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SKEW SHAPE ASYMPTOTICS, A CASE-BASED INTRODUCTION

IGOR PAK?

Abstract. We discuss various tools in the emerging area of Asymptotic Algebraic
Combinatorics, as they apply to one running example of thick ribbons. Connections to
other areas, exercises and open problems are also included.

1. Introduction

1.1. Foreword. This paper is a short introduction to some ideas in Asymptotic Algebraic
Combinatorics. We do not intend to be broad or thorough, but rather give a cross
section of the area concentrated around a single example, which turned out to have rich
connections to many different results and open problems. We also include a number of
exercises for the curious reader. Of course, this is not a substitute of a serious survey,
but in the absence of such we envision this paper as a quick guide to the literature, and
an easy entry point to the area.

1.2. Thick ribbons. Let δk = (k−1, k−2, . . . , 2, 1) `
(
k
2

)
be a staircase shape of size k.

Let τk =
(
δ2k/δk

)
` n be a thick ribbon shape of size k, see Figure 1. Here and below, we

have n = k(3k−1)
2

.
Denote by ak := | SYT(τk)| the number of standard Young tableaux of shape τk. The

sequence {ak} is rapidly growing:

1, 16, 101376, 1190156828672, 68978321274090930831360, . . .

For example, a2 = | SYT(321/1)| = 16. For larger values, see [OEIS, A278289]. The

main goal of the paper is to give lower and upper bounds on ak. Roughly, ak ≈
√
n!.

More precisely, it is known and easy to see that

log ak =
3

2
k2 log k + O(k2) =

1

2
n log n + O(n) as k →∞,

see [MPP4]. The following result frames the answer in an asymptotic language.

Theorem 1.1 ([MPT]). There exists a universal constant φ, such that

log ak =
1

2
n log n + φn + o(n) as n =

1

2
k(3k − 1) → ∞.

The rest of the paper is concerned with the following problem.

Main Problem 1.2. Find φ, i.e., give sharp rigorous estimates for φ.
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2 IGOR PAK

The best bounds we present are:

(1.1) − 0.2368 ≤ φ ≤ −0.1648,

given by Lower Bound 9.2 and Upper Bound 6.1. The result in [MPT] does not determine
the exact value of φ, but rather presents it as a solution of a variational problem (cf. [Gor1]
and Exercise 12.4). It is unlikely that it can be computed exactly other than numerically.

52

4

3

10

9

128

7

6 11

1

Figure 1. Staircases δ3 and δ6, thick ribbon τ3 = δ6/δ3, and a standard
Young tableau of shape τ3.

The bounds (1.1) are remarkably close to each other, as opposed to the way these things
usually go. In fact, the calculations by Pantone suggest that φ ≈ −0.18, see [OEIS,
A278289], leaving very little room for improvement on either side. Let us emphasize
that getting best bounds is not really the point of this paper as we present a number
of relatively weak bounds. The idea is to review the tools which in this particular case
can give weaker bounds, but stronger in other cases perhaps, and often best used in
combination.

1.3. Style and structure of the paper. In Section 2, we begin with an informal general
discussion of how to obtain bounds for combinatorial numbers, notably how to approach
them when some easy ideas fail.o Then, one by one, we introduce tools of the area, starting
with the classical and more established ideas and leading to the most recent work. We
largely restrict ourselves to the running example of the skew shape τk, leaving only a trail
of crumbs for the interested reader to recover the full story from the references. We also
heavily use figures, examples and exercises in place of formal general statements.

We do not present most definitions, standard results and notation, but instead assume
that the reader is familiar with them or is able to quickly catch up using [Sag] and [S2,
Ch. 7]. In every section, we supplement the results with exercises, which we believe will
be helpful. In fact, the upper and lower bounds are never carefully proved and can be
viewed as exercises in their own right. Additional exercises are included in Section 11.
We expect the reader to be committed to doing the exercises as this is probably the only
way to get a grasp of the area.

In Section 12, we state several conjectures and open problems directly related to the
subject. Although natural, they show both the power of tools in Algebraic Combinatorics,
and their limitations in larger setting. We conclude with Section 13, where we give brief
historical remarks, mostly aimed as a guide to the references.

Finally, let us relate the style of this paper to general goals of Asymptotic Algebraic
Combinatorics. In the context of “two cultures in mathematics” [Gow], one often assumes
that Combinatorics belong to the second, “problem solving” culture. This is far from the
truth. Like other broad fields, Combinatorics spans both cultures, even if some areas in
it are more at home in one than the other. Traditionally, the culture of ever improving
estimates aiming towards the true value for a key benchmark problem (as in [Ber]) was
foreign to the whole area of Algebraic Combinatorics. While the specific benchmark

http://oeis.org/A278289


SKEW SHAPE ASYMPTOTICS 3

problem we chose is not of utmost importance, it serves as a convenient battleground
for several competing tools and techniques which can later be applied to other problems.
With this style of exposition, we are aiming to lend further support to this important
culture in the area.

2. Finding bounds

2.1. The basics. Suppose one is given an integer sequence {ck} to investigate. The first
thing to do is to check whether ck has a nice product formula. This often works, e.g.
for binomial coefficients, Catalan numbers, number of boxed plane partitions, alternating
sign matrices, etc. When a product formula exists and can be proved, it is relatively
straightforward to compute the exact asymptotics to everyone’s satisfaction. On the
other hand, when there are some relatively large prime divisors appearing in {ck}, one
should look elsewhere. For example, in our sequence {ak}, we have primes 251|a4 and
327317328039199|a8, making the prospects of a product formula rather unpromising.

