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Abstract. An abc-permutation is a permutation σabc ∈ Sn obtained by exchanging an initial block
of length a and a final block of length c of {1, . . . , n}, where n = a+ b+ c. In this note we compute
the limit of the probability that a random abc-permutation is a long cycle. This resolves Arnold’s
open problem [A, p. 144].

1. Introduction

For every n = a + b + c, an abc-permutation σabc ∈ Sn is defined as

σabc = (a + b + 1, a + b + 2, . . . , n, a + 1, a + 2, . . . , a + b, 1, 2, . . . , a).

Denote by Ω(n) the set of such permutations. A long cycle is a permutation σ ∈ Sn with one cycle
of length n. Denote by Λ(n) ⊆ Ω(n) the set of abc-permutations that are long cycles, and by

p(n) := P
(
σabc ∈ Λ(n)

)
=
|Λ(n)|
|Ω(n)|

the probability that a random permutation is a long cycle. The main result of this paper is the
following theorem:

Main Theorem. The probability p(n) → 6/π2 as n →∞.

The proof of the main theorem is based on the following criterion, an explicit formula for p(n)
which we present in Section 3, and on a asymptotic analysis given in Section 4.

Lemma 1. An abc-permutation σabc ∈ Λ(n) if and only if (a + b, b + c) = 1.

To better understand the implications of the lemma, recall the problem of finding the probabil-
ity P that two “random” integers are relatively prime. Setting aside a formal definition of P , this
probability is equal to the probability that no prime p divides both integers, so we obtain:

P =
∏
p

(
1− 1

p2

)
= ζ(2)−1 =

6
π2

,

where here and throughout the paper p will denote a prime. Now, heuristically, the main theorem is
saying that integers a+ b and b+ c are “nearly random”, so the probability that they are relatively
prime is the same as that of two “random” integers. Making this argument precise occupies most
of the paper.

Let us say a few words on the history of the problem. The abc-permutations can be viewed as
discrete analogues of interval exchange transformations, which play an important role in ergodic
theory. These transformations go back to one of the first Arnold’s problems [A, p. 2, 182–183]
and were first studied in the 1960s in [Os, KS] (see also [Ke]). An interesting and important
connection to combinatorics of Sturmian words was discovered by Rauzy in [R]. In recent years,
significant advancements in the study of asymptotics of generic interval exchange transformations
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have been made in [Ko, Z], and for the three-interval transformations a detailed analysis has
appeared in [FHZ1, FHZ2].

In the language of exchange transformations, this paper studies the asymptotic behavior of the
number of transitive orbits of rational three-interval transformations. The problem, phrased in
terms of abc-permutations, was formulated by Arnold in 2002 [A, pp. 144, 626]. Interestingly,
numerical investigations reported by Arnold do not seem to suggest that p(n) is converging. This
makes the (possibly, very slow) convergence in the main theorem even more surprising.

2. Proof of Lemma 1

Clearly, σabc is a long cycle if and only if σcba = σ−1
abc is a long cycle. Throughout the paper, we

assume that c ≥ a. We use the standard notation (k, l) = gcd(k, l). When a, b, c are clear, we use σ
in place of σabc.

To prove that (a + b, b + c) = 1 is necessary, consider the orbit of a single element x under
σabc = σ. As stated above, we will assume (without loss of generality) that a ≤ c. Let c − a = d.
Suppose x ≤ a. Then

σ(x) = c + b + x.

Applying σ again brings us back to

σ2(x) = σ(x + c + b) = c + b + x− a− b = x + d.

In general, while x + (i− 1)d ≤ a,

σ2i+1(x) = x + id + c + b and σ2i(x) = x + id.

Similarly,
σ(x) = x + c− a = x + d if a < x ≤ a + b,

and
σi(x) = x + id while x + (i− 1)d ≤ a + b.

Also
σ(x) = x− a− b for a + b < x,

and
σi(x) = x− i(a + b) while (i− 1)(a + b) ≤ x− a− b.

Therefore, for every element x ∈ {1, . . . , n}, the intersection of its orbit with {1, . . . , a + b}
contains only elements of the form x + id − j(a + b). If m := (d, a + b) = (a + b, b + c) 6= 1, then
x’s orbit contains at most one equivalence class modulo m within {1, . . . , a + b}. Therefore, σ is a
long cycle only if (a + b, b + c) = 1.

To prove that (a+b, b+c) = 1 is sufficient, consider the orbit of an element y < a under iterations
of σ. As above, σk(y) < a implies that

σk(y) = y + id− j(a + b),

for some i and j. Suppose (d, a + b) = 1 and y is in a cycle of length k in σ. Then

σk(y) = y + id− j(a + b) = y,

which gives
id− j(a + b) = 0.

If (c − a, a + b) = (d, a + b) = 1, then a + b | i and d | j. Therefore, i ≥ a + b and j ≥ d. Since
i + j ≤ k, we obtain

d + a + b = b + c ≤ k.
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By assumption, c ≥ a, and c 6= a from above. Thus, c > a and k > n/2. A similar argument for
y > a shows its orbit has length greater than n/2 as well. Therefore, every cycle in σ has length
greater than n/2 and σ is a long cycle. This completes the proof. ¤

3. Exact expression for p(n)

The main result of this section is the following explicit formula for the desired probability p(n).

