
VC-DIMENSION OF SHORT PRESBURGER FORMULAS

DANNY NGUYEN? AND IGOR PAK?

Abstract. We study VC-dimension of short formulas in Presburger Arithmetic, defined
to have a bounded number of variables, quantifiers and atoms. We give both lower and
upper bounds, which are tight up to a polynomial factor in the bit length of the formula.

1. Introduction

The notion of VC-dimension was introduced by Vapnik and Červonenkis in [VC71]. Al-
though originally motivated by applications in probability and statistics, it was quickly
adapted to computer science, learning theory, combinatorics, logic and other areas. We
refer to [Vap98] for the extensive review of the subject, and to [Che16] for an accessible
introduction to combinatorial and logical aspects.

1.1. Definitions of VC-dimension and VC-density. Let X be a set and S ⊆ 2X be a
family of subsets of X. For a subset A ⊆ X, let S ∩ A := {S ∩ A : S ∈ S} be the family of
subsets of A cut out by S. A subset A ⊆ X is shattered by S if S ∩ A = 2A, i.e., for every
subset B ⊆ A, there is S ∈ S with B = S∩A. The largest size |A| among all subsets A ⊆ X
shattered by S is called the VC-dimension of S, denoted by VC(S). If no such largest size
|A| exists, we write VC(S) =∞.

The shatter function πS is defined as follows:

πS(n) = max
{
|S ∩A| : A ⊆ X, |A| = n

}
,

The VC-density of S, denoted by vc(S) is defined as

inf
{
r ∈ R+ : limsupn→∞

πS(n)

nr
<∞

}
.

The classical theorem of Sauer and Shelah [Sa72, Sh72] states that

vc(S) ≤ VC(S).

In other words, πS(n) = O(nd) in case S has finite VC-dimension d. In general, VC-
density can be much smaller than VC-dimension, and also behaves a lot better under various
operations on S.

1.2. NIP theories and bounds on VC-dimension/density. It is of interest to distin-
guish the first-order theories in which VC-dimension and VC-density behave nicely. Let
L be a first-order language and M be an L-structure. Consider a partitioned L-formula
F (x; y) whose free variables are separated into two groups x ∈Mm (objects) and y ∈Mn

(parameters). For each parameter tuple y ∈Mn, let

Sy =
{
x ∈Mm : M |= F (x; y)

}
.
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Associated to F is the family SF =
{
Sy : y ∈Mn

}
. We say that F is NIP, short for “F does

not have the independence property”, if SF has finite VC-dimension. The structure M is
called NIP if every partitioned L-formula F is NIP in M .

One prominent example of an NIP structure is Presburger Arithmetic PA = (Z, <,+),
which is the first-order structure on Z with only addition and inequalities. The main result
of this paper are the lower and upper bounds on the VC-dimensions of PA-formulas. These
are contrasted with the following notable bounds on the VC-density:

Theorem 1 ([A+16]). Given a PA-formula F (x; y) with y ∈ Zn, vc(SF ) ≤ n holds.

In other words, VC-density in the setting of PA can be bounded solely by the dimension
of the parameter variables y. It cannot grow very large when we vary the number of object
variables x, quantified variables or the description of F . This follows from a more general
result in [A+16], which says that every quasi-o-minimal structure satisfies a similar bound
on the VC-density. We refer to [A+16] for the precise statement of this result and for the
powerful techniques used to bound the VC-density.

Karpinski and Macintyre raised a natural question whether similar bounds would hold
for the VC-dimension. In [KM97], they gave upper bounds for the VC-dimension in some
o-minimal structures (PA is not one), which are polynomial in the parameter dimension n.
Later, they extended their arguments in [KM00] to obtain upper bounds on the VC-density,
this time linear in n. Also in [KM00], the authors claimed to have an effective bound on
the VC-dimensions of PA-formulas. However, we cannot locate such an explicit bound in
any papers. To our knowledge, no effective upper bounds on the VC-dimensions of general
PA-formulas exist in the literature.

1.3. Main results. We consider PA-formulas with a fixed number of variables (both quan-
tified and free). Clearly, this also restricts the number of quantifier alternations in F . The
atoms in F are linear inequalities in these variables with some integer constants and coeffi-
cients (in binary). Given such a formula F , denote by `(F ) the length of F , i.e., the total
bit length of all symbols, operations, integer coefficients and constants in F .

