
VANISHING OF SCHUBERT COEFFICIENTS

IN PROBABILISTIC POLYNOMIAL TIME

IGOR PAK⋆ AND COLLEEN ROBICHAUX⋆

Abstract. The Schubert vanishing problem asks whether Schubert structure constants are zero.
We give a complete solution of the problem from an algorithmic point of view, by showing that
Schubert vanishing can be decided in probabilistic polynomial time.

1. Introduction

1.1. Vanishing of Schubert coefficients. Determining Schubert structure constants (Schubert
coefficients) is one of the oldest and most celebrated problems in enumerative geometry, going
back to Schubert’s original work in 1870s, see [Sch79]. Motivated in part by Hilbert’s 15th Problem
aiming to make Schubert’s work rigorous (see [Kle76]), the area of Schubert calculus has exploded
and developed rich connections with representation theory and algebraic combinatorics (see e.g.
[AF24, BGP25, Knu22]).

In this paper we study the Schubert vanishing problem which asks whether Schubert coefficients
are zero. This problem has remained a major challenge for decades and remained unresolved
despite significant study (see §1.2, §1.3 and §5.1). We resolve it algorithmically, by showing that
deciding Schubert vanishing can be done in probabilistic polynomial time. This is an ultimate
result of a series of our previous papers [PR24a, PR24b, PR25b].

We start with a general setup, see e.g. [BH95, AF24] for the background. Let G be a simply
connected semisimple complex Lie group. Take B ⊂ G and B− ⊂ G to be the Borel subgroup and
opposite Borel subgroup, respectively. The torus subgroup is defined as T = B ∩ B− . The Weyl
group is defined as the normalizer W ∼= NG(T)/T. The Bruhat decomposition states that

G =
⊔

w∈W
B− ẇB,

where ẇ is the preimage of w in the normalizer NG(T).
The generalized flag variety is defined as G/B. Recall that G/B has finitely many orbits under

the left action of B− . These are called Schubert cells and denoted Ωw . Schubert cells are indexed
by the Weyl group elements w ∈ W.

The Schubert varieties Xw are the Zariski closures of Schubert cells Ωw . The Schubert classes
{σw}w∈W are the Poincaré duals of Schubert varieties. These form a Z–linear basis of the coho-
mology ring H∗(G/B). The Schubert coefficients cwu,v are defined as structure constants:

(1.1) σu ⌣ σv =
∑
w∈W

cwu,v σw .

Thus cwu,v = [σid]σu ⌣ σv ⌣ σw◦w, where w◦ is the long word in W. These are a special case of

(1.2) c(u1, u2, . . . , uk) := [σid]σu1 ⌣ σu2 ⌣ · · · ⌣ σuk
,

where k ≥ 3. In particular, we have cwu,v = c(u, v, w◦w). By commutativity of H∗(G/B), Schubert
coefficients c(u1, . . . , uk) exhibit Sk-symmetry.

August 15, 2025.
⋆Department of Mathematics, UCLA, Los Angeles, CA 90095, USA. Email: {pak,robichaux}@math.ucla.edu.
Email: {pak,robichaux}@math.ucla.edu.

1

2 IGOR PAK AND COLLEEN ROBICHAUX

By Kleiman transversality [Kle74], the coefficients c(u1, . . . , uk) count the number of points in
the intersection of generically translated Schubert varieties:

(1.3) c(u1, . . . , uk) = #
{
Xu1

(
F

(1)
•

)
∩ · · · ∩Xuk

(
F

(k)
•

)}
,

where F
(i)
• are generic flags. In particular, we have c(u1, . . . , uk) ∈ N. The Schubert vanishing

problem is the decision problem

SchubertVanishing :=
{
c(u1, . . . , uk) =

? 0
}
,

where u1, . . . , uk ∈ W. We consider the problem only for classical types Y ∈ {A,B,C,D},
and use notation SchubertVanishing(Y) to denote the Schubert vanishing problem in type Y .1

These correspond to considering groups G ∈ {SLn(C),SO2n+1(C),Sp2n(C), SO2n(C)}, respectively.
We will use Yn ∈ {An, Bn, Cn, Dn}, where n = n(G) is the rank of Lie group G. Recall that
c(u1, . . . , uk) = 0 for k > ℓ(w◦), assuming each ui ̸= id. Thus we consider only the case when
k ≤ ℓ(w◦), where ℓ denotes the length function in W.

Theorem 1.1 (Main theorem). For each Y ∈ {A,B,C,D}, the problem SchubertVanishing(Y)
can be decided in probabilistic polynomials time. More precisely, for all k ≥ 3 and ε > 0, there is a
probabilistic algorithm which inputs elements u1, . . . , uk ∈ Yn and after O

(
kn8.75 log 1

ε

)
arithmetic

operations outputs either :
• c(u1, . . . , uk) > 0, which holds with probability P = 1, or
• c(u1, . . . , uk) = 0, which holds with probability P > 1− ε.

The proof is based on Purbhoo’s criterion for Schubert vanishing [Pur06, Cor. 2.6]. We show
that the criterion is equivalent to the degeneracy of certain determinant with polynomial entries.
It can then be tested in polynomial time whether this determinant is identically zero by a random
substitution of variables. This explains the one-sided error in the algorithm, since finding a
nonzero evaluation of the determinant guarantees positivity of the Schubert coefficient.

1.2. Geometric background and motivation. The literature on Schubert calculus is much
too large to be reviewed here. We refer to [AF24, Ful97, Knu16, Man01] for geometric and
combinatorial introductions, and to [Knu22] for a recent overview. Let us single out [BS00] and
[BK06], where Schubert vanishing was studied in the context of representation theory and Horn’s
inequalities describing possible spectra of three Hermitian matrices satisfying A+B = C.

Now, recall the Grassmannian structure coefficients, in which the Schubert classes are pulled
back from Grassmannians G/P, where P is a maximal parabolic subgroup. As with the full
flag varieties, these Grassmannians have decompositions into Schubert cells [Xλ]. Taking the
pullback by the projection π : G/B ↠ G/P embeds H∗(G/P) as a subring of H∗(G/B). Thus by
specializing our algorithm to the appropriate Grassmannian elements, we obtain a probabilistic
poly-time algorithm to decide the vanishing of ordinary and maximal isotropic Grassmannian
structure constants. We use notation cνλ,µ(Y) to denote these constants in type Y for k = 3.

In type A, we have G/P ≃ Grk,n is the ordinary Grassmannian, the space of k-dimensional planes
in Cn. Here, the Schubert structure constants cνλµ = cνλµ(A) are the Littlewood–Richardson (LR)

coefficients, which are extremely well studied in the literature, see e.g. [Ful97, Sta99]. Famously,
LR coefficients are the structure constants of Schur polynomials and have several combinatorial
interpretations, see a long list in [Pak24, §11.4].

