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Abstract

We study the problem of acute triangulations of convex polyhedra and the
space Rn. Here an acute triangulation is a triangulation into simplices whose
dihedral angles are acute. We prove that acute triangulations of the n–cube
do not exist for n ≥ 4. Further, we prove that acute triangulations of the
space Rn do not exist for n ≥ 5. In the opposite direction, in R3, we present a
construction of an acute triangulation of the cube, the regular octahedron and
a non-trivial acute triangulation of the regular tetrahedron. We also prove
nonexistence of an acute triangulation of R4 if all dihedral angles are bounded
away from π/2.

1 Introduction

The subject of acute triangulations is an important area of Discrete and Com-
putational Geometry, with a number of connections to other areas and some real
world applications. Until recently, most results dealt with the 2–dimensional case,
where the problem has been largely resolved. In the last few years, several pa-
pers [ESÜ, Kř́ı, VHZG] broke the dimension barrier in both positive and negative
direction (see below). In this paper we continue this exploration, nearly completely
(negatively) resolving the problem in dimension 4 and higher, and making further
advancement in dimension 3.

The problem of finding acute triangulations has a long history in classical geome-
try, and is elegantly surveyed in [BKKS], which argues that it goes back to Aristotle.
In recent decades, it was further motivated by the finite element method which re-
quires “good” meshes (triangulations of surfaces) for the numerical algorithms to
run. Although the requirements for meshes largely depend on the algorithm, the
sharp angle conditions seem to be a common feature, and especially important in
this context. We refer to [SF] for the introduction to the subject, and to [Sche] for
the state of art.

Another motivation comes from the recreational literature, where the subject
of dissections has been popular in general (see [Lin]), and of acute triangulations
in particular [CL, Man]. In this context, the problem of acute triangulations of a
square, cube, and hypercubes seem to be of special interest [Epp].

An acute triangulation is a dissection into acute simplices (i.e. with acute dihe-
dral angles) which form a simplicial complex, so e.g. in the plane, a vertex of one
simplex cannot lie in the interior of an edge of another. (See Figure 1, where on the
left we have a dissection of the square which forms a simplicial complex, and on the
right we have a dissection which does not.)
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Fig. 1

In one of the first papers on the subject, Burago and Zalgaller proved in [BZ]
that any non-convex polygon (possibly, with holes) has an acute triangulation.
Unfortunately, their argument was largely forgotten as it was inexplicit and did
not give a bound on the number of triangles required. In a long series of pa-
pers [BE, BGR, BMR, Mae, Sar, Yuan] first polynomial, and then linear bounds
were obtained for non-obtuse, and, eventually, for acute triangulations. We refer
to [Zam] for the historical outline, a short survey, and further references.

In higher dimensions, several results have been recently obtained. First, Epp-
stein, Sullivan and Üngör [ESÜ] showed that the space R3 can be triangulated into
acute tetrahedra, by adopting a classical tiling construction due to Sommerville.
Then, Kř́ıžek [Kř́ı] showed that no vertex in Rn for n ≥ 5 can be surrounded by a
finite number of acute simplices1 and conjectured that the space R4 also cannot be
triangulated into acute tetrahedra. Finally, and most recently, VanderZee, Hirani,
Zharnitsky and Guoy [VHZG] used an advanced numerical simulation technique
to find an acute triangulation for the (usual) cube in R3. Their construction is
independent of ours and uses fewer tetrahedra.

In this paper we prove several results in higher dimensions.

Theorem A (Theorems 2.7 and 2.8(i)). There exists an acute triangulation of the
cube, the regular octahedron, and a non-trivial acute triangulation of the regular
tetrahedron.

Roughly, we first triangulate the cube into a regular 3–simplex and four standard
3–simplices (and the octahedron into eight standard ones). We then subdivide each
of these 3–simplices into 543 pieces, to obtain combinatorially what we call the
special subdivision (based on the 600–cell, see Section 2). This approach was used
previously by Przytycki and Świątkowski in [PŚ] to construct the so called flag-no-
square subdivisions in dimension 3 (see Definition 2.3). Let us mention here that
this “curvature” condition was surveyed in the appendix of [PŚ], and that it was
used originally to construct Gromov hyperbolic groups with prescribed boundaries.
Let us repeat that the case of the cube in R3 was independently resolved in [VHZG].

In the opposite direction, we prove the following result:

Theorem B (Corollary 4.3). There is no periodic acute triangulation of the space R4.
In particular, there is no acute triangulation of the 4–cube.

The first assertion of Theorem B implies the second one, as 4–cubes tile the
space (see Section 4). A short combinatorial proof of Theorem B is based on the
generalized Dehn–Sommerville equations. This method also gives new results on
flag-no-square triangulations (see Section 4). Moreover, it allows to complete the
acute triangulations picture with the following.
1There is a crucial error in this proof. We refer to Subsection 6.3 for the details.
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Theorem C (Corollary 4.5, [Kř́ı, Theorem 6.2]). There is no triangulation of a
polyhedron in Rn, for n ≥ 5, which contains an interior vertex such that all dihedral
angles adjacent to it are acute.

In particular, there is no acute triangulation of Rn and the n–cube for n ≥ 5.

Finally, we prove the following most general result:

Theorem D (Corollary 5.2). For every ε > 0, there is no triangulation of the
space R4 into simplices with dihedral angles less than π

2
− ε.

The proof of Theorem D relies on the generalized Dehn–Sommerville equations
and on the relations between isoperimetric inequalities and parabolicity of infinite
graphs.

The paper is structured as follows. In Section 2 we study acute triangulations
in R3 and prove Theorem A. In a short Section 3 we recall the generalized Dehn–
Sommerville equations. Then, in Section 4, we study their consequences for rich
triangulations (combinatorial consequence of both acute and flag-no-square, see Def-
inition 2.2), and prove Theorem B and Theorem C. We then switch our attention
to Theorem D in Section 5.

Acknowledgements. This work was initiated at Université Paul Sabatier in
Toulouse, where the second and the third author were visiting. We thank the uni-
versity and Jean-Marc Schlenker for their hospitality.

We thank Marc Bourdon, who suggested the final argument of Section 5. We
are grateful to Anil Hirani for telling us about [VHZG] and explaining the ideas
behind this work, and to Evan VanderZee for giving us his numerical estimates. We
are thankful to Michal Kř́ıžek for confirming the crucial error in his paper [Kř́ı] and
telling us about a forthcoming correction. We also thank Itai Benjamini, Isabella
Novik, Vic Reiner, Egon Schulte and Alex Vladimirsky for help with the references.

2 Acute triangulations of the 3–cube and the oc-
tahedron

In this section we describe acute triangulations of the 3–cube and the octahedron.
The starting point is the following observation:

Observation 2.1. The link of an interior edge of an acute triangulation of a poly-
hedron in R3 is a simplicial loop of length at least 5.