The second approach is to look for a nice recurrence relation, convert it into a closed
form generating function (GF), and then use various analytic tools. This works well for
numerous sequences, e.g. Fibonacci, Bell, Bernoulli, Apéry, and partition numbers, see
e.g. [FS, Odl, PW]. Theorem 1.1 rules out

(2.1) A(t) :=
∞∑
k=1

ak t
k(

k(3k − 1)/2
)
!

being rational or algebraic, making it unlikely that progress can be made in this direction.
However, the asymptotics do not rule out A(t) from being D-finite and ADE (cf. §11.1);
it would be interesting to prove that. We refer to [P2] for more on this approach.

The next thing to try is to look for a determinant formula, and this is where one finds
an early success. Indeed, the following Aitken–Feit determinant formula [Ait, Feit] is a
standard result in the area, and applies to all skew shapes:

(2.2) fλ/µ = n! det

(
1

(λi − µj − i+ j)!

)`(λ)

i,j=1

,

where fλ/µ :=
∣∣SYT(λ/µ)

∣∣ denotes the number of standard Young tableaux of shape λ/µ,
see e.g. [S2, Cor. 7.16.3]. The alternating sign nature of the formula allows only mediocre
upper bounds in our case. To understand this, consider the leading (diagonal) term in
the Laplace expansion of (2.2):

(2.3) n!

`(λ)∏
i=1

1

(λi − µi)!
.

We show in §4.2, that this product gives the right order of magnitude. Since we have
only `(λ)! = exp Θ(k log k) terms in the Laplace expansion, the product (2.3) rigorously
implies an asymptotic upper bound (see Exercise 11.1). This also shows the limitations
of the determinant approach in this case. Indeed, it is very hard to see how any nontrivial
lower bound can be obtained from (2.2) in view of the signs in the Laplace expansion.
Nor do other determinant tricks seem directly applicable, see [K1, K2].
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2.2. Asymptotic thinking. While it is hard to give a broad description of what kind
of arguments lead to good bounds, one natural approach is clear: clever use of identities
and other summation formulas to bound one term in the summation (cf. [TV]). Let us
give one important example to illustrate this approach.

Let Dn = max
{
fλ, λ ` n

}
denote the maximal dimension of the irreducible Sn-module,

where fλ := χλ(1) = | SYT(λ)|. For more on {Dn}, see [OEIS, A003040]. To get a bound
on Dn, recall the Burnside formula: ∑

λ`n

(
fλ
)2

= n!

This gives an upper bound Dn ≤
√
n!, and a lower bound Dn ≥

√
n!/p(n), where

p(n) = eO(
√
n) is the number of partitions. Putting these together and using Stirling’s

formula, we obtain

(2.4) logDn =
1

2
n log n − 1

2
n − O(

√
n) .

Since
√
n! is the scale on which Dn is lying, it is the next term of the asymptotics which

is most interesting. In other words, the ratio Dn/
√
n! is the right quantity to consider.

Given (2.4), it is natural to conjecture that in fact we have

(2.5) logDn =
1

2
n log n − 1

2
n − c

√
n + o(

√
n) .

This is the celebrated Vershik–Kerov–Pass (VKP) conjecture which remains open [KP,
VK2].

To bring this discussion back to {ak}, one can make several conclusions. First, ak lies

on the same scale of
√
n!, where n = |τk|, so the asymptotics of ak/

√
n! is exactly the

right quantity to consider. Second, the success of using the Burnside identity suggests
one should consider numerous summation formulas involving fλ/µ. In fact, this is the
approach that works best for both the upper and the lower bounds. Third, the fact that
φ > −0.5 implies that ak is exponentially larger than Dn, making the summations very
large and involving exponentially large terms. Finally, the existence of the limit φ given
by Theorem 1.1, suggests that this is an easier problem than the VKP conjecture. This
turns out to be true as the problem is amenable to a variety of techniques and ideas.

2.3. Probabilistic thinking. In place of identities as above, one can ask a more delicate
question: what is the shape of λ which attains the maximum fλ = Dn. This may seem
vague, but it turns out that the limit shape of maximal λ is well defined after scaling
the maximal shapes by 1√

n
. The answer was computed by Vershik and Kerov [VK1] and

by Logan and Shepp [LS], see also [Rom]. Note that when the row/column lengths of λ
are constrained to t

√
n, the maximal dimension fλ is given by a function Dn(t), which

is exponentially smaller than Dn, for all 1 ≤ t < 2, see [LS]. The proof is based on the
variational principle and uses the hook-length formula (see §6.1) in an essential way.

For our setting, one can ask for the limit shape of random A ∈ SYT(λ/µ), where one
considers scaled partitions 1√

n

{
(i, j) ∈ λ/µ, A(i, j) ≤ αn

}
→ Lα. See Figure 2 for an

example of limit curves in a k×2k rectangle. The existence of such limit curves is proved
by [Sun], see also [Gor1, MPT]. If one knows the exact shape of {Lα, 0 < α < 1}, one

https://oeis.org/A003040
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can estimate

log fλ/µ ≈
∫ 1

0

log |Lα|! dα ,

and an even better estimate can be obtained by taking adjacent ribbon hooks, see below.

Figure 2. The limit curves in a k× 2k rectangle (created by Dan Romik,
April 2020), and two partitions of the rectangle.

Of course, getting closed formulas for the limit curves is a difficult problem, which
often involves asymptotics of determinants of multivariate functions, see [BP2, Gor2].
In the absence of closed formulas for {Lα}, one can still use this approach in selecting
which bounds fit the problem best. For example, for λ = (2k)k, we have | SYT(λ)| >
| SYT(kk)|2, but this is a rather poor lower bound as the square boundary cuts sharply
across the limit shape curves. Indeed, one can check that the right-hand side is smaller
than the product (k!)k+1| SYT(δk)|2, which comes from a partition that is better aligned
with the limit shape curves, see Figure 2.