In a major breakthrough, Knutson and Tao [KT99] established the saturation conjecture in
type A:

(1.4) cλµν(A) > 0 ⇐⇒ ctλtµ,tν(A) > 0 for any t ≥ 1.

1For non-classical types E6, E7, E8, F4 and G2 , there is only a finite number of Schubert coefficients, so the
problem is uninteresting from the computational complexity point of view.

VANISHING OF SCHUBERT COEFFICIENTS 3

In [DM06, MNS12], the authors independently observed that the saturation property (1.4) implies
that the vanishing of LR–coefficients can be solved by a linear program. This gives:

Theorem 1.2 ([KT99, DM06, MNS12]). The vanishing of LR-coefficients
{
cλµν(A) =? 0

}
can be

decided in deterministic polynomials time.

This result is exceptional and despite numerous conjectural generalizations (see e.g. [Kir04]), it
does not seem to extend much beyond this narrow setting, see §5.3. Below we give a complexity
comparison of our probabilistic approach and the deterministic approach as in the theorem.

The case of types B–D is also quite interesting and extensively studied. We refer to [BH95] for
detailed overview of Schubert calculus in these types, to [PS08] for recursive Horn type formulas for
the vanishing problem, and to [Pur06] for detailed combinatorial investigations of the vanishing.
See also [Sea16] for discussion on the combinatorial formulas for the structure coefficients for other
choices of non-maximal isotropic Grassmannians in types B–D.

In this case, we highlight those G/P that are maximal isotropic Grassmannians with respect
to the appropriate skew–symmetric or symmetric bilinear form. In type C, we have cνλ,µ(C) as

the structure constants of Q-Schur polynomials Qλ [Pra91]. Similarly, in types B/D, we have
cνλ,µ(B) and cνλ,µ(D) as the structure constants of P -Schur polynomials Pλ, proven in [Pra91].

As noted in [RYY22, Remark 7.7], the type B/C structure coefficients do not satisfy saturation.2

Thus the arguments of [DM06, MNS12] may not be mirrored directly. In fact, our Theorem 1.1
gives the first poly-time algorithm for the vanishing of LR–coefficients in other types:

Corollary 1.3. For types Y ∈ {A,B,C,D}, the problem

(1.5) LRVanishing(Y) :=
{
cλµν(Y) =? 0

}
can be decided in probabilistic polynomials time when the input λ, µ, ν is in unary. More precisely,
for Yn, there is a probabilistic algorithm with a one-sided error, and O(n8.75) expected time.

The corollary addresses Problem 7.8 in [RYY22] and gets close to completely resolving it in
the positive, see below. The unary input comes from the translation of Schubert problems into
Grassmannian notation; in Theorem 1.2 the usual (binary) input is used, see §5.2 for further
details.

1.3. Complexity background and implications. The algorithmic and complexity aspects of
the Schubert vanishing problem have also been heavily studied, both explicitly in the computer
algebra literature and implicitly in the algebraic combinatorics literature. In fact, the computa-
tional hardness even for the well-studied 2-step flag variety setting remains challenging, see e.g.
[ARY19, Question 4.2]. We refer to our extensive overview in [PR24a, v2, §1.6], to [SY22, §5] for
a combinatorial introduction to Schubert vanishing tests in type A, and to [BV08, §5.2] for some
motivating comments.

Below we give a brief discussion of prior complexity work on the Schubert coefficient problem
(the problem of computing Schubert coefficients) and the Schubert vanishing problem. We assume
the reader is familiar with standard complexity classes, which can be found, e.g., in [AB09, Gol08].

The Schubert coefficient problem is known to be in GapP = #P−#P, see [Pak24, Prop. 10.2]
for type A (see also [PR25c]) and [PR25a, Cor. 4.2] for other types.3 Whether the Schubert
coefficient problem is in #P is a major open problem in the area, see e.g. [Sta00, Problem 11],
[Pak24, Conj. 10.1] and [BGP25, O.P. 3.129].4 This problem has been resolved in a number of
special cases (see an overview in [Knu22, PR24a]), implying that Schubert vanishing is in coNP
when restricted to each such case.

2We were unable to find in the literature a counterexample in type D.
3In a combinatorial language, this means that there are signed rules for Schubert coefficients.
4In a combinatorial language, this problem asks for a combinatorial interpretation (rule) for Schubert coefficients.

4 IGOR PAK AND COLLEEN ROBICHAUX

Notably, the classical Littlewood–Richardson rule (see e.g. [Sta99, §A1.3]) and the shifted LR
rules of Worley, Sagan and Stembridge (see e.g. [CNO14]), show that LRVanishing(Y) ∈ coNP
for Y ∈ {A,B,C,D}.5 Additionally, in the language of root games, Purbhoo showed that Schubert
vanishing is in NP in some special cases [Pur06].

In [ARY19, Question 4.3], the authors asked if SchubertVanishing(A) is NP-hard. In the
opposite direction, the authors conjectured that the problem is coNP-hard [PR24a, Conj. 1.6]. In
a major advance [PR25b, Thm 1.1], we showed that

(∗) SchubertVanishing(Y) ∈ AM ∩ coAM for all Y ∈ {A,B,C,D},

assuming the Generalized Riemann Hypothesis (GRH). Prior to [PR24a, PR25b], it was believed
that the problem is not in PH. In fact, unconditionally (without the GRH assumption), prior to
this work, the best known upper bound for was SchubertVanishing(Y) ∈ PSPACE, even when
restricting to type A. The inclusion is already nontrivial and follows from the GapP formulas
mentioned above.

In complexity theoretic language, our Main Theorem 1.1 proves (unconditionally) that

(∗∗) SchubertVanishing(Y) ∈ coRP for all Y ∈ {A,B,C,D}.

This is very low in the polynomial hierarchy, and we remind the reader of standard inclusions:

P ⊆ coRP ⊆ BPP ∩ coNP ⊆ NP ∩ coNP ⊆ AM ∩ coAM ⊆ Σp
2 ∩Πp

2 ⊆ PH ⊆ PSPACE.

Corollary 1.3 similarly gives LRVanishing(Y) ∈ coRP for the unary input, but the result is new
only for Y ∈ {B,C,D} as Theorem 1.2 gives LRVanishing(A) ∈ P.