In view of this observation, let us make the following definition:

Definition 2.2. A triangulation of an n–manifold is rich if the links of all interior
(n− 2)–simplices are loops of length at least 5.

Note that being rich is a purely combinatorial (i.e. non-metric) property. Obser-
vation 2.1 states that an acute triangulation of the 3–cube (or a regular octahedron)
must be rich. We compare this definition with the following notion:
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Definition 2.3. A simplicial complex (or a triangulation) is called flag-no-square, if
it is flag (i.e. each set of vertices pairwise connected by edges spans a simplex) and
each simplicial loop of length four has a diagonal (i.e. a pair of opposite vertices of
the loop spans an edge).

Remark 2.4. Every flag-no-square triangulation is rich.

Przytycki–Świątkowski [PŚ, Corollary 2.14] proved that every 3–dimensional
polyhedral complex admits a flag-no-square subdivision. We recall this construc-
tion, since we also use it to subdivide the 3–cube and the octahedron.

Consider the 600–cell, the convex regular 4–polytope with Schläfli symbol {3; 3; 5}
(see, e.g., [Cox]). Denote by X600 the boundary of the 600–cell, a 3–dimensional
simplicial polyhedron homeomorphic to the 3–dimensional sphere. It consists of 600
3–simplices2 and has 120 vertices. Its vertex links are icosahedra and its edge links
are pentagons. We first focus on the combinatorial simplicial structure of X600.
Denote by X543 the subcomplex of X600 which we obtain by removing from X600

the interiors of all simplices intersecting a fixed 3–simplex. (The number 543 in the
subscript refers to the number of 3–simplices in X543.)

Lemma 2.5 ([PŚ, Lemmas 2.5 and 2.7]).

(1) X543 is topologically a 3–ball. It is flag-no-square.

(2) Its boundary is a 2–sphere simplicially isomorphic to the simplicial complex which
we obtain from the boundary of a 3–simplex by subdividing each face as in Figure 2.

Fig. 2

We recall the following definition:

Definition 2.6 ([PŚ, Definitions 2.2 and 2.8]). Given a simplicial complex of di-
mension at most 3, its special subdivision is the simplicial complex obtained by:

(i) subdividing each edge into two (by adding an extra vertex in the interior of the
edge),

(ii) subdividing each 2–simplex as in Figure 2,

(iii) subdividing each 3–simplex so that it becomes isomorphic to X543.

2To streamline and simplify the presentation, we refer to triangles as 2–simplices, to tetrahedra
as 3–simplices, etc.
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Fig. 3

We are ready to describe the combinatorial structure of our triangulation of the
3–cube and the octahedron. Assume that the cube lies in R3 with the vertices at
points (±1,±1,±1). Consider the triangulation W of the cube into five 3–simplices
so that one of them (denote it by T0) has vertices (1, 1, 1), (−1,−1, 1), (−1, 1,−1) and
(1,−1,−1), while the remaining four 3–simplices (denote them T1, . . . , T4) are the
components of the complement to T0 in the cube (see Figure 3). Note that T1, . . . , T4

are congruent (equal up to a rigid motion); we call such 3–simplices standard (see
e.g. [Pak]).3 Let W ∗ be the special subdivision of W defined as above.

Similarly, let Y be the triangulation of the octahedron into eight standard 3–
simplices obtained as cones from the center over the faces. Let Y ∗ be the special
subdivision of Y .

By [PŚ, Proposition 2.13], subdivisions W ∗ and Y ∗ are both flag-no-square.
Thus, they are rich and have a potential of giving an acute realization. This is
true indeed, and the main result of this section is the following theorem:

Theorem 2.7 (part of Theorem A).

(1) There is an acute triangulation of the 3–cube, which is combinatorially equivalent
to W ∗.

(2) There is an acute triangulation of the octahedron, which is combinatorially equiv-
alent to Y ∗.

In fact, we provide acute triangulations of all 3–simplices of W and Y , combi-
natorially equivalent to X543, and matching on common part of the boundary. In
other words, we prove the following intermediate result:

Theorem 2.8 (part of Theorem A). There is a (non-trivial) acute triangulation,
combinatorially equivalent to X543, of

(i) the regular 3–simplex,

(ii) the standard 3–simplex.

3This tetrahedron is also called the cube-corner.
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Below we describe the construction for the 3–cube. At some points we use a
computer program. We provide the exact position of all vertices of both triangula-
tions from Theorem 2.8 in the appendix. There are three steps of the construction.
First, we construct an acute triangulation of T0. Then we “flatten” it to obtain an
acute triangulation of T1. Then we construct another acute triangulation of T0 so
that it matches the one of T1 on the common part of the boundary.

Step 1. Note that the vertices of the 600–cell, whose boundary we called X600, lie
on a sphere in R4. Moreover all 3–simplices in this realization of X600 are regular,
hence acute. Let now X̃543 be the realization of X543 in R3, whose vertices are
obtained by stereographic projection of the R4 realization. We choose the center of
the projection to be the center of the (spherical) 3–simplex in X600 disjoint from
X543. It turns out that this mapping does not disturb the angles significantly.

We move the vertices of ∂X̃543 radially so that they arrange on the boundary of
a regular 3–simplex which we identify with T0. If we scale the size of ∂T0 correctly,
this triangulation of T0 is already acute, i.e. it satisfies Theorem 2.8(i). However,
it is not the one listed in the appendix, we will modify it later in Step 3 (see also
Figure 4).

Fig. 4

Step 2. The subdivision of the standard 3–simplex, say T1, is more difficult. Our
computer program uses the following algorithm to find the position of the vertices.
We “flatten” the acute triangulation of T0 obtained in Step 1 in order to obtain
an acute triangulation of T1. We gradually move one of the boundary vertices
(marked A on Figure 5) towards the center, keeping the three vertices marked C in
the points where the circles inscribed into triangles ABiBj meet the edges ABi. We
also keep the nine points marked D on their faces, and scale and translate together
all the interior vertices.
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Fig. 5

Whenever some angle stops being acute during this operation, we suspend the
flattening process to correct the angles. This is done by slightly moving the respon-
sible vertices so that the angle becomes smaller. Vertices are moved only in a way
that does not disturb the combinatorial structure, i.e. points A,Bi, Ci, Ei are not
moved at all; movement of Di and Fi is restricted to their faces; all the interior
vertices except the two outermost layers (of 12 and 16 vertices, respectively) are
moved together so that the structure is not disrupted.

When all the angles are corrected, we resume the flattening, until we obtain
the standard 3–simplex T1. This completes the description of the triangulation in
Theorem 2.8, part (ii) (see also Figure 6 and the appendix).

