “boundary”
tetrahedra to be acute. Our work (Theorem A) suggests that perhaps one can abandon this
periodicity approach altogether and create an acute triangulation of the whole polyhedron.

4There is a crucial error in this proof, see Kř́ıžek’s correction in Disc. Comp. Geom. (to appear).
5This makes such triangulations useful for some but not all applications.
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Main Conjecture. Every (possibly, non-convex) polyhedron P ⊂ R3 has an acute
triangulation. Moreover, such triangulation will have a polynomial number of tetrahedra
(in the number of vertices of P ), and can be computed in polynomial time.

Given how little is known (basically, nearly nothing until recently) this might sound
too speculative. We refer to [KPP] for a reasoning behind (based on this work).

Now for the bad news. In many practical applications, mostly when time is a dimen-
sion, the finite element method is applied in R4. Our Theorem E shows that the periodicity
approach (as in [ESÜ]) cannot be implemented. Moreover, Theorem F proves that the
very large dihedral angles are unavoidable in any large simplicial acute triangulation in R4,
which suggests that some numerical methods might be slow in four dimensions.

Convention. In the entire article we adopt a convention that simplicial complexes and
triangulations of (homology) manifolds are not allowed to have edges connecting a vertex
to itself, and they are also not allowed to have multiple simplices spanned on the same set
of vertices.

Acknowledgements. This work was initiated at Université Paul Sabatier in Toulouse,
where the second and the third author were visiting. We thank the university and Jean-
Marc Schlenker for their hospitality.

We thank Marc Bourdon, who suggested the final argument of Section 5. We are
grateful to Anil Hirani for telling us about [VHZG] and explaining the ideas behind this
work, and to Evan VanderZee for giving us his numerical estimates. We are thankful to
Michal Kř́ıžek for confirming the crucial error in his paper [Kř́ı] and telling us about a
forthcoming correction. We are grateful to Jon McCammond for pointing out a technical
error in our earlier version of the proof of Proposition 5.3. We also thank Itai Benjamini,
Jesús De Loera, Gil Kalai, Isabella Novik, Vic Reiner, Egon Schulte and Alex Vladimirsky
for help with the references.

2 Acute triangulations in R3

In this section we describe acute triangulations of the 3–cube and the regular octahedron.
The starting point is the following observation:

Observation 2.1. The link of an interior edge of an acute triangulation of a polyhedron
in R3 is a simplicial loop of length at least 5.

In view of this observation, let us make the following definition.

Definition 2.2. A triangulation of an n–dimensional homology manifold is rich if the
links of all interior (n− 2)–simplices are loops of length at least 5.

Note that being rich is a purely combinatorial (i.e. non-metric) property. Observa-
tion 2.1 states that an acute triangulation of the 3–cube (or a regular octahedron) must
be rich.

Consider the 600–cell, the convex regular 4–polytope with Schläfli symbol {3; 3; 5}
(see, e.g., [Cox]). Denote by X600 the boundary of the 600–cell, a 3–dimensional simplicial
polyhedron homeomorphic to the 3–dimensional sphere. It consists of 600 3–simplices6 and

6To streamline and simplify the presentation, we refer to triangles as 2–simplices, to tetrahedra as
3–simplices, etc.
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has 120 vertices. Its vertex links are icosahedra and its edge links are pentagons. We first
focus on the combinatorial simplicial structure of X600. Denote by X543 the subcomplex
of X600 which we obtain by removing from X600 the interiors of all simplices intersecting
a fixed 3–simplex. (The number 543 in the subscript refers to the number of 3–simplices
in X543.)

Lemma 2.3 ([PŚ, Lemmas 2.5 and 2.7]).

(1) X543 is topologically a 3–ball. It is rich.

(2) Its boundary is a 2–sphere simplicially isomorphic to the simplicial complex which we
obtain from the boundary of a 3–simplex by subdividing each face as in Figure 2.

Fig. 2

We recall the following definition:

Definition 2.4 ([PŚ, Definitions 2.2 and 2.8]). Given a simplicial complex of dimension
at most 3, its special subdivision is the simplicial complex obtained by:

(i) subdividing each edge into two (by adding an extra vertex in the interior of the edge),

(ii) subdividing each 2–simplex as in Figure 2,

(iii) subdividing each 3–simplex so that it becomes isomorphic to X543.