3. Notation and basic asymptotics

As we mentioned earlier, we employ the standard notations in Algebraic Combinatorics
and Representation Theory of Sn, see e.g. [Sag] and [S2, Ch. 7]. We refer to [S2, Ch. 3]
and [Tro] for poset notation and standard results.

We write N = {0, 1, 2, . . .}, [n] = {1, . . . , n} and R+ = {x ≥ 0}. We use the standard
asymptotics notations f ∼ g, f = o(g), f = O(g) and f = Ω(g), see e.g. [FS, §A.2].
We use c ≈ c′ to approximate their numerical value with the usual rounding rules, e.g.
π ≈ 3.14 and π ≈ 3.1416.

Throughout the paper, we make heavy use of Stirling’s formula log n! = n log n− n +
O(log n). Here and everywhere below log denotes the natural logarithm. We need four
more products:

(2n− 1)!! := 1 · 3 · 5 · · · (2n− 1), Φ(n) := 1! · 2! · · · n! ,

Ψ(n) := 1! · 3! · 5! · · · (2n− 1)! , Λ(n) := 1!! · 3!! · 5!! · · · (2n− 1)!!

These products have similar asymptotic formulas:

log(2n− 1)!! = n log n + (log 2 − 1)n + O(1) [OEIS, A001147],

log Φ(n) =
1

2
n2 log n − 3

4
n2 + O(n log n) [OEIS, A000178],

log Ψ(n) = n2 log n +

(
log 2 − 3

2

)
n2 + O(n log n) [OEIS, A168467],

log Λ(n) =
1

2
n2 log n +

(
log 2

2
− 3

4

)
n2 + O(n log n) [OEIS, A057863].

http://oeis.org/A001147
http://oeis.org/A000178
http://oeis.org/A168467
http://oeis.org/A057863
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4. Linear extensions of posets

4.1. Antichain partition. Observe that

(4.1) ak ≥ k! · (k + 1)! · · · (2k − 1)! =
Φ(2k − 1)

Φ(k − 1)
.

This follows from counting standard Young tableaux with numbers in the first antidi-
agonal smaller than the numbers in the second antidiagonal, etc., see Figure 3. These
are in bijection with permutations in each antidiagonal, of sizes k, k + 1, . . . , 2k − 1,
respectively. This gives the following.

Lower Bound 4.1 ([MPP4, §8.2]).

φ ≥ 11 log 2

6
− log 3

2
− 3

2
≈ −0.7785.

It is easy to see that this approach works for all posets, see e.g. [MPP4, §2]. It was
shown in [BP1] that one can consider any antichain partition, or even slightly more
involved Greene–Kleitman–Fomin (GKF) parameters.

Exercise 4.2. Prove that lower bound (4.1) is optimal over all antichain partitions.

Figure 3. Skew shape τ5 = δ10/δ5, antichain partition, chain partition,
and a lower order ideal of (3, 5) ∈ τ5 with br(3, 5) = 6.

4.2. Chain partition. Observe that

(4.2) ak ≤
(

n

1, 2, . . . , k − 1, k, k, . . . , k

)
=

n!

(k!)k−1Φ(k)
.

To prove this, simply observe that SYT(τk) is a subset of column-strict tableaux, and
that the columns have lengths 1, 2, . . . , k − 1, k, k, . . . , k (k columns of length k).

Upper Bound 4.3 ([MPP4, §8.2]).

φ ≤ 1

6
− log 2

2
+

log 3

2
≈ 0.3694.

It is easy to see that this approach works for all chain partitions of posets, see e.g.
[MPP4, §2]. It was shown in [BP1] that one can also consider somewhat more involved
GKF parameters.

Exercise 4.4. Prove that lower bound (4.2) is optimal over all chain partitions.
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4.3. Lower order ideals. Observe that

(4.3) ak ≥
n!

12k−1 · 32k−3 · 62k−5 · · ·
(
k
2

)1 .

For general posets, this was first observed by Stanley [S2, Exc. 3.57] and proved by
Hammett and Pittel [HP, Eq. (1.1)]. Heuristically, to see this, observe that br(i, j) :=(

2k−i−j+2
2

)
is the number of squares (p, q) ∈ τk such that i ≤ p, j ≤ q. Thus, br(i, j)−1 is

the probability that (i, j) is the smallest of these squares in a random permutation. While
these events are not independent, it is known that they do have positive correlations,
giving (4.3).

Exercise 4.5. Give a formal proof of (4.3). Check that it does not give a nontrivial
lower bound on φ.

Exercise 4.6. Reverse the role of upper and lower ideals by rotating τk by 180 degrees.
Does this give a better or worse lower bound?

5. Thin ribbons and slim diagrams

5.1. Alternating permutations. Denote by Em the m-th Euler number, defined as the
number of alternating permutations in Sm :

Em :=
∣∣{σ ∈ Sm, σ(1) < σ(2) > σ(3) < σ(4) > . . .}

∣∣ ,
see [S3] and [OEIS, A000111]). Now observe that for k ≡ 0 mod 2, we have

(5.1) ak ≥ E4k−3 · E4k−7 · E4k−11 · · · E2k+1 .

To see this, break the ribbon shape τk into thin ribbons as in Figure 4 and consider
standard Young tableaux with numbers in smaller ribbons smaller than numbers in larger
ribbons. Recall that

Em ∼
4

π

(
2

π

)m
m!

(see e.g. [FS, S3]). This and (5.1) gives the following.

Lower Bound 5.1.

φ ≥ α2 := − 3

2
− 23 log 2

6
− log 3

2
− log π ≈ −0.5370.