In conclusion, we mention that P = RP = coRP = BPP under standard derandomization
assumptions [IW97], see also a discussion in [PR24b]. In the opposite direction, recall that Main
Theorem 1.1 is proved via Polynomial Identity Testing (PIT), one of the main obstacles for
derandomization [SY09]. It is thus unlikely that our approach can be used to show that Schubert
vanishing is in P.

2. Preliminaries

2.1. Notation. We use N = {0, 1, 2, . . .} and [n] = {1, . . . , n}. Unless stated otherwise, the
underlying field is always C. Let e1, . . . , en denote the standard basis in Cn. We use bold letters
x = (x1, x2, . . .) for collections of variables, and −→x for their evaluations. We write f ≡ g for the
equality of polynomials f, g ∈ C[x].

For a Weyl groupW, we use ℓ(w) to denote the length of the element w ∈ W. The long word is
an element w◦ ∈ W of maximal length. We assume the reader is familiar with standard notation
of barred and unbarred elements of the Weyl group W ≃ Sn⋉Zn

2 in types B and C. We view this
Weyl group as the group of signed permutations of [n], see e.g. [AF24, §14.1.1] for further details.

Recall the following standard notation for almost simple algebraic groups. We have the special
linear group SLn(C), the odd special orthogonal group SO2n+1(C), the symplectic group Sp2n(C)
and the even special orthogonal group SO2n(C). These groups correspond to root systems An, Bn,
Cn and Dn, and are called groups of type A, B, C and D, respectively.

To distinguish the types, we use parentheses or subscripts in LR and Schubert coefficients, e.g.
cλµν(A) and c⟨A⟩(u, v, w). We omit the dependence on the type when it is clear from the context.

5Although usually stated for the unary input, the result extends to the binary input, cf. [Pan24, §5.2].

VANISHING OF SCHUBERT COEFFICIENTS 5

2.2. Polynomial identity testing. In this paper we use the following textbook result:

Lemma 2.1 (Schwarz–Zippel Lemma). For a field F, let Q ∈ F[x1, x2, . . . , xn] be a non-zero
polynomial with degree d ≥ 0 over F. Take S ⊂ F be a finite set. Then:

P
[
Q(c1, c2, . . . , cn) = 0

]
≤ d

|S|
,

where the probability is over random, independent and uniform choices of c1, c2, . . . , cn ∈ S.

This lemma is frequently used to test whether a polynomial given by an arithmetic circuit is
identically zero. We refer to [SY09] for an extensive overview of complexity applications and many
references.

2.3. Types B and C. We will need the following well-known result relating the Schubert van-
ishing in two types:

Proposition 2.2. SchubertVanishing(B) coincides with SchubertVanishing(C).

Proof. First we note that both SO2n+1(C) and Sp2n(C) share the hyperoctahedral group as their
Weyl group W. We interpret W as signed permutations of [n]. Let ζ(π) count the number of sign
changes in the signed permutation π ∈ W. It follows from [BH95, Thm 3], that

(2.1) c⟨B⟩(u1, . . . , uk) = 2a c⟨C⟩(u1, . . . , uk),

where

a := ζ(w◦uk) − ζ(u1) − . . . − ζ(uk−1).

This implies the result. □

2.4. Purbhoo’s criterion. Take type Y ∈ {A,B,C,D} and let G = GY be the simply connected
semisimple complex Lie group of type Y . Here G is a matrix group inside an ambient vector
space V . Let N be the subgroup of unipotent matrices, giving

N ⊂ B ⊂ G ⊂ V.

Let n denote the Lie algebra of N. Again, we view n as a subspace of V . Finally, for a Weyl group
element w ∈ W, let Zw := n ∩ (wB−w

−1).

Lemma 2.3 (Purbhoo’s criterion [Pur06, Cor. 2.6]). For generic ρ1, . . . , ρk ∈ N ⊂ G and
u1, . . . , uk ∈ W, we have:

c(u1, . . . , uk) > 0 ⇐⇒ ρ1Ru1ρ
−1
1 + . . . + ρkRuk

ρ−1
k = ρ1Ru1ρ

−1
1 ⊕ . . . ⊕ ρkRuk

ρ−1
k .

Generalizing the number of inversions condition, the dimension condition says that

(2.2) c(u1, . . . , uk) = 0 if ℓ(u1) + · · ·+ ℓ(uk) ̸= dim(n).

Thus it suffices to restrict to the case ℓ(u1)+ . . .+ℓ(uk) = dim(n). Then we consider the following
specialization of Lemma 2.3:

Corollary 2.4. For generic ρ1, . . . , ρk ∈ N ⊂ G and u1, . . . , uk ∈ W such that ℓ(u1)+. . .+ℓ(uk) =
dim(n), we have:

c(u1, . . . , uk) > 0 ⇐⇒ ρ1Ru1ρ
−1
1 + . . . + ρkRuk

ρ−1
k = n.

Using Corollary 2.4, it suffices to determine the dimension of the vector space

H := ρ1Ru1ρ
−1
1 + . . . + ρkRuk

ρ−1
k for generic ρi .

6 IGOR PAK AND COLLEEN ROBICHAUX

3. General setup

In the setting of Purbhoo’s criterion, we describe how to construct bases for Rui in §3.1. Then,
in §3.2, we describe how to construct matrices ρi . In §3.3, we combine these constructions to
obtain bases for each summand ρiRuiρ

−1
i . From these, we obtain vectors πj which generate H.

3.1. Root systems. The Weyl group W is generated by reflections rγ , indexed by roots γ in a
root system Φ. This root system Φ may be partitioned in terms of its positive and negative roots:
Φ = Φ+⊔Φ− . In Table 1, we describe the positive roots Φ+ in term of vectors ei . Here ei denotes
the i-th elementary basis vector in the appropriate Cm.

G Φ+ U(G)

SLn {ei − ej : 1 ≤ i < j ≤ n} {(i, j) : 1 ≤ i < j ≤ n}

SO2n+1 {ei ± ej : 1 ≤ i < j ≤ n} ∪ {ei : i ∈ [n]} {(i, j) : 1 ≤ i < j ≤ 2n+ 1− i}

SO2n {ei ± ej : 1 ≤ i < j ≤ n} {(i, j) : 1 ≤ i < j ≤ 2n− i}

Table 1. Positive roots and corresponding matrix entries.

Define the integer N(G), where

N(G) =


n if G = SLn(C),
2n+ 1 if G = SO2n+1(C),
2n if G = SO2n(C).

To each γ ∈ Φ+ , we may associate anm×mmatrix, wherem = N(G). We define a distinguished
subset U(G) ⊂ [m] × [m] as outlined in Table 1. We then construct a bijection ϕ : U(G) → Φ+ ,
detailed below.