We can further restrict the form of a PA-formula by requiring that it does not contain too
many inequalities. For fixed k and t, denote by Short-PAk,t the family of PA-formulas with
at most k variables (both free and quantified) and t inequalities. When k and t are clear, a
formula F ∈ Short-PAk,t is simply called a short Presburger formula. In this case, `(F ) is
essentially the total length of a bounded number of integer coefficients and constants. Our
main result is a lower bound on the VC-dimension of short Presburger formulas:

Theorem 2. For every d, there is a short Presburger formula F (x; y) = ∃u ∀v Ψ(x, y,u,v)
in the class Short-PA10,18 with

`(F ) = O(d2) and VC(F ) ≥ d.

Here x, y are singletons and u ∈ Z6,v ∈ Z2. The expression Ψ is quantifier-free, and can
be computed in probabilistic polynomial time in d.

So in contrast with VC-density, the VC-dimension of a PA-formula F crucially depends
on the actual length `(F ). For the formulas in the theorem, we have:

VC(F ) = Ω
(
`(F )1/2

)
, and vc(F ) ≤ 1,

where the last inequality follows by Theorem 1. Note that if one is allowed an unrestricted
number of inequalities in F , a similar lower bound to Theorem 2 can be easily established
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by an elementary combinatorial argument. However, since the formula F is short, we can
only work with a few integer coefficients and constants.

The construction in Theorem 2 uses a number-theoretic technique that employs continued
fractions to encode a union of many arithmetic progressions. This technique was explored
earlier in [NP17b] to show that various decision problems with short Presburger sentences
are intractable. In this construction we need to pick a prime roughly larger than 4d, which
can be done in probabilistic polynomial time in d. This can be modified to a deterministic
algorithm with run-time polynomial in d, at the cost of increasing `(F ):

Theorem 3. For every d, there is a short Presburger formula F (x; y) = ∃u ∀v Ψ(x, y,u,v)
in the class Short-PA10,18 with

`(F ) = O(d3) and VC(F ) ≥ d.

Here x, y are singletons and u ∈ Z6,v ∈ Z2. The expression Ψ is quantifier-free, and can
be computed in deterministic polynomial time in d.

We conclude with the following polynomial upper bound for the VC-dimension of all (not
necessarily short) Presburger formulas in a fixed number of variables:

Theorem 4. For a Presburger formula F (x; y) with at most k variables (both free and
quantified), we have:

VC(F ) = O
(
`(F )c

)
,

where c and the O(·) constant depend only on k.

This upper bound implies that Theorem 2 is tight up to a polynomial factor. The proof of
Theorem 4 uses an algorithm from [NP17a] for decomposing a semilinear set, i.e., one defined
by a PA-formula, into polynomially many simpler pieces. Each such piece is a polyhedron
intersecting a periodic set, whose VC-dimensions can be bounded by elementary arguments.

We note that the number of quantified variables is vital in Theorem 4. In §3.3, we
construct PA-formulas F (x; y) with x, y singletons and many quantified variables, for which
VC(F ) grows doubly exponentially compared to `(F ).

2. Proofs

We start with Theorem 3, and then show how it can be modified to give Theorem 2.

Proof of Theorem 3. Let A = {1, 2, . . . , d} and S = 2A. Since S contains all of the
subsets of A, we have VC(S) = d. We order the sets in S lexicographically. In other words,
for S, S′ ∈ S, we have S < S′ if

∑
i∈S 2i <

∑
i∈S′ 2i. Thus, the sets in S can be indexed as

S0 < S1 < · · · < S2d−1, where S0 = ∅, S1 = {1}, . . . , S2d−1 = A. Next, define:

(2.1) T :=
⊔

0≤j<2d

{i+ dj : i ∈ Sj}.

We show in Lemma 5 below that the set T is definable by a short PA formula GT (t) with
only 8 quantified variables and 18 inequalities. Using this, it is clear that the parametrized
formula

FT (x; y) := GT (x+ dy)

describes the family S (with y as the parameter), and thus has VC dimension d. We remark
that GT has only 1 quantifer alternation (see below). �
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Lemma 5. The set T is definable by a short Presburger formula GT (t) = ∃u ∀v Ψ(t,u,v)
with u ∈ Z6,v ∈ Z2 and Ψ a Boolean combination of at most 18 inequalities in t,u,v with
binary length `(Ψ) = O(d3).

Proof. Our strategy is to represent the set T as a union of arithmetic progressions (APs).
In [NP17b], given d progressions APi = {ai, ai + ci, . . . , ai + bici}, we gave a method to
define AP1∪ · · · ∪APd by a short Presburger formula of length polynomial in

∑
log(aibici).

For each 1 ≤ i ≤ d, let Ji = {j : 0 ≤ j < 2d, i ∈ Sj}. From (2.1), we have:

(2.2) T =

d⊔
i=1

(i+ dJi).