Fig. 6

Step 3. The position of the vertices Fi on the equilateral face of T1 is now different
from their position on the face of T0, because we had to move Fi during the correcting
process in Step 2. So in the triangulation of T0 constructed in Step 1 we move all
12 vertices corresponding to Fi to the position matching with the standard Ti. It
turns out that it is then enough to scale the interior structure to obtain an acute
triangulation (see the appendix).

Now we attach acute triangulations of all Ti, constructed in Steps 2 and 3, to
obtain a triangulation satisfying conditions of Theorem 2.7, part (1) (see Figure 7
and Remark 2.9).
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Fig. 7

Finally, we obtain a triangulation satisfying conditions of Theorem 2.7, part (2),
by attaching eight copies of the standard 3–simplex triangulated as in Step 2. For
further discussion on the construction we refer to Subsection 6.1.

Remark 2.9. The animation of our triangulation of the 3–cube is available at
http://www.mimuw.edu.pl/~erykk/papers/acute.html.

For the details and the exact values of all the parameters which have been guessed,
see the implementation of above algorithm, available with the animation.

3 Dehn–Sommerville equations in dimension 4

In this short section we present some known results in geometric combinatorics.
Denote by fi(M), fi(∂M) (we later abbreviate this to fi, f

∂
i ), the number of

i–dimensional simplices of a triangulation of a compact m–dimensional manifold M
and its boundary ∂M . Recall the following Dehn–Sommerville type equations (see
Subsection 6.8 for the history of this generalization).

Theorem 3.1 ([Kla, Theorem 1.1]). Let M be a compact m–dimensional triangu-
lated manifold with boundary. For k = 0, . . . ,m we have

fk(M)− fk(∂M) =
m∑
i=k

(−1)i+m
(
i+ 1

k + 1

)
fi(M).

If m = 4, then for k = 1, 2 we obtain the following.

Corollary 3.2. If M is 4–dimensional and we abbreviate fi = fi(M), f∂i = fi(∂M),
then

(i) 2f1 − f∂1 = 3f2 − 6f3 + 10f4,

(ii) −f∂2 = −4f3 + 10f4.

These equalities will be used repeatedly in the next two sections.
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4 Rich triangulations of 4–manifolds

In this section we prove the following combinatorial result on rich triangulations (see
Definition 2.2) of 4–manifolds. This addresses Przytycki–Świątkowski [PŚ, Ques-
tions 5.8(3)]. We keep the notation fi, f

∂
i from Section 3.

Theorem 4.1. Every rich triangulation of a compact 4–manifold M with Euler
characteristic χ satisfies

2f0 ≤ 2χ+ f∂1 .

In particular, if M is closed, then f0 ≤ χ.

Before we present the proof of the theorem, let us give the following four corol-
laries in the case when manifold M is closed.

Corollary 4.2. Any 4–dimensional closed manifold M has only finitely many rich
triangulations. In particular M has only finitely many flag-no-square triangulations.

Corollary 4.3 (Theorem B). There is no periodic (i.e. invariant under a cocompact
group of translations) acute triangulation of R4. In particular, there is no acute
triangulation of the 4–cube.

Proof. A periodic triangulation τ of R4 descends to a triangulation τ ′ of a 4–torus.
Since the Euler characteristic of a 4–torus equals 0, by Theorem 4.1, triangulation τ ′

is not rich. Hence, by Observation 2.1, τ is not acute. This proves the first part of
the corollary. For the second part, observe that an acute triangulation of the 4–cube
could be promoted, by reflecting, to a periodic acute triangulation of R4. �

Let us show also that the theorem gives a much simplified proof of the following
known result:

Corollary 4.4 ([JŚ, Section 2.2]). There are no rich (in particular no flag-no-
square) triangulations of closed n–manifolds, for n ≥ 5.

Proof. The link L of any codimension 5 simplex of a triangulation σ of a closed
n–manifold (for n ≥ 5) is a 4–dimensional homology sphere, which implies that its
Euler characteristic χ equals 2. Since L is 4–dimensional, it must have at least 6
vertices. Hence, by Theorem 4.1, L is not rich. Thus, triangulation σ is also not
rich, which proves the result. �

In the same way one we obtain the following theorem (cf. Subsection 6.3):

Corollary 4.5 (Theorem C, [Kř́ı, Theorem 6.2]). There is no triangulation of a
polyhedron in Rn, for n ≥ 5, which contains an interior vertex such that all dihedral
angles adjacent to it are acute.

Proof. Let v be an interior vertex and let ρ be a codimension 5 simplex (a vertex for
R5, an edge for R6 etc) containing v. The link L of ρ is a 4–dimensional homology
sphere, hence its Euler characteristic equals 2. Since L is 4–dimensional, it must
have at least 6 vertices. Hence, by Theorem 4.1, L is not rich. Thus the link of
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one of the codimension 2 simplices containing ρ is a cycle of length shorter than 5.
Hence one of the dihedral angles adjacent to v is not acute. �

Finally we provide the following.

Proof of Theorem 4.1. Let τ be a rich triangulation of M . We compute the
number N of flags (ρ2 ⊂ ρ4) of a 2–simplex ρ2 contained in a 4–simplex ρ4. On one
hand, it equals 10f4, since each 4–simplex has ten 2–dimensional faces. On the other
hand, by richness, each interior 2–simplex (there are f2 − f∂2 of those) is contained
in at least five 4–simplices. Thus, we have:

(1) N = 10f4 ≥ 5(f2 − f∂2 ).

By the definition of the Euler characteristic, we have:

(2) χ− f0 = −f1 + f2 − f3 + f4.

Applying consecutively formula (2), then Corollary 3.2 parts (i) and (ii), and for-
mula (1), we obtain:

2(χ− f0) + f∂1 = −2f1 + 2(f2 − f3 + f4) + f∂1 =

= −(f∂1 + 3f2 − 6f3 + 10f4) + 2(f2 − f3 + f4) + f∂1 =

= −f2 + 4f3 − 8f4 = −f2 + (f∂2 + 10f4)− 8f4 =

= 2f4 − (f2 − f∂2 ) ≥ 0,

as desired. �

5 Acute triangulations of R4

In this section (see also Section 6.2) we address the problem whether there is an
acute triangulation of R4. We know already that every such acute triangulation of
R4 cannot be periodic (Corollary 4.3). Here we present the following stronger result.

We say that a triangulation of Rp has bounded geometry if there is a global
upper bound on the ratio of edge lengths in every p–simplex.

Theorem 5.1. There is no acute triangulation of R4 with bounded geometry.

This result can be restated in the following (equivalent) form:

Corollary 5.2 (Theorem D). There is no acute triangulation of R4 with dihedral
angles bounded away from π

2
.