(A) For SLn take ϕ(i, j) := ei − ej .

(B) For SO2n+1 take

ϕ(i, j) :=


ei + ej if j ≤ n,

ei − e2n+2−j if n+ 1 < j,

ei if j = n+ 1.

(D) For SO2n take

ϕ(i, j) :=

{
ei + ej if j ≤ n,

ei − e2n+1−j if n < j.

For γ ∈ Φ+ , set E′
γ to be the m×m matrix with a 1 in position ϕ−1(γ) and 0 elsewhere. For

SLn take Eγ := E′
γ . For SO2n+1 and SO2n , define Eγ := E′

γ − Dm(E′
γ)

TDm , where Dm is the
antidiagonal matrix.

3.2. Generic unipotent subgroup elements. Let m := N(G). We now describe how to con-
struct an upper unitriangular m×m matrix K which lies in N ⊂ B ⊂ G. Define:

κij =


αij if i < j and (i, j) ∈ U(G),

zij if i < j , (i, j) ̸∈ U(G), and i+ j ̸= m+ 1,

0 otherwise.

Here we treat αij as parameters set zij = −α(m+1−j)(m+1−i). Let κ = (κij).

VANISHING OF SCHUBERT COEFFICIENTS 7

For G = SLn(C), set K := Im + κ. For G = SO2n+1(C) and G = SO2n(C), we use the Cayley
transform to construct K ∈ G from κ. In particular, set K = (Im+κ)−1(Im−κ). By construction,
K is upper unitriangular. It is straightforward to confirm K ∈ G and that such elements are dense
in N. To check K ∈ G, one need only confirm KT ·Dm ·K = Dm , and note that det(K) = 1.

3.3. Main construction. Let m = N(G). With Corollary 2.4 in mind, consider the vector space

H = ρ1Ru1ρ
−1
1 + . . . + ρkRuk

ρ−1
k .

Let d := dimG/B and note dim n = d. Using the dimension condition, we assume

(3.1) ℓ(u1) + . . . + ℓ(uk) = d.

Additionally, we assume ℓ(ui) ≥ 1 for each i ∈ [k]. Combining these assumptions gives k ≤ d.
We also assume k ≥ 3, as taking k ≤ 2 is trivial.

First recall the definition, Zw = n ∩ (wB−w
−1) for w ∈ W. Alternatively, Zw is the subspace

of n generated by basis elements Eγ (see §3.1) for γ ∈ Φ+(w), where

Φ+(w) :=
{
β ∈ Φ+ : w−1β ̸∈ Φ+

}
.

Now we construct bases for the spaces Rui for i ∈ [k] :

Sui :=
{
xγ,iEγ : γ ∈ Φ+(ui)

}
.

Note the number of positive roots |Φ+| = d = O(m2). Let x :=
{
xγ,i

}
be the set of those

variables appearing in the above collection. Since (2.2) holds, we have the following:

(3.2)

k∑
i=1

ℓ(ui) =

k∑
i=1

dim(Rui) =

k∑
i=1

∣∣Sui

∣∣ = d.

Then construct generic matrices ρ1, . . . , ρk ∈ N as outlined in §3.2, using the formal parameters

α
(i)
jℓ . Define α :=

{
α
(i)
jℓ

}
to be the set of parameters, respectively, appearing in some ρi, where

i ∈ [k]. Then |α| ≤ k ·m2 = O(m4).
For each i ∈ [k], construct bases for summands ρiRuiρi

−1 :

Tui := ρiSui ρi
−1 =

{
ρi · g · ρi−1 : g ∈ Sui

}
.

Using (3.2), we find |Tu1 |+ . . .+ |Tuk
| = d.

Let τ be the map on m ×m matrices defined by restricting to the matrix entries in positions
U(G). By their definition, matrices in n are determined by their entries in positions U(G). Thus,
dim(Tui) = dim

(
τ(Tui)

)
for each i ∈ [k]. Take

T :=
⋃
i∈[k]

τ(Tui),

and let T = {πi : i ∈ [d]}. Using the fact that |U(G)| = d, we view each πi ∈ T as a d-vector.
Finally, consider the d × d matrix M with column vectors πj . Using Purbhoo’s criterion, the

Schubert vanishing problem reduces to determining if the matrix M is singular. Since M is a
matrix with entries polynomials in Z[α,x], we can apply the Schwarz–Zippel Lemma 2.1. We do
this carefully in the next section. We also note that the construction above in similar to that
in [PR25b].

4. Proof of the main theorem

By Proposition 2.2, it suffices to consider only types A, B and D. For clarity, we consider
types A and types B/D separately.

8 IGOR PAK AND COLLEEN ROBICHAUX

4.1. Algorithm for SLn . Considering the converse of Corollary 2.4, we let:

(4.1) c(u1, . . . , uk) = 0 ⇐⇒ ρ1Ru1ρ
−1
1 + . . . + ρkRuk

ρ−1
k ⊊ n.

Construct M as in §3.3. Then the right-hand side of (4.1) holds if and only if det(M) ≡ 0.
Here, the condition det(M) ≡ 0 indicates that det(M) is identically zero. We denote D(α,x) :=
det(M).

In this case, D(α,x) ∈ Z(α)[x]. In fact, we have D(α,x) ∈ Z[α,x] since

(4.2) (ρ−1
i)j1,j2 =

1

det(ρi)
C(i)(j2, j1),

where C(i)(j2, j1) is the cofactor of ρi for j1, j2 ∈ [n]. Further, by construction, we have det(ρi) =
1, so (ρ−1

i)j1,j2 ∈ Z[α,x]. Note that D(α,x) ≡ 0 over Q(α) if and only if D(α,x) ≡ 0 over Q,
now viewing D(α,x) ∈ Z[α,x]. Thus onwards, we take α and x as variables.

Again, by (4.2), the expressions in (ρi)
−1 expanded in terms of α will be a polynomial of degree

n − 1. Thus matrix entries in M are polynomials of degree n + 1. Thus D(α,x) has degree
d(n+ 1).

Pick values for −→x , −→α randomly over integers in [p], where p ∈ Z>0. Let
−→ρi denote ρi evaluated

at −→α . Then compute (−→ρi)−1. By the Schwartz–Zippel Lemma 2.1, if D(α,x) ̸≡ 0, we have:

P
[
D(−→α ,−→x) = 0

]
≤ d(n+ 1)

p
.

Note that if D(α,x) ≡ 0, we have:

P
[
D(−→α ,−→x) = 0

]
= 1.