We are ready to describe the combinatorial structure of our triangulation of the 3–
cube and the regular octahedron. Assume that the cube lies in R3 with the vertices at
points (±1,±1,±1). Consider the triangulation W of the cube into five 3–simplices so that
one of them (denote it by T0) has vertices (1, 1, 1), (−1,−1, 1), (−1, 1,−1) and (1,−1,−1),
while the remaining four 3–simplices (denote them T1, . . . , T4) are the components of
the complement to T0 in the cube. Note that T1, . . . , T4 are congruent (equal up to a
rigid motion); we call such 3–simplices standard (see e.g. [Pak]).7 Let W ∗ be the special
subdivision of W defined as above.

Similarly, let Y be the triangulation of the regular octahedron into eight standard
3–simplices obtained as cones from the center over the faces. Let Y ∗ be the special
subdivision of Y .

By [PŚ, Proposition 2.13], subdivisions W ∗ and Y ∗ are both rich and have a potential
of giving an acute realization. This is true indeed, and proves Theorem A for the cube
and the regular octahedron: In fact, we provide acute triangulations of all 3–simplices
of W and Y , combinatorially equivalent to X543, and matching on common part of the
boundary. In other words, we prove the following intermediate result:

Theorem 2.5. There is a (non-trivial) acute triangulation, combinatorially equivalent to
X543, of (i) the regular 3–simplex, and (ii) the standard 3–simplex.

7This tetrahedron is also called the cube-corner.
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Below we describe the construction for the 3–cube. At some points we use a computer
program. We provide the exact position of all vertices of both triangulations from Theorem
2.5 in Appendix A. There are three steps of the construction. First, we construct an acute
triangulation of T0. Then we “flatten” it to obtain an acute triangulation of T1. Then
we construct another acute triangulation of T0 so that it matches the one of T1 on the
common part of the boundary.

Step 1. Note that the vertices of the 600–cell, whose boundary we called X600, lie on
a sphere in R4. Moreover all 3–simplices in this realization of X600 are regular, hence
acute. Let now X̃543 be the realization of X543 in R3, whose vertices are obtained by
stereographic projection of the R4 realization. We choose the center of the projection to
be the center of the (spherical) 3–simplex in X600 disjoint from X543. It turns out that
this mapping does not disturb the angles significantly.

We move the vertices of ∂X̃543 radially so that they arrange on the boundary of a
regular 3–simplex which we identify with T0. If we scale the size of ∂T0 correctly, this
triangulation of T0 is already acute, i.e. it satisfies Theorem 2.5(i). However, it is not the
one listed in Appendix A, we will modify it later in Step 3.

Step 2. The subdivision of the standard 3–simplex, say T1, is more difficult. Our computer
program uses the following algorithm to find the position of the vertices. We “flatten” the
acute triangulation of T0 obtained in Step 1 in order to obtain an acute triangulation of
T1. We gradually move one of the boundary vertices (marked A on Figure 4) towards the
center, keeping the three vertices marked C in the points where the circles inscribed into
triangles ABiBj meet the edges ABi. We also keep the nine points marked D on their
faces, and scale and translate together all the interior vertices.

A

B1

B2

B3

C2

C1
E3

E1

E2

F1

F2
F3

Di

Fig. 3

Whenever some angle stops being acute during this operation, we suspend the flatten-
ing process to correct the angles. This is done by slightly moving the responsible vertices
so that the angle becomes smaller. Vertices are moved only in a way that does not disturb
the combinatorial structure, i.e. points A,Bi, Ci, Ei are not moved at all; movement of
Di and Fi is restricted to their faces; all the interior vertices except the two outermost
layers (of 12 and 16 vertices, respectively) are moved together so that the structure is not
disrupted.

When all the angles are corrected, we resume the flattening, until we obtain the stan-
dard 3–simplex T1. This completes the description of the triangulation in Theorem 2.5,
part (ii) (see also Appendix A).

7



Step 3. The position of the vertices Fi on the equilateral face of T1 is now different
from their position on the face of T0, because we had to move Fi during the correcting
process in Step 2. So in the triangulation of T0 constructed in Step 1 we move all 12
vertices corresponding to Fi to the position matching with the standard Ti. It turns out
that it is then enough to scale the interior structure to obtain an acute triangulation (see
Appendix A).

Now we attach acute triangulations of all Ti, constructed in Steps 2 and 3, to obtain
an acute triangulation of the cube (see Remark 2.6 below). Similarly, by attaching eight
copies of the standard 3–simplex triangulated as in Step 2, we obtain an acute triangulation
of the regular octahedron.