Exercise 5.2. Compute the lower bound corresponding to the ribbon partition in Fig-
ure 4. Prove that of all patterns σ(1)∗σ(2)∗σ(3)∗ . . . , where ∗ ∈ {<, >}, the alternating
permutations form the largest class. Use Exercise 4.2 to show that Lower Bound 5.1 can-
not be improved by a better partition of τk into ribbons.

http://oeis.org/A000111
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Figure 4. Partitions of τ6 = δ12/δ6 into zigzag ribbons, 3-ribbons and
2-row diagrams.

5.2. r-ribbons. Denote by F
(r)
m = SYT

(
δm/δm−r

)
the number of standard Young tab-

leaux of the r-ribbon shape. For example, δm/δm−2 are the usual zigzag ribbons, so

F
(2)
m = E2m−1. It follows from [BR] that

(5.2) F (3)
m =

(3m)!E2mm
Θ(1)

(2m)! 22m
and F (5)

m =
(5m)! (E2m)2mΘ(1)(

(2m)!)2 26m
.

Now observe that for k ≡ 0 mod 3, we have

(5.3) ak ≥ F
(3)
2k−1 · F

(3)
2k−4 · F

(3)
2k−7 · · · F

(3)
k+2 .

To see this, consider a partition of τk, k ≡ 0 mod 3, into 3-ribbons as Figure 4. Now
formulas (5.2) and (5.3) give the following.

Lower Bound 5.3.

φ ≥ α3 := − 3

2
− log 3

2
+

11 log 2

6
− 2 log π

3
≈ −0.4431.

Exercise 5.4. Find the analogue of (5.3) for F (5). Use it to derive the following.

Lower Bound 5.5.

φ ≥ α5 := − 3

2
+

43 log 2

30
− log 3

2
+ log 5 − 4 log π

5
≈ −0.3621.

Exercise 5.6. Denote by αr the lower bound on φ obtained from taking r-ribbons. Prove
that {αr} is strictly increasing and thus has a limit α := limr→∞ αr, such that α ≤ φ.
Prove or disprove that α = φ.

Exercise 5.7. Find the closed form exponential generating function (EGF) for Em to
conclude that it is D-algebraic (ADE). Use the formulas in [BR] for conclude the same
result for r-ribbons, r = 3, 4, 5.
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5.3. Slim diagrams. Observe that a partition of τk into 2-row diagrams in Figure 4
gives

(5.4) ak ≤
(

n

1, 5, 9, . . . , 2k, 2k, . . . , 2k

)
·
[
C1 · C3 · C5 · · ·

]
·
(
Ck+1

)d k
2
e
,

where Cm = 1
m+1

(
2m
m

)
is the m-th Catalan number. To see this, follow the argument

in §4.2.

Exercise 5.8. Check that (5.4) improves the upper bound in (4.2), but does not improve
the bound on φ over that in the Upper Bound 4.3. Prove that the same holds for partitions
of τk into r-row slim diagrams, for every fixed r. Explain formally why these slim diagrams
are less effective for upper bounds compared to ribbons for lower bounds.

6. Hook-length formula

6.1. The setup. Let λ ` n. Denote by fλ = | SYT(λ)| the number of standard Young
tableaux of shape λ. The hook-length formula (HLF) states that

(HLF) fλ = n!
∏

(i,j)∈λ

1

hλ(i, j)
,

where hλ(i, j) = λi − i+ λ′j − j + 1 is the hook-length of the square (i, j). See [NPS, P1]
for some of our favorite proofs.

6.2. Staircase shape. Denote by bm := f δm = | SYT(δm)| the number of standard
Young tableaux of staircase shape, see [OEIS, A005118]. It follows from the HLF that

(6.1) bm =

(
m
2

)
!

1m−1 · 3m−2 · 5m−3 · · · (2m− 1)
=

(
m
2

)
!

Λ(m)
.

Observe that

(6.2) ak · bk ≤ b2k ,

since together two tableaux of shape δk and δ2k/δk can form a single tableau of shape
δ2k. This gives the following.

Upper Bound 6.1.

φ ≤ 1

2
− log 2

6
− log 3

2
≈ −0.1648.

Exercise 6.2. Prove or disprove: the exponential generating function (EGF) for bm is
D-finite.

http://oeis.org/A005118
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6.3. Three staircases. Observe that

(6.3) ak ≥ b2
k bk+1

(
2
(
k
2

)(
k
2

) ).
This follows immediately from the partition of τk into shapes δk, δk and δk+1 as in Figure 5.
Combined with (6.1), this gives the following.

Lower Bound 6.3.

φ ≥ 1

2
− 5 log 2

6
− log 3

2
≈ −0.6269.

Figure 5. Partition of τ6 = δ12/δ6 into three staircases δ6, δ6 and δ7.
Partition of τ6 into δ6 and ζ6. DeWitt shape ς3 = δ12/ρ3 and its partition
into δ3, δ3 and τ6.

Exercise 6.4. Let ξk = (2k−1, . . . , k). Partition δ2k into two staircases δk and one skew
shape ζk := ξk/δk, see Figure 5. Define zk := | SYT(ζk)|. Use the HLF applied to shape
(2k − 1, . . . , k) to get an upper bound on zk. Note that

ak ≤ bk zk

(
k2 +

(
k
2

)(
k
2

) )
.

Use this and (6.1) to obtain an upper bound on ak.