We test D(−→α ,−→x) = 0 in polynomial time for these sampled values in [p]. The probability of
error is less than 1

3 if we take p > 3
2n(n

2 − 1). Thus by Corollary 2.4, the algorithm for deciding

SchubertVanishing(A) satisfies the bullet conditions in the Main Theorem 1.1 with ε = 1
3 .

4.2. Algorithm for SOm . This case is similar to the case of SLn , but we include the details for
completeness. Considering the converse of Corollary 2.4, we examine the equation

(4.3) c(u1, . . . , uk) = 0 ⇐⇒ ρ1Ru1ρ
−1
1 + . . . + ρkRuk

ρ−1
k ⊊ n.

Construct M as in §3.3. Let m = N(G). Let κi be as in §3.2 such that ρi = (Im+κi)
−1(Im−κi).

Then the right-hand side of (4.3) holds if and only if det(M) ≡ 0. We denote D(α,x) := det(M).
Again D(α,x) ∈ Z[α,x] using (4.2) since again det(ρi) = 1 for each i ∈ [k]. Note that

D(α,x) ≡ 0 over Q(α) if and only if D(α,x) ≡ 0 over Q, now viewing D(α,x) ∈ Z[α,x]. Thus
going forward, we treat both α and x as variables.

By (4.2), the expressions in ρi and (ρi)
−1 expanded in terms of α will be polynomials of degree

m − 1. Then matrix entries in M are polynomials of degree 2m + 1. Thus D(α,x) has degree
d(2m+ 1).

Pick values for −→x , −→α randomly over integers in [p], where p ∈ Z>0. Then compute −→ρi =
(Im +−→κi)−1(Im −−→κi) and (−→ρi)−1. By the Schwartz–Zippel Lemma 2.1, if D(α,x) ̸≡ 0, we have:

P
[
D(−→α ,−→x) = 0

]
≤ d(2m+ 1)

p
.

Note that if D(−→α ,−→x) ≡ 0, we have:

P
[
D(−→α ,−→x) = 0

]
= 1.

We test D(−→α ,−→x) = 0 in polynomial time for these sampled values in [p]. The probability of
error is less than 1

3 if we take p > 3n2(2m+1). Thus by Corollary 2.4, the algorithm for deciding
both SchubertVanishing(B) and SchubertVanishing(D) corresponding to odd and even m,
respectively, satisfy the bullet conditions in the Main Theorem 1.1 with ε = 1

3 .

VANISHING OF SCHUBERT COEFFICIENTS 9

4.3. Algorithm outline. For clarity, and to ease the complexity analysis below, we give a con-
cise outline of the algorithm in all types A, B/D. Note that type B and C are equivalent by
Proposition 2.2.

Input: u1, . . . , uk ∈ W
Decide:

[
c(u1, . . . , uk) =

? 0
]

• Let

p :=

{
3
2 n(n

2 − 1) + 1 if G = SLn

3
⌊
m
2

⌋2
(2m+ 1) + 1 if G = SOm

• For all i ∈ [k] :
◦ Generate strictly upper triangular matrices κi with random entries αjℓ ∈ [p], see §3.2.
◦ Compute Ki using κi and set ρui := Ki , see §3.2.
◦ Compute inverse matrices ρ−1

ui
.

• For all i ∈ [k] and γ ∈ Φ+(ui) :
◦ Compute matrices −→xγ,iEγ with random values −→xγ,i ∈ [p], see §3.1.
◦ Compute matrices Tγ,i = ρui

(−→xγ,iEγ

)
ρ−1
ui

.

◦ Record the entries of Tγ,i in positions U(G) as a vector vγ,i .
6

• Let M be the matrix with column vectors vγ,i , over all γ ∈ Φ+(ui) and i ∈ [k].

Output: {
c(u1, . . . , uk) = 0 if det(M) = 0,

c(u1, . . . , uk) > 0 if det(M) ̸= 0.

4.4. Algorithm analysis and proof of Theorem 1.1. From the discussion in §4.1 and §4.2,
the Algorithm above is always correct when it outputs [c(u1, . . . , uk) > 0], and has a probability
of error ≤ 1

3 when it outputs [c(u1, . . . , uk) = 0]. Repeating the algorithm s times reduces this

probability to 1
3s ≤ ε for s = ⌈log3 1

ε⌉.
Now, the algorithm runs over i ∈ [k]. For each i and γ, to compute Tγ,i it multiplies and takes

inverses four times in type A, of matrices of size d with integer entries in [p]. Note d = O(n2)
and p = O(n3). In types B/D, computing ρi requires four additional multiplications/inversions.
Note that these matrices are unitriangular, thus always invertible.

Recall that matrix multiplication and matrix inversion of m ×m matrices with entries in [q],
has cost O

(
mω log q log log q

)
of arithmetic operations, where 2 ≤ ω < 2.3728 is the matrix

multiplication constant, see e.g. [Bla13, §9.4]. Note also that by the Hadamard inequality, the

inverse matrix has entries in absolute value at most qmmm/2, see e.g. [BB61, §2.11].
In summary, the second loop of the algorithm uses O(kd) multiplications and inversions of

d × d matrices, but the size of matrix entries in the inverse matrix is a = O
(
pddd/2

)
= nO(n2).

Putting everything together, the total cost of this loop is at most

O (kd · dω · log a log log a) = O
(
kn2 · n2ω · n2 (log n)2

)
= O

(
kn4+2ω (log n)2

)
= O

(
kn8.75

)
arithmetic operations. In the final step, the algorithm then computes the determinant of a d× d
matrix M with entry sizes polynomial in a. A similar calculation gives a O

(
n7.75

)
bound for the

cost of this step; the details are straightforward.
Finally, recall that we repeat the algorithm O(log 1

ε) times. Thus for the total cost of deciding

the Schubert vanishing as in the theorem, is O(kn8.75 log 1
ε) arithmetic operations. This completes

the proof of Theorem 1.1. □

6Formally, we need to do this under a fixed order (e.g., lexicographic order on matrix positions).

10 IGOR PAK AND COLLEEN ROBICHAUX

5. Final remarks

5.1. Schubert vanishing is a major problem with connections across areas, such as representation
theory, category theory, matroid theory and pole placement problem in linear systems theory (see
[PR24a] for many references). Let us quote Knutson’s ICM paper: “For applications (including
real-world engineering applications) it is more important to know that [Schubert] structure constant
is positive, than it is to know its actual value” [Knu22, §1.4].