From the lexicographic ordering of the sets Sj , we can easily describe each set Ji as:

(2.3) Ji = {m+ 2i−1 + 2in : 0 ≤ m < 2i−1, 0 ≤ n < 2d−i}.

So each set Ji is not simply an AP, but the Minkowski sum of two APs. However, we can
easily modify each Ji into an AP by defining:

(2.4) J ′i = {2d(m+ 2i−1) + 2in : 0 ≤ m < 2i−1, 0 ≤ n < 2d−i}.

It is clear that J ′i is an AP that starts at 2d+i−1 and ends at 2d+i− 2i with step size 2i. Let
APi := i+ dJ ′i and

(2.5) T ′ =
d⊔

i=1

APi.

This is a union of d arithmetic progressions. Using the construction from [NP17b], we can
define T ′ by a short Presburger formula:

t′ ∈ T ′ ⇐⇒ ∃w ∀v Φ
(
t′,w,v

)
,

where t′ ∈ Z, w,v ∈ Z2 and Φ is a Boolean combination of at most 10 inequalities. This
construction works by finding a single continued fraction α = [a0 ; b0, a1, b1, . . . , a2d−1] whose
successive convergents encode the starting and ending points of our AP1, . . . ,APd. We refer
to Section 4 in [NP17b] for the details. The largest term in each APi is γi = i+d(2d+i−2i),
which has binary length O(d). Each term ak and bk in the continued fraction α is at most

the product of these γi. Since
∏d

i=1 γi has binary length O(d2), and so does each term
ak and bk. Therefore, the final continued fraction α is a rational number p/q with binary
length O(d3). This implies that `(Φ) = O(d3) as well.

To get a formula for T , note that from (2.2), (2.3), (2.4) and (2.5), we have:

t ∈ T ⇐⇒ ∃ t′, i, r, s : t′ ∈ T ′, 1 ≤ i ≤ d, 0 ≤ s < 2d,

t′ = i+ d(2dr + s), t = i+ d(r + s).1

Here r and s respectively stand for m + 2i−1 and 2in in (2.3). Using ∃w ∀v Φ(t′,w,v) to
express t′ ∈ T ′, we get a formula GT (t) defining T with 8 quantified variables t′, i, r, s ∈ Z,
w,v ∈ Z2 and 18 inequalities. Note that t′, i, r, s and w are existential variables, so GT has
the form ∃u ∀v Ψ(t,u,v) with u ∈ Z6,v ∈ Z2 and Ψ quantifier-free. �

1Each equality is a pair of inequalities.
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Proof of Theorem 2. Note that the above construction of FT and GT is deterministic
with run-time polynomial in d. For Theorem 2, only the existence of a short PA formula
with high VC-dimension is needed. In this case, our lower bound can be improved to
VC(F ) ≥ c

√
`(F ), for some c > 0, as follows. Recall that γi = i+ d(2d+i− 2i) is the largest

term in APi = i+dJ ′i in (2.5). Pick the smallest prime p larger than max(γ1, . . . , γd) ≈ d4d.
This prime p can substitute for the large number M in Section 4.1 of [NP17b], which was

(deterministically) chosen as 1 +
∏d

i=1 γi, so that it is larger and coprime to all γi’s. The
rest of the construction follows verbatim. Note that log p = O(d) by Chebyshev’s theorem.
So the final continued fraction α = [a0 ; b0, a1, b1, . . . , a2d−1] has length O(d2), because now
each term ak, bk has length at most log p. This completes the proof. �

Proof of Theorem 4. Let F (x; y) be any PA formula with free variables x ∈ Zm, y ∈ Zn

and n′ other quantified variables, where m,n, n′ are fixed. Let k = m+ n+ n′. In [NP17a]
(Theorem 5.2), we gave the following polynomial decomposition on the semilinear set defined
by F :

(2.6) ΣF :=
{

(x,y) ∈ Zm+n : F (x; y) = true
}

=
r⊔

j=1

Rj ∩ Tj .

Here each Rj is a polyhedron in Rm+n, and each Tj ⊆ Zm+n is a periodic set, i.e., a union
of several cosets of some lattice Tj ⊆ Zm+n. In other words, the set defined by F is a union
of r pieces, each of which is a polyhedron intersecting a periodic set. Our decomposition is
algorithmic, in the sense that the pieces Rj and lattices Tj can be found in time O

(
`(F )c

)
,

with c and O(·) depending only on k. The algorithm describes each piece Rj by a system
of inequalities and each lattice Tj by a basis. Denote by `(Rj) and `(Tj) the total binary
lengths of these systems and basis vectors, respectively. These also satisfy:

(2.7)
r∑

j=1

`(Rj) + `(Tj) = O
(
`(F )c

)
.