Lemma 2.

p(n) =
∏

p<n, p-n

(
1−

bn
p c

(bn
p c+ 1

)

n(n + 1)

) ∏

p<n, p|n

(
1−

(
n
p + 1

)(
n
p + 2

)

n(n + 1)

)

Proof. By Lemma 1, we need to compute the probability (a + b, b + c) = 1. Find this by looking at
the probability that a+b and b+c have some common divisor k. Suppose k | (b+c) and k | (a+b).
Since a + b + c = n, that implies

c = a = n mod k.

Let c′ = n− c and a′ = n− a. Then the original conditions become

2n ≥ a′ + c′ ≥ n and c′ = a′ = 0 mod k.

To count how many a′, c′ pairs are valid, fix a′ = ik and count valid c′. Valid c′ are those such that
n− ik ≤ c′ ≤ n and c′ = 0 mod k. Therefore, for each a′ = ik, there are i possibilities for c′ when
k - n and i + 1 possibilities when k | n. Thus, there are

bn/kc∑

i=0

i =
bn

k c
(bn

k c+ 1
)

2
pairs (a′, c′) for each k - n, and

n/k∑

i=0

(i + 1) =

(
n
k + 1

)(
n
k + 2

)

2
pairs when k | n.

Let f(n, k) be the probability that (b + c) and (a + b) are both divisible by an integer k. From
above,

f(n, k) =
bn

k c
(bn

k c+ 1
)

n(n + 1)
for k - n,

and

f(n, k) =

(
n
k + 1

)(
n
k + 2

)

n(n + 1)
for k | n.

Finally, use the inclusion-exclusion principle to obtain

p(n) =
Λ(n)
Ω(n)

= 1−
n∑

k=2

µ(k)f(n, k) =
∏

p≤n

(
1− f(n, p)

)
,

where µ is the Möbius function. This completes the proof. ¤
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4. Proof of the Main Theorem

In notation of the proof of Lemma 2, write p(n) = A(n) ·B(n), where

A(n) =
∏

p≤log n

(
1− f(n, p)

)
, B(n) =

∏

log n<p≤n

(
1− f(n, p)

)
,

and log n denotes the natural logarithm. We estimate each term separately.
First, for p = O(log n), we have

1− f(n, p) =
(

1− 1
p2

) (
1 + O

( p

n

))
as n →∞.

Since ∏

p<log n

(
1 + O

( p

n

))
= 1 + O

(
log2 n

n

)
,

we obtain

A(n) =
∏

p≤log n

(
1− f(n, p)

)
=

∏

p≤log n

(
1− 1

p2

) ∏

p≤log n

(
1 + O

( p

n

))
=

6
π2

(
1 + o(1)

)
.

Similarly, observe that B(n) ≤ 1, and that for all p ≤ n, we have

f(n, p) ≤ n + 5p

p2(n + 1)
.

Therefore, B(n) ≥ F (n), where

F (n) =
∏

log n<p≤n

(
1− n + 5p

p2(n + 1)

)
≤

∏

log n<p≤n

(
1− f(n, p)

)
.

We will show that F (n) → 1 as n →∞. Let m = dlog(n/ log n)e and

Fi(n) =
∏

ei−1 log n≤p<ei log n

(
1− n + 5p

p2(n + 1)

)
, for 1 ≤ i ≤ m.

Then

F (n) ≥
m∏

i=1

Fi(n) ≥ (
Fjn(n)

)m
,

where jn is the index such that Fi(n) is minimized.
For each Fi, the number of terms in its product is the number of primes between ei−1 log n and

ei log n, i.e. π(ei log n)− π(ei−1 log n). Recall that π(n) ∼ n/ log n, and note that ejn log n →∞ as
n →∞. Therefore, as n →∞, the number of terms in Fjn is equal to

ejn−1 log n
log log n + jn − 2

(log log n + jn)(log log n + jn − 1)
(
1 + o(1)

)
.

Finally, note that the smallest term in each Fi is the first term
(

1− n + 5ei−1 log n

(ei−q log n)2(n + 1)

)
.

This implies that

F (n) ≥
(

1− n + 5ei−1 log n

(ei−1 log n)2(n + 1)

)log(n/ log n) ejn−1 log n log log n+jn−2
(log log n+jn)(log log n+jn−1)

(1+o(1))

.
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A direct calculation shows that the r.h.s. → 1 as n → ∞. Together with F (n) ≤ B(n) ≤ 1, this
implies that B(n) → 1. Therefore, p(n) = A(n) · B(n) → 6/π2 as n → ∞, which completes the
proof. ¤

5. Final remarks and open problems

5.1. There is a striking similarity between our Lemma 1 and the Proposition 4 in [AMP]. In fact,
one can think of the former as of a discrete analogue of the latter. It would be interesting to make
this observation precise.

5.2. One can consider random permutations corresponding to a given pattern, defined as fixed
permutation of k blocks. These would be natural discrete analogues of k interval exchange trans-
formations. We conjecture that for a given pattern there is always a limit as in the main theorem.
It would be nice to see if these limits can be computed exactly.

5.3. By analogy with the continuous case, for every abc-permutation σ = σabc ∈ Sn one can define
a word w1 . . . wn in the alphabet {A,B,C} corresponding to the orbit of element 1. Formally, let
wk = A if σk(1) ≤ a, let wk = B if a < σk(1) ≤ a + b, and let wk = C otherwise, for all 1 ≤ k ≤ n.
The study of asymptotic behavior of various statistics on these words would be a natural approach
to understand the behavior of random abc-permutations (cf. [L]).

Acknowledgments. We are grateful to Luca Zamboni for useful remarks and help with the
references. The first named author was partially supported by the NSF.
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