More broadly, the vanishing of structure constants in Algebraic Combinatorics plays a central
role in Geometric Complexity Theory (GCT), as discussed at length in [Mul09, MNS12]. Notably,
an important part of GCT was motivated by an observation that the saturation theorem implies
that vanishing of LR–coefficients is in P, ibid. We refer to [Aar16, §6.6.3] for a high level overview of
this connection. Let us mention that in [Mul09, §3.7], Mulmuley singled out Schubert coefficients
as “one of the fundamental structural constants in representation theory and algebraic geometry,”
whose vanishing needs to be understood.

5.2. As we mentioned in §1.3, in type A the vanishing of LR coefficients (1.5) can be decided by
linear programming via the saturation property. An alternative approach was given by Bürgisser
and Ikenmeyer in [BI13]. Their algorithm uses flows in hive graphs and is specifically designed
for the LR vanishing. While we make no effort to optimize our algorithm, below we include
a brief comparison of the time complexity of these algorithms, and the algorithm we obtain in
Corollary 1.3.

We assume that the three partitions λ, µ, ν are given in binary as vectors in Nℓ, so |λ| = |µ|+|ν|
and ℓ(λ), ℓ(µ), ℓ(ν) ≤ ℓ. Denote by a := log2 λ1 the bit-size of the maximal part of the input.
According to [BI13, p. 1640], the ellipsoid method applied to the hive polytopes given in [KT99],
takes O(ℓ10aϑ), where ϑ denotes the cost of arithmetic operations. They do not compute the
cost of the interior point method, but observe that it is at least ℓ9(a + log ℓ)ϑ. By contrast, the
Bürgisser–Ikenmeyer (BI) algorithm takes O(ℓ3aϑ) [BI13, Thm 5.4].

Note that our probabilistic algorithm uses unary input, which makes the complexity not directly
comparable. This is because for the standard embedding of the LR vanishing into the Schubert
vanishing, we have n = (ℓ + λ1). For comparison sake, assume that λ1 = Θ(ℓ). In this case,

the LP methods take O(ℓ10+o(1)ϑ) and O(ℓ9+o(1)ϑ), respectively, while the BI algorithm takes

O(ℓ3+o(1)ϑ) in this case.
Now, our algorithm in Corollary 1.3 takes O(ℓ8.75ϑ), i.e. slightly faster than the LP methods,

but much slower than the BI algorithm. Note, however, that our analysis in §4.4 is not especially
sharp since the matrices we are multiplying/inverting are very sparse (see Appendix A). It would
be interesting to improve our analysis, especially in the Grassmannian case.

5.3. It is natural to ask if the saturation property (1.4) can be extended beyond LR coefficients.
The exuberance which followed Knutson–Tao’s proof led to a plethora of potential generalizations,
see e.g. a large compendium in [Kir04]. Following the logic of [DM06, MNS12], such results could
potentially give deterministic poly-time algorithms for the vanishing problems. With few notable
exceptions, almost none of these potential generalizations are proved, and many have been refuted.
We refer to our forthcoming paper [PR25+] for a disproof of Kirillov’s conjectural saturation
property for Schubert coefficients and further references.

Acknowledgements. We are grateful to Sara Billey, Allen Knutson, Greta Panova, Kevin Purb-
hoo, Frank Sottile, David Speyer, Avi Wigderson, Weihong Xu and Alex Yong for interesting
discussions and helpful comments. The first author was partially supported by the NSF grant
CCF-2302173. Unfortunately, this grant was suspended at the time the paper was written. The
second author was partially supported by the NSF MSPRF grant DMS-2302279.

VANISHING OF SCHUBERT COEFFICIENTS 11

References

[Aar16] Scott Aaronson, P
?
= NP, in Open problems in mathematics, Springer, Cham, 2016, 1–122.

[ARY19] Anshul Adve, Colleen Robichaux and Alexander Yong, Vanishing of Littlewood–Richardson polynomials
is in P, Comput. Complexity 28 (2019), 241–257.

[AF24] David Anderson and William Fulton, Equivariant cohomology in algebraic geometry, Cambridge Univ.
Press, Cambridge, UK, 2024, 446 pp.

[AB09] Sanjeev Arora and Boaz Barak, Computational complexity. A modern approach, Cambridge Univ. Press,
Cambridge, 2009, 579 pp.

[BB61] Edwin F. Beckenbach and Richard Bellman, Inequalities, Springer, Berlin, 1961, 198 pp.
[BK06] Prakash Belkale and Shrawan Kumar, Eigenvalue problem and a new product in cohomology of flag

varieties, Invent. Math. 166 (2006), 185–228.
[BS00] Arkady Berenstein and Reyer Sjamaar, Coadjoint orbits, moment polytopes, and the Hilbert–Mumford

criterion, Jour. of the AMS 13 (2000), 433–466.
[BH95] Sara Billey and Mark Haiman, Schubert polynomials for the classical groups, Jour. of the AMS 8 (1995),

443–482.
[BGP25] Sara Billey, Yibo Gao and Brendan Pawlowski, Introduction to the cohomology of the flag variety,

preprint (2025), 192 pp.; to appear in Handbook of combinatorial algebraic geometry: Subvarieties of the
flag variety ; arXiv:2506.21064.

[BV08] Sara Billey and Ravi Vakil, Intersections of Schubert varieties and other permutation array schemes, in
Algorithms in algebraic geometry, Springer, New York, 2008, 21–54.

[Bla13] Markus Bläser, Fast matrix multiplication, in Theory of Computing Library. Graduate Surveys 5 (2013),
60 pp.

[BI13] Peter Bürgisser and Christian Ikenmeyer, Deciding positivity of Littlewood–Richardson coefficients,
SIAM J. Discrete Math. 27 (2013), 1639–1681.

[CNO14] Seung-Il Choi, Sun-Young Nam and Young-Tak Oh, Bijections among combinatorial models for shifted
Littlewood–Richardson coefficients, J. Combin. Theory, Ser. A 128 (2014), 56–83.

[DM06] Jesús A. De Loera and Tyrrell B. McAllister, On the computation of Clebsch–Gordan coefficients and
the dilation effect, Experiment. Math. 15 (2006), 7–19.