Each Rj can be written as the intersection Hj1 ∩ · · · ∩ Hjfj , where each Hjk is a half-

space in Rm+n, and fj is the number of facets of Rj . Note that fj ≤ `(Rj) = O
(
`(F )c

)
.

We rewrite (2.6) as:

(2.8) ΣF =

r⊔
j=1

Hj1 ∩ · · · ∩Hjfj ∩ Tj .

Therefore, the set ΣF is a Boolean combination of f1 + · · ·+ fr half-spaces and r periodic
sets. In total, there are

(2.9) f1 + · · ·+ fr + r = O
(
`(F )c

)
of those basic sets.

For a set Γ ⊆ Rm+n and y ∈ Zn, denote by Γy the subset {x ∈ Zm : (x,y) ∈ Γ}
and by SΓ the family {Γy : y ∈ Zn}. For a half-space H ⊂ Rm+n, it is easy to see that
VC(SH) = 1. For each periodic set Tj with period lattice Tj , the family STj has cardinality

at most det(Tj ∩ Zn) ≤ 2O(`(Tj)). Thus, we have

(2.10) VC(STj ) ≤ log |STj | = O
(
`(Tj)

)
.
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Let Γ1, . . . ,Γt ⊆ Zm+n be any t sets with VC(SΓi) = di. By an application of the Sauer-
Shelah lemma ([Sa72, Sh72]), if Σ is any Boolean combination of Γ1, . . . ,Γt, then we can
bound VC(SΣ) as:

VC(SΣ) = O
(
(d1 + · · ·+ dt) log(d1 + · · ·+ dt)

)
.

Applying this to (2.8), we get VC(SΣF
) = O(` log `), where

` =

r∑
j=1

(
VC(STj ) +

fj∑
j′=1

VC(SHjj′ )

)
≤

r∑
j=1

VC(STj ) + fj .

By (2.7), (2.9) and (2.10), we have ` = O
(
`(F )c

)
. We conclude that VC(F ) = O

(
`(F )2c

)
.
�

3. Final remarks and open problems

3.1. The proof of Theorem 2 is almost completely effective except for finding a small
prime p larger than a given integerN . This problem is considered to be computationally very
difficult in the deterministic case, and only exponential algorithms are known (see [LO87,
TCH12]).

3.2. Our constructed short formula F is of the form ∃∀. It is interesting to see if similar
polynomial lower bounds are obtainable with existential short formulas. For such a formula
F (x; y) = ∃z Φ(x,y, z), the quantifier-free expression Φ(x,y, z) captures the set of integer
points Γ lying in a union of some polyhedra Pi’s. Note that the total number of polyhedra
and their facets should be bounded, since we are working with short formulas. Therefore,
F simply capture the pairs (x,y) in the projection of Γ along the z direction. Denote
this set by proj(Γ). The work of Barvinok and Woods [BW03] shows that proj(Γ) has
a short generating function, and can even be counted efficiently in polynomial time. In
our construction, the set that yields high VC-dimension is a union arithmetic progressions,
which cannot be counted efficiently unless P = NP (see [SM73]). This difference indicates
that proj(Γ) has a much simpler combinatorial structure, and may not attain a high VC-
dimension.

3.3. One can ask about the VC-dimension of a general PA-formula with no restriction
on the number of variables, quantifier alternations or atoms. Fischer and Rabin famously
showed in [FR74] that PA has decision complexity at least doubly exponential in the general
setting. For every ` > 0, they constructed a formula Prod`(a, b, c) of length O(`) so that
for every triple

0 ≤ a, b, c < 222
`

,

we have Prod`(a, b, c) = true if and only if ab = c. Using this “partial multiplication”
relation, one can easily construct a formula F`(x; y) of length O(`) and VC-dimension at

least 22` . This can be done by constructing a set similar to T in (2.1) with d replaced by

22` using Prod`. We leave the details to the reader.
Regarding upper bound, Oppen showed in [Opp78] that any PA-formula F of length

` is equivalent to a quantifier-free formula G of length 222
c`

for some universal constant
c > 0. This implies that VC(G), and thus VC(F ), is at most triply exponential in `(F ). We
conjecture that a doubly exponential upper bound on VC(F ) holds in the general setting.
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It is unlikely that such an upper bound could be established by straightforward quantifier
elimination, which generally results in triply exponential blow up (see [Wei97, Thm 3.1]).

Acknowledgements. We are grateful to Matthias Aschenbrenner and Artëm Chernikov
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