Proof. If the dihedral angles are bounded away from π
2
, then the angles of 2–

simplices are bounded away from π
2

(see e.g. [Kř́ı]). Hence the angles of 2–simplices
are also bounded away from 0. By the sine law, this gives a bound on the ratio of
lengths of edges in each 2–simplex, which results in a bound of the ratio of lengths
of edges in each 4–simplex. �

Before we prove Theorem 5.1, we need a few preliminary results.
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Lemma 5.3. Let τ be a triangulation of Rp with bounded geometry. Then the 1–
skeleton of τ has bounded degree.

Proof. All p–simplices of τ are affinely quasi-conformal to the regular p–simplex
with a universal constant. Hence the spherical volume contributed by any p–simplex
in the link of any vertex of τ is bounded from below. On the other hand, the total
volume of the link is the volume of the unit (p−1)–sphere. This bounds the number
of p–simplices, and in particular the number of lower dimensional simplices, sharing
each vertex. �

Lemma 5.4. Let M be a compact connected 4–dimensional PL submanifold of R4.
Then the Euler characteristic of M is at most 1 + rkH2(∂M).

Proof. First observe that the natural map H2(M)→ H2(M,∂M) is trivial. Indeed,
this mapping factors through

H2(M)→ H2(S4)→ H2(S4, S4 \M) = H2(M,∂M),

where S4 is the one point compactification of R4 with H2(S4) = 0. Hence the
natural map H2(∂M) → H2(M) is onto and rkH2(M) ≤ rkH2(∂M). Thus, the
Euler characteristic χ of M satisfies

χ ≤ rkH0(M) + rkH2(M) = 1 + rkH2(M) ≤ 1 + rkH2(∂M),

as desired. �

Theorem 4.1 and Lemma 5.4 now imply the following result:

Corollary 5.5. Let M be a compact 4–manifold which is a subcomplex of a rich
triangulation of R4. If fi, f∂i are defined as in Section 3, then

2f0 ≤ 2(1 + f∂2 ) + f∂1 .

We turn our attention now to the study of isoperimetric functions on infinite
graphs.

Definition 5.6. Let G = (V,E) be a simple connected (locally finite) infinite graph,
and let Ω ⊂ V be a finite subset of vertices. Denote by ∂Ω the vertex-boundary of Ω,
defined as the subset of V \ Ω consisting of vertices adjacent to vertices in Ω.

We say that I : Z≥0 → Z≥0 is an isoperimetric function for G, if the inequality
I(|Ω|) ≤ |∂Ω| holds for every finite Ω ⊂ V .

Proposition 5.7. The 1–skeleton of any acute triangulation of R4 with bounded
geometry has linear isoperimetric function.

Proof. Let G = (V,E) be the 1–skeleton of an acute triangulation of R4 with
bounded geometry. Consider any finite Ω ⊂ V . Let M be the subcomplex (a 4–
dimensional PL submanifold) which is the closure of the union of all simplices meet-
ing Ω. Then Ω ⊂ M and vertices in ∂M lie in ∂Ω. By Lemma 5.3, f∂1 and f∂2 are
bounded above by Cf∂0 , for some C. Hence, by Corollary 5.5, we have

|Ω| ≤ f0 ≤ 1 + f∂2 +
1

2
f∂1 ≤ 1 +

3

2
Cf∂0 ≤ (1 +

3

2
C)f∂0 ≤ (1 +

3

2
C)|∂Ω|,
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as desired. �

Summarizing, we showed that acute triangulations with bounded geometry have
a linear isoperimetric function. In the remaining part of this section, we show
that this leads to a contradiction. The argument that follows was suggested to us
by Marc Bourdon. Following Benjamini–Curien [BC, Section 2.2], we recall the
following definition:

Definition 5.8. Let G = (V,E) be a locally finite connected graph and let Γ(v) be
the set of all semi-infinite self avoiding simplicial paths in G starting from v ∈ V .
For any m : V → R+ (so called metric), the length of a path γ in G is defined by

Lengthm(γ) =
∑
v∈γ

m(v).

If m ∈ Lp(V ), we denote by ||m||p the usual Lp norm. The graph G is p–parabolic
if the p–extremal length of Γ(v),

sup
m∈Lp(V )

inf
γ∈Γ(v)

Lengthm(γ)p

||m||pp

is infinite. This definition does not depend on the choice of v ∈ V .

Lemma 5.9. Let G be the 1–skeleton of a triangulation of Rp with bounded geometry,
where p ≥ 2. Then G is p–parabolic.

This lemma can be obtained from the Bonk and Kleiner result [BK, Corollary
8.8]. To make the proof complete and self-contained, we include a concise proof.

Proof. Let `, L : V → R+ be the length functions of the shortest and the longest
edge adjacent to a vertex. Since our triangulation has bounded geometry, by
Lemma 5.3 there is a constant C > 0, such that L(v) ≤ C`(v) for all v ∈ V .

We fix a basepoint vertex v ∈ V . Let m : V → R≥0 be a function defined by

m(v) =
`(w)

||w − v||
for all w ∈ V, w 6= v,

and let m(v) = 0. For every R ≥ 0, define mR : V → R≥0 by mR(w) = m(w), for
all w ∈ V ∩ BeR(v), and mR(w) = 0 for all w /∈ BeR(v). Here and throughout this
section, Bt(v) denotes the closed ball in G of distance t, around vertex v. We claim
that

(3) inf
γ∈Γ(v)

LengthmR
(γ)p

||mR||pp
→∞ as R→∞,

and therefore, the p–extremal length of Γ(v) is infinite.

Step 1. Let γ ∈ Γ(v). We begin with bounding LengthmR
(γ) from below. Let ω be

the 1–form on Rp which is zero on BL(v)(v) and equal dr
r

outside BL(v)(v), where r
is the radial coordinate w.r.t. the basepoint v. Let γR be the maximal initial part
of γ consisting of vertices in BeR(v) and edges starting at vertices in BeR(v). Since
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γR starts at v and eventually leaves BeR(v), we have that
∫
γR
ω ≥ R − lnL(v). On

the other hand, for an edge f of γR starting at w 6= v we have∫
f

ω ≤ L(w)

||w − v||
.

Altogether, we obtain:

LengthmR
(γ) =

∑
w∈γ

mR(w) ≥
∑
w∈γR

mR(w) =
∑
w∈γR

m(w) ≥

≥ 1

C

∑
w∈γR\v

L(w)

||w − v||
≥ 1

C

∑
f∈γR

∫
f

ω =
1

C

∫
γR

ω ≥ 1

C
(R− lnL(v)).

Step 2. We now bound ||mR||p from above. With each vertex w ∈ V we associate
the ball B(w) of radius l(w)

2
centered at w. All these balls have disjoint interiors.