[Ful97] William Fulton, Young tableaux, Cambridge Univ. Press, Cambridge, UK, 1997, 260 pp.
[Gol08] Oded Goldreich, Computational complexity. A conceptual perspective, Cambridge Univ. Press, Cam-

bridge, UK, 2008, 606 pp.
[IW97] Russell Impagliazzo and Avi Wigderson, P = BPP if E requires exponential circuits: derandomizing the

XOR lemma, in Proc. 29th STOC (1997), 220–229.
[Kir04] Anatol N. Kirillov, An invitation to the generalized saturation conjecture, Publ. RIMS 40 (2004), 1147–

1239.
[Kle74] Steven L. Kleiman, The transversality of a general translate, Compositio Math. 28 (1974), 287–297.
[Kle76] Steven L. Kleiman, Problem 15: Rigorous foundation of Schubert’s enumerative calculus, in Mathemat-

ical developments arising from Hilbert problems, AMS, Providence, RI, 1976, 445–482.
[Knu16] Allen Knutson, Schubert calculus and puzzles, in Adv. Stud. Pure Math. 71, Math. Soc. Japan, Tokyo,

2016, 185–209.
[Knu22] Allen Knutson, Schubert calculus and quiver varieties, in Proc. ICM (2022, virtual), Vol. VI, EMS Press,

4582–4605.
[KT99] Allen Knutson and Terence Tao, The honeycomb model of SLn(C) tensor products I: Proof of the

saturation conjecture, Jour. of the AMS 12 (1999), 1055–1090.
[Man01] Laurent Manivel, Symmetric functions, Schubert polynomials and degeneracy loci, SMF/AMS, Provi-

dence, RI, 2001, 167 pp.
[Mul09] Ketan D. Mulmuley, Geometric Complexity Theory VI: the flip via saturated and positive integer

programming in representation theory and algebraic geometry, preprint (2009, v4), 139 pp.; arXiv:

0704.0229.
[MNS12] Ketan D. Mulmuley, Hariharan Narayanan and Milind Sohoni, Geometric complexity theory III. On

deciding nonvanishing of a Littlewood–Richardson coefficient, J. Algebraic Combin. 36 (2012), 103–110.
[Pak24] Igor Pak, What is a combinatorial interpretation?, in Open Problems in Algebraic Combinatorics, AMS,

Providence, RI, 2024, 191–260.
[PR24a] Igor Pak and Colleen Robichaux, Vanishing of Schubert coefficients, preprint (2024), arXiv:2412.02064;

v1 is 24 pp., v2 includes Appendix C joint with David E Speyer, 30 pp.; extended abstract in Proc. 57th
STOC (2025), 1118–1129.

[PR24b] Igor Pak and Colleen Robichaux, Positivity of Schubert coefficients, preprint, 7 pp.; arXiv:2412.18984.
[PR25a] Igor Pak and Colleen Robichaux, Signed combinatorial interpretations in algebraic combinatorics, Alge-

braic Combinatorics 8 (2025), 495–519.

12 IGOR PAK AND COLLEEN ROBICHAUX

[PR25b] Igor Pak and Colleen Robichaux, Vanishing of Schubert coefficients is in AM∩coAM assuming the GRH,
preprint (2025), 18 pp.; arXiv:2504.03004.

[PR25c] Igor Pak and Colleen Robichaux, Signed puzzles for Schubert coefficients, preprint (2025), 15 pp.; arXiv:
2504.17734.

[PR25+] Igor Pak and Colleen Robichaux, Saturation property fails for Schubert coefficients, in preparation.
[Pan24] Greta Panova, Computational complexity in algebraic combinatorics, in Current Developments in Math-

ematics, Int. Press, Boston, MA, 2024, 241–280.
[Pra91] Piotr Pragacz, Algebro-geometric applications of Schur S- and Q-polynomials, in Topics in Invariant

Theory, Springer, Berlin, 1991, 130–191.
[Pur06] Kevin Purbhoo, Vanishing and nonvanishing criteria in Schubert calculus, Int. Math. Res. Notices 2006

(2006), Art. 24590, 38 pp.
[PS08] Kevin Purbhoo and Frank Sottile, The recursive nature of cominuscule Schubert calculus, Adv. Math.

217 (2008), 1962–2004.
[RYY22] Colleen Robichaux, Harshit Yadav and Alexander Yong, Equivariant cohomology, Schubert calculus,

and edge labeled tableaux, in Facets of Algebraic Geometry, Vol. II, Cambridge Univ. Press, Cambridge,
UK, 2022, 284–335.

[Sch79] Hermann Schubert, Kalkül der abzählenden Geometrie (in German), [Calculus of enumerative geometry]
Reprint of the 1879 original, Springer, Berlin, 1979, 349 pp.

[SY09] Amir Shpilka and Amir Yehudayoff, Arithmetic circuits: a survey of recent results and open questions,
Found. Trends Theor. Comput. Sci. 5 (2009), 207–388.

[Sea16] Dominic Searles, Root-theoretic Young diagrams and Schubert calculus II, J. Comb. 7 (2016), 159–203.
[SY22] Avery St. Dizier and Alexander Yong, Generalized permutahedra and Schubert calculus, Arnold Math. J.

8 (2022), 517–533.
[Sta99] Richard P. Stanley, Enumerative Combinatorics, vol. 2, Cambridge Univ. Press, 1999, 581 pp.
[Sta00] Richard P. Stanley, Positivity problems and conjectures in algebraic combinatorics, in Mathematics:

frontiers and perspectives, AMS, Providence, RI, 2000, 295–319.

VANISHING OF SCHUBERT COEFFICIENTS 13

Appendix A. Examples

We illustrate the construction in §3.3 for two problems in SL4(C) and for one problem in SO7(C). In
the first of the two SL4(C) examples, the outcome determines the coefficient vanishes, and in the second,
the outcome determines the coefficient is positive.

A.1. Vanishing SL4 example. Take u = 3214, v = 1423, and w = 4312. This gives w◦w = 1243. We
have:

Φ+(u) = {e1 − e2, e1 − e3, e2 − e3},
Φ+(v) = {e2 − e3, e2 − e4},

Φ+(w◦w) = {e3 − e4}.

Using these roots, we construct the bases Su, Sv, and Sw◦w :

x1 Ee2−e3 =


0 x1 0 0
0 0 0 0
0 0 0 0
0 0 0 0

 x2 Ee2−e3 =


0 0 x2 0
0 0 0 0
0 0 0 0
0 0 0 0

 x3 Ee2−e3 =


0 0 0 0
0 0 x3 0
0 0 0 0
0 0 0 0



x4 Ee2−e3 =


0 0 0 0
0 0 x4 0
0 0 0 0
0 0 0 0

 x5 Ee2−e3 =


0 0 0 0
0 0 0 x5

0 0 0 0
0 0 0 0

 x6 Ee2−e3 =


0 0 0 0
0 0 0 0
0 0 0 x6

0 0 0 0


We then build matrices ρi as follows:

ρ1 =


1 a0 a1 a2
0 1 a3 a4
0 0 1 a5
0 0 0 1

 ρ2 =


1 b0 b1 b2
0 1 b3 b4
0 0 1 b5
0 0 0 1

 ρ3 =


1 c0 c1 c2
0 1 c3 c4
0 0 1 c5
0 0 0 1


After computing ρ1Suρ1

−1, ρ2Svρ2
−1, and ρ3Sw◦wρ3

−1, we restrict to the strictly upper diagonal entries
to build column vectors πi. We illustrate this for the first basis element in ρ1Suρ1