For the last two Platonic solids, note that the regular icosahedron has a straightforward
acute triangulation as a union of cones from the center to the facets. Finally, for the
regular dodecahedron, first subdivide it into a union of 120 path tetrahedra. Then take
their special subdivision and realize it metrically in a similar manner as with the standard
3–simplex. We omit the details. �

Remark 2.6. The animation of our triangulation of the 3–cube is available at
http://www.mimuw.edu.pl/~erykk/papers/acute.html.

For the details and the exact values of all the parameters which have been guessed, see
the implementation of above algorithm, available with the animation.

3 Dehn–Sommerville equations in dimension 4

In this short section we present some known results in geometric combinatorics.
Denote by fi(M), fi(∂M) (we later abbreviate this to fi, f

∂
i ), the number of i–

dimensional simplices of a triangulation of a compact m–dimensional homology manifold
M and its boundary ∂M . Recall the following Dehn–Sommerville type equations (see
Appendix ?? for the history of this generalization).

Theorem 3.1 ([Kla, Theorem 1.1] and [NS]). Let M be a compact m–dimensional trian-
gulated homology manifold with boundary. For k = 0, . . . ,m we have

fk(M)− fk(∂M) =
m∑
i=k

(−1)i+m
(
i+ 1
k + 1

)
fi(M).

If m = 4, then for k = 1, 2 we obtain the following.

Corollary 3.2. If M is 4–dimensional, and fi = fi(M), f∂i = fi(∂M), then:

(i) 2f1 − f∂1 = 3f2 − 6f3 + 10f4,

(ii) −f∂2 = −4f3 + 10f4.

These equalities will be used repeatedly in the next two sections.

4 Rich triangulations of 4–manifolds

In this section we prove the following combinatorial result on rich triangulations (see
Definition 2.2) of 4–dimensional homology manifolds. We keep the notation fi, f

∂
i from

Section 3.
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Theorem 4.1. Every rich triangulation of a compact 4–dimensional homology manifold
M with Euler characteristic χ satisfies

2f0 ≤ 2χ+ f∂1 .

In particular, if M is closed, then f0 ≤ χ.

Before we present the proof of the theorem, let us give the following four corollaries in
the case when the homology manifold M is closed.

Proof of theorems C and E. A periodic triangulation τ of R4 descends to a triangula-
tion τ ′ of a 4–torus. Since the Euler characteristic of a 4–torus equals 0, by Theorem 4.1,
triangulation τ ′ is not rich. Hence, by Observation 2.1, τ is not acute. This proves
Theorem E. For Theorem C, observe that an acute triangulation of the 4–cube could be
promoted, by reflecting, to a periodic acute triangulation of R4. For the isosceles or-
thoscheme, observe that it tiles the cube and thus (periodically) the whole space R4 by
reflections. Similarly, albeit less obviously, the cube corner 4–simplex tiles the space R4

according to reflections of the affine Lie group D̃4. �

Proof of Theorem B. Let v be an interior vertex and let ρ be a codimension 5 simplex
(a vertex for R5, an edge for R6 etc) containing v. The link L of ρ is a 4–dimensional
homology sphere, hence its Euler characteristic equals 2. Since L is 4–dimensional, it must
have at least 6 vertices. Hence, by Theorem 4.1, L is not rich. Thus the link of one of the
codimension 2 simplices containing ρ is a cycle of length shorter than 5. Hence one of the
dihedral angles adjacent to v is not acute. �

Proof of Theorem 4.1. Let τ be a rich triangulation of M . We compute the number N
of flags (ρ2 ⊂ ρ4) of a 2–simplex ρ2 contained in a 4–simplex ρ4. On one hand, it is equal
to 10f4, since each 4–simplex has ten 2–dimensional faces. On the other hand, by richness,
each interior 2–simplex (there are f2−f∂2 of those) is contained in at least five 4–simplices.
Thus, we have:

(1) N = 10f4 ≥ 5(f2 − f∂2 ).

By the definition of the Euler characteristic, we have:

(2) χ− f0 = −f1 + f2 − f3 + f4.

Applying consecutively formula (2), then Corollary 3.2 parts (i) and (ii), and formula (1),
we obtain:

2(χ− f0) + f∂1 = −2f1 + 2(f2 − f3 + f4) + f∂1 =

= −(f∂1 + 3f2 − 6f3 + 10f4) + 2(f2 − f3 + f4) + f∂1 =

= −f2 + 4f3 − 8f4 = −f2 + (f∂2 + 10f4)− 8f4 =

= 2f4 − (f2 − f∂2 ) ≥ 0,

as desired. �
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5 Acute triangulations of R4

In this section we address the problem whether there is an acute triangulation of R4. We
know already that every such acute triangulation of R4 cannot be periodic (Theorem E).