Let σ be the p–form on Rp which is zero on B(v) and is equal to 1
rp vol out-

side B(v), where vol denotes the Euclidean volume form.
Let w 6= v. We estimate σ(B(w)). Since the radius of B(w) is at most ||w−v||

2
,

we have B(w) ⊂ B 3||w||
2

(v). Hence:

σ(B(w)) =

∫
B(w)

vol
rp
≥
(

2

3||w − v||

)p
vol(B(w)) =

=

(
2

3||w − v||

)p
Vp

(
l(w)

2

)p
= cmp(w),

for a universal constant c > 0, where Vp is the volume of the unit p–ball. Hence

||mR||pp =
∑

w∈B
eR (v)

mp(w) ≤ 1

c

∑
w∈B

eR (v)

σ(B(w)) ≤ 1

c
σ(B 3

2
eR(v)).

The latter is bounded above by Ap−1(ln 3
2

+ R − ln l(v)
2

), where Ap−1 is the volume
of the unit (p− 1)–sphere, and that is a linear function in R.

Combining the steps. In Step 1 we have bounded the numerator of (3) below by
a polynomial of degree p in R. In Step 2 we have bounded the denominator of (3)
above by a function linear in R. Hence the p–extremal length of Γ(v) is infinite, as
desired. �

To finish the proof, we need the following known result:

Proposition 5.10 ([BC, Proposition 4.1(1)]). Let G = (V,E) be an infinite locally
finite connected graph. If G is p–parabolic and I is an isoperimetric function, then
for D > p we have

∞∑
k=1

1

I(k)
p

p−1

=∞.
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Proof of Theorem 5.1. Assume that there is is an acute triangulation τ of R4

with bounded geometry. Let G be the 1–skeleton of τ . By Lemma 5.9 we have that
the graph G is 4–parabolic. By Proposition 5.10, we have that k → Ck is not an
isoperimetric function for G. This contradicts Proposition 5.7. �

6 Final remarks and open problems

6.1

It is unclear how far the results of Section 2 extend to other polytopes in R3. For
example, the regular icosahedron has an easy acute triangulation using cones from
the center over every facet. Similarly, the regular dodecahedron, one can easily
subdivide it into 120 congruent tetrahedra all meeting at the center. It turns out
that the special subdivision of this triangulation has an acute realization in this case
as well. For the subdivision of one of the congruent tetrahedra see

http://www.mimuw.edu.pl/~erykk/papers/acute.html.
Putting this together, we obtain the following result:

Theorem 6.1. All Platonic solids have non-trivial acute triangulations.

Now, it is possible that every convex polytope in R3 has an acute triangulation.
We conjecture this to be the case. Unfortunately, we are very far from proving
this, given that this paper and [VHZG] have the first examples of non-trivial acute
triangulations of convex polytopes (cf. [BKKS]). Perhaps, it is even possible that
every 3–dimensional abstract polyhedral manifold has an acute triangulation, in the
style of [BZ]. For example, we conjecture that the boundary of every convex polytope
in R4 has an acute triangulation. Of course, in the spirit of [BGR, Mae, Sar], the
problem might prove much easier for non-obtuse triangulation.

Finally, numerical results would also be of interest. What is the smallest number
of tetrahedra required for a non-trivial acute triangulation of the regular tetrahe-
dron? For example, can one beat our record of 543? How about the cube? Can
one bound the smallest maximum dihedral angle? Dreaming of the future, can one
always find a linear size acute triangulation of a convex polytope in R3?

6.2

Although Kř́ıžek conjectured in [Kř́ı] (see also [BKKS]), that there are no acute
triangulations of the space R4, our results resolve only a special case of this problem.
The conjecture remains open in full generality, when the geometry of simplices is
unbounded. On the one hand, another (plausible) conjecture in [Kř́ı, BKKS] states
that locally such acute triangulation must have at least 600 simplices around each
vertex, making a construction of such triangulation exceedingly difficult. On the
other hand, in the plane and the space there are known very general combinatorial
tiling constructions which require an unbounded geometry (see e.g. [GMS, Schu]).
We conjecture that there exists an acute triangulation of R4, although we think
that to construct it, one first has to master acute triangulations in dimension 3 (see
Section 6.1), and in the spherical case (see Section 6.4 below).
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Similarly, what happens with individual convex polytopes in R4 is much less
clear, and will obviously depend on the polytope. For example, by analogy with
the icosahedron, there is an easy acute triangulation of the 600–cell. On the other
hand, it is unclear whether the 16–cell (the regular cross-polytope), the 24–cell
and the 120–cell have acute triangulations (we conjecture not). One is tempted
to conclude the 16–cell does not admit an acute triangulation, since it tiles the
space R4. Unfortunately, this argument is incorrect for the following reason. In
order to have consistency on the boundary, two subdivisions of a 16–cell adjacent by
the tetrahedra must have the opposite orientations. However, in the tiling, there are
three (an odd number) top dimensional cells around each codimension 2 simplex,
and thus not every triangulation of the 16–cell gives rise to a triangulation of R4.

Interestingly, the space tessellation argument does work for some notable poly-
topes in R4. For example, it is well known that the 4–cube can be dissected into
24 congruent orthoschemes4 (see e.g. [Cox]), in such a way that around each inte-
rior codimension 2 simplex there are 4 or 6 (an even number) orthoschemes. This
implies that such “isosceles” orthoscheme does not have an acute triangulation, be-
cause otherwise one could extend it by reflecting to an acute triangulation of the
4–cube.

In summary, we believe that finding a useful criterion for a polytope in R4 to
have an acute triangulation is a challenging problem, which we expect to be more
difficult than the 3–dimensional version.

6.3

We believe that the proof of our Theorem C given in [Kř́ı, Theorem 6.2] has a
crucial gap and is either incomplete or incorrect as written.5 On p. 387, in the
proof of Theorem 5.1, in the sentence “the sum of all dihedral angles of tetrahedra
around a given edge E from ∂P cannot be greater than 2π,” the author seems to
be referring to 3–faces of convex 4–polytope P , which would make this statement
true (and Lemma 3.3 in the paper applicable). However, throughout the paper, the
polytope P is in fact in R5, in which case the above sum is a priori unbounded. It
seems, this mistake has not been discovered until now. We should mention, however,
that the reduction of higher dimensions to dimension 5 given in [Kř́ı] (see the proof
of Theorem 6.2), is independent of Theorem 5.1 and completely correct.

6.4

It would be interesting to consider the spherical and hyperbolic analogues of the
acute triangulation problem. The spherical analogue might prove particularly in-
sightful as it might allow the use a dimension reduction in the Euclidean case (in
particular in the case of R4).