6.4. DeWitt shape. Denote by ρk = (kk) the k × k square diagram, and define the
DeWitt shape ςk := δ4k/ρk, see Figure 5. It was shown in [DeW] (see also [H+, KS,
MPP3]), that

dk :=
∣∣SYT(ςk)

∣∣ = n!
Φ(k)3 Φ(3k) Ψ(k) Ψ(3k)

Φ(2k)3 Ψ(2k)2 Ψ(4k)
,

where n = 7k2 = |ςk|. Now observe that

(6.4) a2k · b2
k ≤ dk .

Using this and (6.1), we get the following.

Upper Bound 6.5.

φ ≤ −17 log 2

3
+ log 3 +

7 log 7

6
+

1

2
≈ −0.0590.
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7. Littlewood–Richardson coefficients

7.1. Basic formulas. Let λ ` n, µ ` m, ν ` n − m. Recall two properties of the
Littlewood–Richardson coefficients (LR-coefficients for short):

(7.1) fµf ν
(
n

m

)
=
∑
λ`n

cλµν f
λ and fλ/µ =

∑
ν`n−m

cλµν f
ν .

It was observed in [MPP4, Prop. 2.4], that

(7.2) fλ/µ ≤ n!fµ

m!fλ
.

Indeed, putting together equations in (7.1), we obtain

fλ/µ =
∑

ν`n−m

cλµν f
ν ≤

∑
ν`n−m

(
n

m

)
fµ f ν

fλ
f ν =

fµ

fλ

(
n

m

) ∑
ν`n−m

(f ν)2 =
n!fµ

m!fλ
.

Now, applying (7.2) to τk = δ2k/δk, we get the following.

Upper Bound 7.1.

φ ≤ 3

2
− log 2

2
≈ 1.1534.

Exercise 7.2. Explain why this upper bound is so poor.

7.2. Evaluations. Let λ = δ2k, µ = δk, ν = ξk := (2k − 1, . . . , k) and xk := | SYT(ξk)|.
Note that λ/ν = µ, which implies cλµν = 1. Observe that (7.1) gives ak ≥ xk. Apply-
ing (HLF), we have the following.

Upper Bound 7.3.

φ ≥ 1

2
− log 2

6
− log 3 ≈ −0.7141.

Exercise 7.4. Recall from [Sag, S2, vL] the combinatorial interpretation of LR-coeffi-
cients cλµν as the number xk := |LR(λ/µ, ν)| of lattice tableaux of shape λ/µ and weight ν.
Observe that there is a unique lattice tableau in LR(τk, ν), see Figure 6. Deduce that
cλµν = 1, for λ/µ = τk as above.

1 1 1 1 1

1

1

1

1

2222

2

2

2

2

333

3

3

3

3

4 4

4

4

4

4

5

5

5

5

5

Figure 6. The unique lattice tableau in LR(τ5, ξ5).
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7.3. Upper bound on LR-coefficients. Recall from [PPY, Thm. 1.5] that

(7.3) cλµν ≤

√(
n

m

)
, for all λ ` n , µ ` m, ν ` n−m.

To see this, use (7.1) to obtain∑
λ`n

(
cλµ,ν
)2 ≤

∑
λ`n

cλµ,ν
fλ

fµf ν
=

1

fµf ν
· fµf ν

(
n

k

)
=

(
n

k

)
.

This implies

fλ/µ =
∑

ν`n−m

cλµν f
ν ≤ p(n−m)

√(
n

m

)
·
√

(n−m)! < p(n)

√
n!

m!
,

where p(n) denotes the number of partitions of n. Applying this to λ/µ = τk and using
p(n) = eO(

√
n), we get the following.

Upper Bound 7.5.

φ ≤ 4 log 2

3
− log 3

2
− 1

2
≈ −0.1251.

Exercise 7.6 ([PPY, §4.1]). In the opposite direction, prove that for every 0 ≤ k ≤ n,
we have ∑

λ`n

∑
µ`k,ν`n−k

(
cλµ,ν
)2 ≥

(
n

k

)
.

What does this formula say about how sharp (7.3) is?

8. Naruse hook-length formula

8.1. The setup. Let λ/µ be a skew shape and D be a subset of the Young diagram of λ.
A square (i, j) ∈ D is called active if (i+ 1, j), (i, j+ 1) and (i+ 1, j+ 1) are all in λ \D.
An excited move is a replacement of an active (i, j) ∈ D with (i + 1, j + 1). An excited
diagram of λ/µ is a subset of squares in λ obtained from the Young diagram µ after a
sequence of excited moves on active cells. Let E(λ/µ) be the set of excited diagrams
of λ/µ, see Figure 7. The Naruse hook-length formula (NHLF) states that for every skew
shape λ/µ we have

(NHLF)
∣∣SYT(λ/µ)

∣∣ = n!
∑

D∈E(λ/µ)

∏
(i,j)∈λ\D

1

hλ(i, j)
,

where n = |λ/µ|.

Exercise 8.1 ([MPP4, §12.1], see also [PPS]). Denote by λ∗ the skew shape obtained by
rotating the diagram λ by 180 degrees. Apply the NHLF to λ∗. Conclude the inequality∏

(i,j)∈λ

hλ(i, j) ≤
∏

(i,j)∈λ

h∗λ(i, j),
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Figure 7. Example of an excited move. Set E(λ/µ), for λ = (5, 4, 4, 1)
and µ = (2, 1). The arrows indicate excited moves.

where h∗λ(i, j) = (i+ j − 1). Compare this with∑
(i,j)∈λ

hλ(i, j) =
∑

(i,j)∈λ

h∗λ(i, j),

and explain the discrepancy.

8.2. Basic bounds. Observe that since µ ∈ E(λ/µ), we have

(8.1)
∣∣SYT(λ/µ)

∣∣ ≥ F (λ/µ) := n!
∏

(i,j)∈λ/µ

1

h(i, j)
.