We say that a triangulation of Rp has bounded geometry if there is a global upper bound
on the ratio of edge lengths in every p–simplex.

Theorem 5.1. There is no acute triangulation of R4 with bounded geometry.

This result easily implies Theorem F, as the following argument shows.

Proof of Theorem F modulo Theorem 5.1. If the dihedral angles are bounded away
from π

2 , then the angles of 2–simplices are bounded away from π
2 (see e.g. [Kř́ı]). Hence the

angles of 2–simplices are also bounded away from 0. By the sine law, this gives a bound
on the ratio of lengths of edges in each 2–simplex, which results in a bound of the ratio of
lengths of edges in each 4–simplex. �

Now Theorem 5.1 follows from the following intermediate results which are proved in
Appendix B.

Definition 5.2. Let G = (V,E) be a simple connected (locally finite) infinite graph, and
let Ω ⊂ V be a finite subset of vertices. Denote by ∂Ω the vertex-boundary of Ω, defined
as the subset of V \ Ω consisting of vertices adjacent to vertices in Ω.

We say that I : Z≥0 → Z≥0 is an isoperimetric function for G, if the inequality I(|Ω|) ≤
|∂Ω| holds for every finite Ω ⊂ V .

Proposition 5.3. The 1–skeleton of any acute triangulation of R4 with bounded geometry
has linear isoperimetric function.

The following result gives a direct contradiction to Proposition 5.3. Following Benjamini–
Curien [BC, Section 2.2], we recall the following definition:

Definition 5.4. Let G = (V,E) be a locally finite connected graph and let Γ(v) be the
set of all semi-infinite self avoiding simplicial paths in G starting from v ∈ V . For any
m : V → R+ (so called metric), the length of a path γ in G is defined by

Lengthm(γ) =
∑
v∈γ

m(v).

If m ∈ Lp(V ), we denote by ||m||p the usual Lp norm. The graph G is p–parabolic if
the p–extremal length of Γ(v),

sup
m∈Lp(V )

inf
γ∈Γ(v)

Lengthm(γ)p

||m||pp

is infinite. This definition does not depend on the choice of v ∈ V .

Lemma 5.5. Let G be the 1–skeleton of a triangulation of Rp with bounded geometry,
where p ≥ 2. Then G is p–parabolic.

This lemma can be obtained from the Bonk and Kleiner result [BK, Corollary 8.8]. To
make the proof complete and self-contained, we include a concise proof in Appendix B.

To finish the proof, we need the following recent result by Benjamini and Curien:
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Proposition 5.6 ([BC, Proposition 4.1(1)]). Let G = (V,E) be an infinite locally finite
connected graph. If G is p–parabolic and I is an isoperimetric function, then for D > p
we have

∞∑
k=1

1

I(k)
p

p−1

=∞.

Proof of Theorem 5.1. Assume that there is is an acute triangulation τ of R4 with
bounded geometry. Let G be the 1–skeleton of τ . By Lemma 5.5 we have that the
graph G is 4–parabolic. By Proposition 5.6, we have that k → Ck is not an isoperimetric
function for G. This contradicts Proposition 5.3. �

6 Conclusion

We presented both positive and negative results on acute triangulations of polytopes and
acute triangulations of the space Rn. The results suggest that it is often possible to obtain
acute triangulation in R3. We do this explicitly for all Platonic solids. Independently
with [VHZG], this is is the first ever construction of a non-trivial acute triangulation. Our
construction is based on geometry of the 600–cell, a regular polytope in R4 and topological
considerations. In addition, we resolved an old folklore conjecture of Gardner, et al. finding
that the n–cube has an acute triangulation if and only if n ≤ 3.

In the negative direction, we show that the standard finite element idea cannot possibly
work in dimensions higher than 4, since there are no periodic triangulations in R4 and any
non-trivial triangulations in Rn, n ≥ 5. We proved that several examples of convex poly-
topes in R4 (the 4–cube, the 4–dimensional cube corner, and the 4–dimensional isosceles
orthoscheme) do not have an acute triangulation. These are the first (correct) negative
results in higher dimension. Finally, we give a partial solution of Kř́ıžek’s conjecture
(Theorem F).8

8In fact, we do not believe in the conjecture in full generality (see [KPP] for the reasoning).
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