4They are also called path-simplices.
5After this paper was written, Michal Kř́ıžek graciously confirmed the error in his paper. He

informed us that he first learned about it in 2008 from Jan Brandts, and that he has prepared
a correction (to appear). Since neither the error nor the correction has been announced nor are
publicly available, we decided not to change our presentation and keep the details.
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6.5

The Burago–Zalgaller original result in [BZ] is a technical lemma used towards the
3–dimensional analogue of the classical Nash–Kuiper embedding theorem. This
result (by a different technique) was recently extended by Akopyan to higher di-
mensions [Ako], despite the absence of acute triangulations.

6.6

In the plane, one can start with a given triangulation and “improve it” by using
2–flips, by increasing the smallest angle in a triangle. This results in the Delaunay
triangulation which (among all triangulations on this set of vertices) has the largest
possible minimal angle, and has a number of other useful properties (though not
necessarily the smallest maximal angle). Thus, by strategically placing new points
into the interior of a polygon one can then efficiently construct a “good” triangu-
lation. In higher dimensions this approach breaks down for several reasons, both
due to the lack of connectedness of triangulations via flips, and non-monotonicity of
the angle functionals. We refer to [DRS, Pak] for an introduction and an extended
discussion of the problem.

Interestingly, a variation on the Delaunay approach does give useful meshes in R3,
as described in [VHGR]. The paper [VHZG] is a followup on this approach, which
uses a more refined idea of incremental changes in a triangulation, by moving the
vertices one at a time.

6.7

There is a large body of work on tessellations of the space by convex polyhedra
with bounded geometry. Perhaps the earliest, is the result of Alexandrov that in
every triangulation of the plane into bounded triangles the average degree of vertices
(when defined) must be at least 6 [Ale]. Another is a classical result by Niven that
convex n–gons of bounded geometry cannot tile the plane for n ≥ 7 [Niv] (see
also [Ful]). The idea is always to use the isoperimetric inequalities compared with
direct counting estimates, an approach which works in higher dimensions as well
(see e.g. [BS, KS, LM]). Our proof of Theorem D is a variation on the same line of
argument. We refer to [GS] for historical background and further references.

6.8

The classical Dehn–Sommerville equations are defined for f–vectors of simplicial
convex polytopes in Rd and (see e.g. [Pak, Section 8]). They are extended in a
number of directions, notably the beautiful flag f–vectors by Bayer and Billera,
leading to the cd-index (see [St]). The version for manifolds without boundary was
first given by Klee in [Klee]. It seems, the version with the boundary goes back to
Macdonald [Mac] and was rediscovered a number of times. We refer to [NS] for the
most general version of the equations, various applications, and further references.
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6.9

Let us note that the ad hoc acute triangulation of the cube discovered in [VHZG]
has 1370 tetrahedra as opposed to 5 ·543 = 2715 tetrahedra in our construction. On
the other hand, one can argue that our construction is more symmetric, including
the natural action of S4 by permuting the standard tetrahedra, as well as some
“hidden” symmetries arising from the 600–cell (the construction in [VHZG] also has
a number of symmetries).

After we made our computations publicly available, Evan VanderZee kindly in-
formed us that he re-checked our coordinates for the triangulation of the cube and
computed that dihedral angles range between 26.425 and 89.992.6 For compari-
son, the dihedral angles found in [VHZG] range between 35.89 and 84.65, which is
significantly better for numerical algorithms, since it has fewer tetrahedra, smaller
the maximal and larger the minimal dihedral angles. On the other hand, after
performing simulations with our mesh of 2715 tetrahedra (i.e. when combinatorial
structure is fixed while positions of points are allowed to vary), VanderZee obtained
an acute triangulation with dihedral angles between 25.310 and 88.902. Hence this
triangulation and ours are incomparable as far as the dihedral angles are concerned.

A The exact position of vertices

In order for the coordinates to be integers, we triangulate the cube whose vertices
are at the eight points whose each coordinate is 0 or 60000 (instead of ±1). Vertices
of the Step 3 (Section 2) triangulation of the regular 3–simplex T0 have the following
coordinates (we list four vertices in each row):

0-3 60000, 0, 0; 60000, 60000, 60000; 0, 0, 60000; 0, 60000, 0
4-7 0, 30000, 30000; 60000, 30000, 30000; 30000, 30000, 0; 30000, 60000, 30000
8-11 30000, 30000, 60000; 30000, 0, 30000; 33916, 43042, 16958; 43042, 26084, 43042
12-15 16958, 16958, 26084; 16958, 33916, 43042; 43042, 16958, 33916; 43042, 33916, 16958
16-19 43042, 43042, 26084; 16958, 26084, 16958; 16958, 43042, 33916; 26084, 43042, 43042
20-23 26084, 16958, 16958; 33916, 16958, 43042; 34171, 39326, 34171; 20674, 34171, 25829
24-27 25829, 25829, 39326; 34171, 25829, 20674; 25829, 20674, 34171; 39326, 34171, 34171
28-31 39326, 25829, 25829; 20674, 25829, 34171; 34171, 20674, 25829; 34171, 34171, 39326
32-35 25829, 34171, 20674; 25829, 39326, 25829; 24956, 35044, 35044; 39033, 32132, 27868
36-39 27868, 27868, 20967; 32132, 20967, 32132; 32132, 32132, 20967; 24956, 24956, 24956
40-43 32132, 39033, 27868; 20967, 27868, 27868; 39033, 27868, 32132; 35044, 35044, 24956
44-47 20967, 32132, 32132; 27868, 20967, 27868; 35044, 24956, 35044; 27868, 32132, 39033
48-51 32132, 27868, 39033; 27868, 39033, 32132; 35393, 30000, 35393; 24607, 30000, 24607
52-55 35393, 24607, 30000; 24607, 35393, 30000; 35393, 30000, 24607; 24607, 30000, 35393
56-59 24607, 24607, 30000; 35393, 35393, 30000; 30000, 35393, 24607; 30000, 24607, 35393
60-63 30000, 24607, 24607; 30000, 35393, 35393; 33844, 26156, 26156; 33844, 33844, 33844
64-67 26156, 26156, 33844; 26156, 33844, 26156; 24207, 28632, 31368; 31368, 31368, 35793
68-71 28632, 35793, 28632; 28632, 28632, 35793; 28632, 24207, 31368; 35793, 31368, 31368
72-75 24207, 31368, 28632; 35793, 28632, 28632; 31368, 35793, 31368; 31368, 28632, 24207
76-79 28632, 31368, 24207; 31368, 24207, 28632; 31992, 31992, 25546; 34454, 28008, 31992
80-83 28008, 25546, 28008; 28008, 31992, 34454; 31992, 34454, 28008; 25546, 28008, 28008
84-87 25546, 31992, 31992; 34454, 31992, 28008; 28008, 34454, 31992; 28008, 28008, 25546
88-91 31992, 28008, 34454; 31992, 25546, 31992; 32775, 32775, 30655; 27225, 30655, 27225
92-95 29345, 27225, 32775; 32775, 29345, 27225; 27225, 32775, 29345; 27225, 29345, 32775
96-99 27225, 27225, 30655; 32775, 30655, 32775; 32775, 27225, 29345; 30655, 27225, 27225
100-103 30655, 32775, 32775; 29345, 32775, 27225; 28494, 31506, 31506; 30865, 29135, 29135
104-107 33159, 30000, 30000; 28494, 28494, 28494; 29135, 29135, 30865; 26841, 30000, 30000
108-111 30000, 30000, 33159; 30000, 26841, 30000; 31506, 31506, 28494; 29135, 30865, 29135
112-115 30000, 30000, 26841; 31506, 28494, 31506; 30865, 30865, 30865; 30000, 33159, 30000