Taking λ = δ2k and µ = δk, we obtain the following.

Lower Bound 8.2.

φ ≥ 1

6
− 3 log 2

2
+

log 3

2
≈ −0.3237.

Now, for the upper bound observe that the hooks decrease under excited moves. This
gives

(8.2)
∣∣SYT(λ/µ)

∣∣ ≤ F (λ/µ) ·
∣∣E(λ/µ)

∣∣.
For λ = δ2k, µ = δk, and k even, observe that the excited diagrams are in bijection with
non-intersecting paths as shown in Figure 8. Thus,∣∣E(τk)

∣∣ ≤ (2k − 2

k − 1

)k/2
.

Combined with (8.2), this gives the following.

Upper Bound 8.3.

φ ≤ 1

6
− 5 log 2

6
+

log 3

2
≈ 0.1384.

Exercise 8.4. Before moving on, show that both the lower and the upper bounds are
not exact, i.e., they can be improved by some ε > 0, using better counting over excited
diagrams.
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Figure 8. Non-intersecting paths in bijection with excited diagrams, in
the beginning and after three moves.

8.3. Non-intersecting paths. Recall that non-intersecting paths with fixed start and
end points are given by a determinant. For thick ribbons, this determinant was computed
by Proctor:

(8.3)
∣∣E(τk)

∣∣ =
∏

1≤i<j≤k

k + i+ j − 1

i+ j − 1
=

[
Φ(3k − 1) Φ(k − 1)3 (2k − 1)!! (k − 1)!!

Φ(2k − 1)3(3k − 1)!!

]1/2

,

see [MPP4, Lemma 8.1] and [OEIS, A181119]. Combined with (8.2), this gives the
following.

Upper Bound 8.5.

φ ≤ 1

6
− 7 log 2

2
+ 2 log 3 ≈ −0.0621.

Exercise 8.6 (see [MPP3, §7]). Prove that the excited diagrams in this case are in
bijection with lozenge tilings of half of a (k − 1) × (k − 1) × k hexagon. Recall the
MacMahon box formula for the number M(a, b, c) of lozenge tilings of an a × b × c
hexagon. Use this to get an upper bound |E(τk)|2 ≤ M(k − 1, k − 1, k). Show that this
inequality gives the same bound on φ as in Upper Bound 8.5. Explain why.

9. Flipped HLF

9.1. The setup. A skew shape λ/µ is called slim if λ` ≥ µ1 + ` − 1, where ` = λ′1 is
the number of parts in λ. For a subset D of Young diagram λ. Define D� ⊂ λ to be a
subset of elements (`+ 1− i, j), for all (i, j) ∈ D. We refer to D� as vertical flipping and
consider it only when it is well defined.

A subset D of λ is called a flipped excited diagram if after vertical flipping it is a usual
excited diagram, see Figure 9. Let E�(λ/µ) be the set of flipped excited diagrams of λ/µ.
Note that if λ/µ is slim and D ∈ E(λ/µ), then D� ∈ E�(λ/µ) is well defined. Thus,
|E�(λ/µ)| = |E(λ/µ)|. In [MPP3, §3.4], we show that

(Flipped-HLF)
∣∣SYT(λ/µ)

∣∣ = n!
∑

D∈E�(λ/µ)

∏
(i,j)∈λ\D

1

hλ(i, j)
,

where n = |λ/µ|.

http://oeis.org/A181119
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Figure 9. Slim skew shape λ/µ, where λ = (9, 8, 6), µ = (2, 1), and the
set E�(λ/µ) of flipped excited diagrams.

Exercise 9.1. In the context of the lower bound (8.1), prove that

n!
∏

(i,j)∈λ/µ

1

hλ(i, j)
≥ n!

∏
(i,j)∈λ/µ�

1

hλ(i, j)
,

where µ� ⊂ λ denotes the subset of squares of λ obtained by the vertical flip of µ.
Conclude that (Flipped-HLF) gives a better upper bound than (8.2).

9.2. The staircase phenomenon. In this section, we follow [MPP5]. Clearly, diagram
τk is not slim. However, we can create two smaller slim diagrams by partitioning δk
into a square ρk/2 and two smaller staircases δk/2, where k is even. In the right-hand
side of (NHLF), consider only excited diagrams which do not move ρk/2, which are thus
restricted to slim shapes. Since the sum over excited diagrams in each slim shape is equal
to the sum over flipped excited diagrams, this gives a lower bound on ak.

There are two additional properties of thick ribbons τk = δ2k/δk which play a role here.
First, because the hooks in δ2k are invariant under flipped excited moves, we conclude
that the terms we are summing in the right-hand side of (Flipped-HLF) are all equal.

Second, by Exercise 9.3 below, the number of such terms is equal to 2(k/2
2 ), for each of

the two slim diagrams. Putting these together, we obtain

a2k ≥
n! 2k(k−1)

Ψ(2k + 1)
[
(2k + 1)!! (2k + 5)!! · · · (6k − 3)!!

]2 ,
where n = |ν2k| = k(6k + 1). This gives the following.

Lower Bound 9.2 ([MPP5]).

φ ≥ 1

2
− 2 log 2

3
− log 3

4
≈ −0.2368.

Figure 10. Making two smaller slim diagrams out of thick ribbon τk,
where k is even. Same with three slim diagrams.
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Exercise 9.3. Prove that for every slim shape λ/µ, such that µ = δ`, we have |E(λ/µ)| =
2(`

2), as in Figure 9. Hint: Use non-intersecting paths as above to give a bijection with
domino tilings of the Aztec diamond, see [OEIS, A006125].

Exercise 9.4. Make three slim smaller diagrams as in Figure 10 to obtain another lower
bound for φ. Is this a better bound?