−1:

ρ1x1 (Ee2−e3)ρ1
−1 =

=


1 a0 a1 a2
0 1 a3 a4
0 0 1 a5
0 0 0 1



0 x1 0 0
0 0 0 0
0 0 0 0
0 0 0 0



1 −a0 a0a3 − a1 −a2 + a1a5 + a0(a4 − a3a5)
0 1 −a3 a3a5 − a4
0 0 1 −a5
0 0 0 1



=


0 x1 −a3x1 (a3a5 − a4)x1

0 0 0 0
0 0 0 0
0 0 0 0

 τ−→ [x1, −a3x1, (a3a5 − a4)x1, 0, 0, 0]
T

Repeating this process for each basis element, we obtain {πi} to build the following matrix:

M =


x1 0 0 0 0 0
−a3x1 0 a0x3 b0x4 0 0

(a3a5 − a4)x1 x2 −a0a5x3 −b0b5x4 b0x5 c1x6

0 −a5x2 x3 x4 0 0
0 0 −a5x3 −b5x4 x5 c3x6

0 0 0 0 0 x6

 .

One can check that det(M) ≡ 0 in this case, so cwu,v = 0.
Rather than compute det(M) ≡ 0 directly, in the algorithm we instead randomly evaluate the variables

above in the interval [121] to produce an evaluated matrix
−→
M . Of course, we will always have det(

−→
M) = 0

in this case.

14 IGOR PAK AND COLLEEN ROBICHAUX

A.2. Nonvanishing SL4 example. Now we take v = 1342 to consider the triple u = 3214, v = 1342, and
w = 4312. Again w◦w = 1243. This time we have Φ+(v) = {e2 − e4, e3 − e4}. Take ρi as in Example A.1.

By the same process as Example A.1, we obtain {πi} to build the following matrix:

M =


x1 0 0 0 0 0
−a3x1 0 a0x3 0 0 0

(a3a5 − a4)x1 x2 −a0a5x3 b0x4 b1x5 c1x6

0 −a5x2 x3 0 0 0
0 0 −a5x3 x4 b3x5 c3x6

0 0 0 0 x5 x6

 .

We find det(M) ̸≡ 0, so cwu,v > 0.

Now, the algorithm tests {det(M) ≡? 0}. We randomly evaluate the variables above in the interval

[121] to produce an evaluated matrix
−→
M . With probability > 2/3, our random choices will result in

−→
M

which will output det(
−→
M) ̸= 0. Since the algorithm has one–sided error, if any evaluation

−→
M produces

det(
−→
M) ̸= 0, then we have cwu,v > 0 with certainty.

For example, take (x1, x2, x3, x4, x5, x6)← (6, 5, 4, 3, 2, 1) and

−→ρ1 ←


1 1 2 3
0 1 4 5
0 0 1 6
0 0 0 1

 , −→ρ2 ←


1 7 8 9
0 1 10 11
0 0 1 12
0 0 0 1

 , −→ρ3 ←


1 13 14 15
0 1 16 17
0 0 1 18
0 0 0 1

 .

This substitution gives
−→
M with det(

−→
M) = 181440 ̸= 0, so we conclude that cwu,v > 0.

A.3. An SO7 example. Here we illustrate the construction in §3.3 for a problems in SO7 . After the
setup below, the remainder of the algorithm follows precisely like the SL4(C) cases above.

In this example, we consider an example in the maximal isotropic Grassmannian of type B3. Take
u = 213, v = 213, and w = 321. This gives w◦w = 321 since w◦ = 321. We have:

Φ+(u) = {e1, e1 + e2},
Φ+(v) = {e1, e2, e1 + e2},

Φ+(w◦w) = {e3, e1 − e2, e1 − e3, e2 − e3}.

Using these roots, we construct the bases Su, Sv, and Sw◦w :

x1 Ee1 =



0 0 0 x1 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 −x1

0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0


x2 Ee1+e2 =



0 0 0 0 0 x2 0
0 0 0 0 0 0 −x2

0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0



x3 Ee1 =



0 0 0 x3 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 −x3

0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0


x4 Ee2 =



0 0 0 0 0 0 0
0 0 0 x4 0 0 0
0 0 0 0 0 −x4 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0



VANISHING OF SCHUBERT COEFFICIENTS 15

x5 Ee1+e2 =



0 0 0 0 0 x5 0
0 0 0 0 0 0 −x5

0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0


x6 Ee3 =



0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 x9 0 0 0
0 0 0 0 −x9 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0



x7 Ee1−e2 =



0 x7 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 −x7

0 0 0 0 0 0 0


x8 Ee1−e3 =



0 0 x8 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 −x8

0 0 0 0 0 0 0



x9 Ee2−e3 =



0 0 0 0 0 0 0
0 0 x9 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 −x9 0
0 0 0 0 0 0 0


We then build matrices ρi as follows:

κ1 =



1 a0 a1 a2 a3 a4 0
0 1 a5 a6 a7 0 −a4
0 0 1 a8 0 −a7 −a3
0 0 0 1 −a8 −a6 −a2
0 0 0 0 1 −a5 −a1
0 0 0 0 0 1 −a0
0 0 0 0 0 0 1


Here we have highlighted the matrix entries above with positions in N(SO7) in blue. We now set ρ1 :=
(I7 + κ1)

−1(I7 − κ1). We then construct matrices ρ2 and ρ3 similarly. The remainder of the algorithm
proceeds analogously as in Examples A.1 and A.2. As matrices become rather large, we omit the details.

	1. Introduction
	1.1. Vanishing of Schubert coefficients
	1.2. Geometric background and motivation
	1.3. Complexity background and implications

	2. Preliminaries
	2.1. Notation
	2.2. Polynomial identity testing
	2.3. Types B and C
	2.4. Purbhoo's criterion

	3. General setup
	3.1. Root systems
	3.2. Generic unipotent subgroup elements
	3.3. Main construction

	4. Proof of the main theorem
	4.1. Algorithm for SLn
	4.2. Algorithm for SOm
	4.3. Algorithm outline
	4.4. Algorithm analysis and proof of Theorem 1.1

	5. Final remarks
	5.1.
	5.2.
	5.3.
	Acknowledgements

	References
	Appendix A. Examples
	A.1. Vanishing SL 4 example
	A.2. Nonvanishing SL 4 example
	A.3. An SO7 example