Vertices of the triangulation of the standard 3–simplex T1 defined in Step 2 of
Section 2, have the following coordinates (rotate to obtain the coordinates for the

6It should be noted that optimizing the angles was not our goal. The reason the angles are
so large, is because our angle correction procedure described in Section 2 works only with angles
larger or equal than π/2.
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other standard Ti):

0-3 60000, 0, 0; 0, 0, 0; 0, 0, 60000; 0, 60000, 0
4-7 0, 30000, 30000; 17574, 0, 0; 30000, 30000, 0; 0, 17574, 0
8-11 0, 0, 17574; 30000, 0, 30000; 12384, 20726, 0; 10445, 0, 10445
12-15 16958, 16958, 26084; 0, 12384, 20726; 20726, 0, 12384; 20726, 12384, 0
16-19 10445, 10445, 0; 16958, 26084, 16958; 0, 20726, 12384; 0, 10445, 10445
20-23 26084, 16958, 16958; 12384, 0, 20726; 6257, 10104, 6257; 9498, 21496, 13569
24-27 7743, 7743, 19656; 21496, 13569, 9498; 13569, 9498, 21496; 10104, 6257, 6257
28-31 19656, 7743, 7743; 9498, 13569, 21496; 21496, 9498, 13569; 6257, 6257, 10104
32-35 13569, 21496, 9498; 7743, 19656, 7743; 5137, 13344, 13344; 15349, 8879, 5284
36-39 17685, 17685, 11260; 16563, 7777, 16563; 16563, 16563, 7777; 16026, 16026, 16026
40-43 8879, 15349, 5284; 11260, 17685, 17685; 15349, 5284, 8879; 13344, 13344, 5137
44-47 7777, 16563, 16563; 17685, 11260, 17685; 13344, 5137, 13344; 5284, 8879, 15349
48-51 8879, 5284, 15349; 5284, 15349, 8879; 10649, 6407, 10649; 13477, 17719, 13477
52-55 16305, 7821, 12063; 7821, 16305, 12063; 16305, 12063, 7821; 7821, 12063, 16305
56-59 13477, 13477, 17719; 10649, 10649, 6407; 12063, 16305, 7821; 12063, 7821, 16305
60-63 17719, 13477, 13477; 6407, 10649, 10649; 17102, 11055, 11055; 9039, 9039, 9039
64-67 11055, 11055, 17102; 11055, 17102, 11055; 10544, 14025, 16177; 8666, 8666, 12147
68-71 9383, 15016, 9383; 9383, 9383, 15016; 14025, 10544, 16177; 12147, 8666, 8666
72-75 10544, 16177, 14025; 15016, 9383, 9383; 8666, 12147, 8666; 16177, 14025, 10544
76-79 14025, 16177, 10544; 16177, 10544, 14025; 13876, 13876, 8805; 13231, 8160, 11294
80-83 14921, 12984, 14921; 8160, 11294, 13231; 11294, 13231, 8160; 12984, 14921, 14921
84-87 8805, 13876, 13876; 13231, 11294, 8160; 8160, 13231, 11294; 14921, 14921, 12984
88-91 11294, 8160, 13231; 13876, 8805, 13876; 10992, 10992, 9324; 12447, 15145, 12447
92-95 11891, 10223, 14589; 14589, 11891, 10223; 10223, 14589, 11891; 10223, 11891, 14589
96-99 12447, 12447, 15145; 10992, 9324, 10992; 14589, 10223, 11891; 15145, 12447, 12447
100-103 9324, 10992, 10992; 11891, 14589, 10223; 10088, 12458, 12458; 13197, 11836, 11836
104-107 12891, 10406, 10406; 13247, 13247, 13247; 11836, 11836, 13197; 11234, 13719, 13719
108-111 10406, 10406, 12891; 13719, 11234, 13719; 12458, 12458, 10088; 11836, 13197, 11836
112-115 13719, 13719, 11234; 12458, 10088, 12458; 11382, 11382, 11382; 10406, 12891, 10406

In both cases, the edges are spanned on the following pairs of vertices:

4-2, 4-3, 5-0, 5-1, 6-0, 6-3, 7-1, 7-3, 8-1, 8-2, 9-0, 9-2, 10-3, 10-6, 10-7, 11-1, 11-5, 11-8, 12-2, 12-4, 12-9, 13-2, 13-4, 13-8, 14-0,
14-5, 14-9, 14-11, 15-0, 15-5, 15-6, 15-10, 16-1, 16-5, 16-7, 16-10, 16-15, 17-3, 17-4, 17-6, 17-12, 18-3, 18-4, 18-7, 18-13, 19-1, 19-7,
19-8, 19-13, 19-18, 20-0, 20-6, 20-9, 20-12, 20-17, 21-2, 21-8, 21-9, 21-11, 21-14, 22-1, 22-7, 22-16, 22-19, 23-3, 23-4, 23-17, 23-18,
24-2, 24-8, 24-13, 24-21, 25-0, 25-6, 25-15, 25-20, 26-2, 26-9, 26-12, 26-21, 26-24, 27-1, 27-5, 27-11, 27-16, 27-22, 28-0, 28-5, 28-14,
28-15, 28-25, 29-2, 29-4, 29-12, 29-13, 29-24, 29-26, 30-0, 30-9, 30-14, 30-20, 30-25, 30-28, 31-1, 31-8, 31-11, 31-19, 31-22, 31-27, 32-3,
32-6, 32-10, 32-17, 32-23, 33-3, 33-7, 33-10, 33-18, 33-23, 33-32, 34-13, 34-18, 34-19, 35-5, 35-15, 35-16, 35-27, 35-28, 36-6, 36-17,
36-20, 36-25, 36-32, 37-9, 37-14, 37-21, 37-26, 37-30, 38-6, 38-10, 38-15, 38-25, 38-32, 38-36, 39-12, 39-17, 39-20, 39-36, 40-7, 40-10,
40-16, 40-22, 40-33, 41-4, 41-12, 41-17, 41-23, 41-29, 41-39, 42-5, 42-11, 42-14, 42-27, 42-28, 42-35, 43-10, 43-15, 43-16, 43-35, 43-38,
43-40, 44-4, 44-13, 44-18, 44-23, 44-29, 44-34, 44-41, 45-9, 45-12, 45-20, 45-26, 45-30, 45-37, 45-39, 46-11, 46-14, 46-21, 46-37, 46-42,
47-8, 47-13, 47-19, 47-24, 47-31, 47-34, 48-8, 48-11, 48-21, 48-24, 48-31, 48-46, 48-47, 49-7, 49-18, 49-19, 49-22, 49-33, 49-34, 49-40,
50-11, 50-27, 50-31, 50-42, 50-46, 50-48, 51-17, 51-23, 51-32, 51-36, 51-39, 51-41, 52-14, 52-28, 52-30, 52-37, 52-42, 52-46, 53-18,
53-23, 53-33, 53-34, 53-44, 53-49, 54-15, 54-25, 54-28, 54-35, 54-38, 54-43, 55-13, 55-24, 55-29, 55-34, 55-44, 55-47, 56-12, 56-26,
56-29, 56-39, 56-41, 56-45, 57-16, 57-22, 57-27, 57-35, 57-40, 57-43, 58-10, 58-32, 58-33, 58-38, 58-40, 58-43, 59-21, 59-24, 59-26,
59-37, 59-46, 59-48, 60-20, 60-25, 60-30, 60-36, 60-39, 60-45, 61-19, 61-22, 61-31, 61-34, 61-47, 61-49, 62-25, 62-28, 62-30, 62-52,
62-54, 62-60, 63-22, 63-27, 63-31, 63-50, 63-57, 63-61, 64-24, 64-26, 64-29, 64-55, 64-56, 64-59, 65-23, 65-32, 65-33, 65-51, 65-53,
65-58, 66-29, 66-41, 66-44, 66-55, 66-56, 66-64, 67-31, 67-47, 67-48, 67-50, 67-61, 67-63, 68-33, 68-40, 68-49, 68-53, 68-58, 68-65,
69-24, 69-47, 69-48, 69-55, 69-59, 69-64, 69-67, 70-26, 70-37, 70-45, 70-56, 70-59, 70-64, 71-27, 71-35, 71-42, 71-50, 71-57, 71-63,
72-23, 72-41, 72-44, 72-51, 72-53, 72-65, 72-66, 73-28, 73-35, 73-42, 73-52, 73-54, 73-62, 73-71, 74-22, 74-40, 74-49, 74-57, 74-61,
74-63, 74-68, 75-25, 75-36, 75-38, 75-54, 75-60, 75-62, 76-32, 76-36, 76-38, 76-51, 76-58, 76-65, 76-75, 77-30, 77-37, 77-45, 77-52,
77-60, 77-62, 77-70, 78-38, 78-43, 78-54, 78-58, 78-75, 78-76, 79-42, 79-46, 79-50, 79-52, 79-71, 79-73, 80-39, 80-45, 80-56, 80-60, 80-
70, 80-77, 81-34, 81-47, 81-55, 81-61, 81-67, 81-69, 82-40, 82-43, 82-57, 82-58, 82-68, 82-74, 82-78, 83-39, 83-41, 83-51, 83-56, 83-66,
83-72, 83-80, 84-34, 84-44, 84-53, 84-55, 84-66, 84-72, 84-81, 85-35, 85-43, 85-54, 85-57, 85-71, 85-73, 85-78, 85-82, 86-34, 86-49, 86-53,
86-61, 86-68, 86-74, 86-81, 86-84, 87-36, 87-39, 87-51, 87-60, 87-75, 87-76, 87-80, 87-83, 88-46, 88-48, 88-50, 88-59, 88-67, 88-69, 88-79,
89-37, 89-46, 89-52, 89-59, 89-70, 89-77, 89-79, 89-88, 90-57, 90-63, 90-71, 90-74, 90-82, 90-85, 91-51, 91-65, 91-72, 91-76, 91-83, 91-87,
92-59, 92-64, 92-69, 92-70, 92-88, 92-89, 93-54, 93-62, 93-73, 93-75, 93-78, 93-85, 94-53, 94-65, 94-68, 94-72, 94-84, 94-86, 94-91, 95-55,
95-64, 95-66, 95-69, 95-81, 95-84, 95-92, 96-56, 96-64, 96-66, 96-70, 96-80, 96-83, 96-92, 96-95, 97-50, 97-63, 97-67, 97-71, 97-79, 97-88,
97-90, 98-52, 98-62, 98-73, 98-77, 98-79, 98-89, 98-93, 99-60, 99-62, 99-75, 99-77, 99-80, 99-87, 99-93, 99-98, 100-61, 100-63, 100-67,
100-74, 100-81, 100-86, 100-90, 100-97, 101-58, 101-65, 101-68, 101-76, 101-78, 101-82, 101-91, 101-94, 102-81, 102-84, 102-86, 102-94,
102-95, 102-100, 103-93, 103-98, 103-99, 104-71, 104-73, 104-79, 104-85, 104-90, 104-93, 104-97, 104-98, 104-103, 105-80, 105-83,
105-87, 105-91, 105-96, 105-99, 105-103, 106-92, 106-95, 106-96, 106-102, 106-103, 106-105, 107-66, 107-72, 107-83, 107-84, 107-91,
107-94, 107-95, 107-96, 107-102, 107-105, 107-106, 108-67, 108-69, 108-81, 108-88, 108-92, 108-95, 108-97, 108-100, 108-102, 108-106,
109-70, 109-77, 109-80, 109-89, 109-92, 109-96, 109-98, 109-99, 109-103, 109-105, 109-106, 110-78, 110-82, 110-85, 110-90, 110-93,
110-101, 110-103, 110-104, 111-91, 111-94, 111-101, 111-102, 111-103, 111-105, 111-106, 111-107, 111-110, 112-75, 112-76, 112-78,
112-87, 112-91, 112-93, 112-99, 112-101, 112-103, 112-105, 112-110, 112-111, 113-79, 113-88, 113-89, 113-92, 113-97, 113-98, 113-103,
113-104, 113-106, 113-108, 113-109, 114-90, 114-97, 114-100, 114-102, 114-103, 114-104, 114-106, 114-108, 114-110, 114-111, 114-113,
115-68, 115-74, 115-82, 115-86, 115-90, 115-94, 115-100, 115-101, 115-102, 115-110, 115-111, 115-114.
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