10. Slanted HLF

10.1. The setup. For a skew shape λ/µ, define a slanted shape λO/µO as in Figure 11.
The slanted excited moves are now vertical moves as in Figure 11, while the squares of
λ/µ move diagonally as before. Slanted excited diagrams are defined similarly, see an
example in Figure 12, where slanted diagrams are in dark blue. We use EO(λ/µ) to
denote the set of slanted excited diagrams of λO/µO.

Figure 11. Transforming skew shape λ/µ into a slanted shape λO/µO,
where λ = (7, 7, 6, 4) and µ = (4, 3, 1). Two types of slanted excited moves.

In [MZ] and earlier in a different language in [KT, OO], the authors show that

(Slanted-HLF)
∣∣SYT(λ/µ)

∣∣ =
n! fλ

m!

∑
D∈EO(λ/µ)

∏
(i,j)∈D

aλ(i, j) ,

where m = |λ|, n = |λ/µ|, fλ = | SYT(λ)| as above, and aλ(i, j) := λi− j + 1 is the arm
length of the square (i, j) ∈ λ.

Exercise 10.1. Suppose the smallest part λ` is at least µ1. Show that in this case
EO(λ/µ) is in bijection with E�(λ/µ). Then compare (Slanted-HLF) vs. (Flipped-HLF).

Figure 12. Slanted excited diagrams in EO(λ/µ), where λ = (6, 5, 3) and
µ = (2, 1).

Exercise 10.2. Let λ = δ2k and µ = δk. For a slanted excited diagram D = µO, suppose
square (i, j) ∈ D is an image of (p, q) ∈ µ. From (Slanted-HLF), we have

(10.1)
∣∣SYT(λ/µ)

∣∣ ≥ G(λ/µ) :=
n! fλ

m!

∏
(i,j)∈µO

aλ(i, j) .

Use this to obtain an explicit lower bound for φ.

http://oeis.org/A006125
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Exercise 10.3. Check that the arm lengths aλ(i, j) are non-increasing under slanted
excited moves. This gives

(10.2)
∣∣SYT(λ/µ)

∣∣ ≤ G(λ/µ) ·
∣∣EO(λ/µ)

∣∣.
Exercise 10.4. Using the above notation, observe that aλ(i, j) ≤ hλ(p, q). Conclude
that G(λ/µ) ≤ F (λ/µ) for every λ/µ, i.e., the lower bound in (10.1) is never better than
the lower bound in (8.1).

10.2. Lower and upper bounds. We follow [MZ, §9.6] in this section. Let λ = δ2k+1

and µ = δk+1, where k is even. As before, let n = |τk+1|. Define uk :=
∣∣EO(λ/µ)

∣∣. It
follows from (Slanted-HLF) that

(10.3) ak+1 =
∣∣SYT(λ/µ)

∣∣ = n! 2n uk
Φ(3k) Ψ(2k) Ψ(k/2)

Φ(4k) Ψ(3k/2)
.

By employing ad hoc estimates on uk, see Exercise 10.7 below, one can get the following.

Lower Bound 10.5 ([MZ, Thm. 1.4]).

φ ≥ 1

2
− 9 log 2

2
+ 2 log 3 ≈ −0.4219.

Upper Bound 10.6 ([MZ, Thm. 1.4]).

φ ≤ 1

2
− 13 log 2

2
+

7 log 3

2
≈ −0.1603.

Exercise 10.7 ([MZ, §7.2]). Let

w(µ, `) :=
∣∣SSYT(µ,≤ `)

∣∣ = sµ(1, . . . , 1) , ` ones,

where SSYT(µ,≤ `) denotes the set of semistandard Young tableaux of shape µ with
entries ≤ `. Give an explicit injection to show that

w
(
δk+1, k

)
≤ uk ≤ w

(
δk+1, 2k

)
.

Use Stanley’s hook–content formula [S2, Thm. 7.21.2] to obtain product formulas for
w
(
δk+1, `

)
. Conclude that

lim inf
k→∞

1

n
log uk ≥

log 2

3
≈ 0.2310 , and

lim sup
k→∞

1

n
log uk ≤

3 log 3

2
− 5 log 2

3
≈ 0.4927 .

Use these to derive the Upper Bound 10.6 and the Lower Bound 10.5. Note that
limk→∞

1
n

log uk exists by Exercise 12.4, but this result is not needed to prove the bounds.

Exercise 10.8. Let λ = ρ2k and µ = ρk be two square shapes. Compare the bounds
given by (Slanted-HLF) vs. (NHLF) for the thick hook %k = λ/µ.
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11. Additional exercises

11.1. General bounds.

Exercise 11.1. Follow up on the discussion in §2.1 and prove an upper bound for general
fλ/µ from Feit’s determinant formula (2.2).

Exercise 11.2 ([McK]). Recall the identity∑
λ`n

fλ = vn ,

where vn =
∣∣{σ ∈ Sn, σ

2 = 1
}∣∣ is the number of involutions in Sn, see e.g. [OEIS,

A000085]. Use this identity to conclude (2.4). Which approach gives a better upper
bound for the constant c in (2.5)? Explain why.

Exercise 11.3. Find a closed form EGF for {vn}. Prove that it is D-finite.

Exercise 11.4 ([VK2]). Prove that

Dn ≤
√
n! e−c

√
n for some c > 0,

cf. (2.5). Conclude that “most” dimensions fλ are much smaller than Dn.

Exercise 11.5. In the context of §2.3, check that∣∣SYT
(
k2k
)∣∣ > (k!)k+1

∣∣SYT(δk)
∣∣2 > ∣∣SYT(kk)

∣∣2.
Exercise 11.6. Prove that for every series parallel poset P = (P ,≺), we have

e(P) =
∏
x∈X

1

br(x)
,

where e(P) is the number of linear extensions of P . Conclude the HLF for trees.

Exercise 11.7 ([SK]). Let Bn denote the Boolean lattice, the poset of all subsets of [n]
ordered by inclusion. Use induction to prove that Bn has a partition into

(
n
bn/2c

)
saturated

chains. Use this partition to obtain an upper bound for e(Bn). Compare this bound with
the lower bound obtained via the natural partition of Bn into (n+ 1) antichains.

Exercise 11.8. In §7.3, we used a simple f ν ≤
√

(n−m)! inequality to obtain an upper
bound. Using the fact that we must have ν1, `(ν) ≤ 2k and the result in [LS], give a
better upper bound for f ν , and then for φ.

Exercise 11.9. Let ν be a collection of squares in N2, such that ν ⊂ [k] × [k] and
n := |ν| > εk2 for some fixed ε > 0. Use chains and antichains bounds to prove that
log | SYT(ν)| = 1

2
n log n+O(n).

http://oeis.org/A000085
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Exercise 11.10. Fix d ≥ 3, and let ν be a collection of squares in [k]d, and n := |ν| > εkd

for some fixed ε > 0. Generalize standard Young tableaux to d-dimensional space, and
prove that log | SYT(ν)| = d−1

d
n log n+O(n) bound.

Exercise 11.11. Let Hk ⊂ N3 be the k×k×k cube. Use partition of Hk into k layers of
k × k squares ρk to give an upper bound for the constant implied by the O(n) notation
in the previous exercise. Compare it with the chain upper bound.

Exercise 11.12. What is the cost of computing ak using Feit’s determinant formula?
Do this carefully.

11.2. More skew shapes.

Exercise 11.13. Note that ck := | SYT(ρ2k−1/δk)| can be computed by the HLF. Show
that ak b2k−1 ≤ ck. Hint: See Figure 13. Use this inequality to derive an explicit upper
bound on φ.

Exercise 11.14. Recall (or compute directly) the asymptotics for | SYT(ρk|, see e.g.
[OEIS, A039622]. Consider two more partitions of a square as in Figure 13 and find the
upper bounds on φ. Compare them with the bound in the previous exercise. Is it clear
a priori which bound is better?

Exercise 11.15. Use the approach in (6.2) to get an upper bound for | SYT(%k)| for the
thick hook %k := ρ2k/ρk. Compare with the true value given by the HLF.

Exercise 11.16. Use the approach in (6.2) to get an upper bound for | SYT(ςk)| for the
DeWitt shape ςk = δ4k/ρk. Compare with the actual asymptotics.

Figure 13. Three partitions of a square and a thick hook %k := ρ2k/ρk.

Exercise 11.17 (see [MPP4, §9.2]). Use (8.1) for the thick hook %k := ρ2k/ρk. How good
is the resulting lower bound? Compare with upper bound first using non-intersecting
paths, and then with the exact asymptotics given by the MacMahon box formula for
M(k, k, k), see e.g. [OEIS, A008793].

Exercise 11.18. Explain the similarity of asymptotics in Exercises 8.6 and 11.17 on the
level of lozenge tilings of the hexagon, and then on the level of standard Young tableaux.
Can you make the connection formal, at least in one direction?

Exercise 11.19. A remarkable result by Lam, Postnikov and Pylyavskyy [LPP, Thm. 5]
gives an inequality for LR-coefficients. Translate this result into asymptotic language for
unions and intersections of skew shapes.

http://oeis.org/A039622
http://oeis.org/A008793
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11.3. Other shapes in the plane.

Exercise 11.20. Recall the shifted analogue of the HLF for shifted shapes, see e.g. [S2,
§7.21] and [Sag, p. 139]. Use it to compute the asymptotics of the shifted staircase as in
Figure 14. Check your calculations here: [OEIS, A003121]

Exercise 11.21. Define a θ-truncated square ηk,θ as in Figure 14, obtained by removing
a shifted triangle of size θk from a k-square. Use the chain and the antichain partitions
to prove that

log
∣∣SYT

(
ηk,θ
)∣∣ =

1

2
n log n + O(n),

where n = k2− θk
2

is the size of ηk,θ, and the constants implied by the O(·) notation can
depend on θ. Now use formulas in [Pan] (see also [AR, §8.2]), to prove that O(n) can be
replaced with c(θ)n+ o(n), and compute the exact formula for c(θ). Explain why c(θ) is
monotone on [0, 1].

Exercise 11.22. Define a θ-truncated triangle and a double θ-truncated square ηk,θ as
in Figure 14. Give upper and lower bounds for the corresponding asymptotic constant.

Exercise 11.23. Partition the square into a shifted staircase and a θ-truncated square,
see Figure 14. Use this to get an upper bound for c(θ). Explain why this upper bound is
sharper than the corresponding chain partition bound.

Exercise 11.24. Consider a skew shifted staircase as in Figure 14. Use the shifted
analogue of the NHLF, see [MPP3, §9.5] and [NO], to get the lower and upper bounds
on the corresponding asymptotic constant. Partition the shifted staircase into a smaller
shifted staircase and a skew shifted staircase. Use the shifted HLF for the shifted staircase,
see Exercise 11.20, to derive an upper bound from this outpartition. Which bound is
better?

Figure 14. First row: shifted staircase, truncated square, truncated tri-
angle, double truncated square, two partitions of a square, and a skew
shifted staircase. Second row: partition of a shifted staircase, partition of
a square 4-octagon, two partitions and one outpartition of an octagon.

http://oeis.org/A003121
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Exercise 11.25. Consider a k-octagon ωk, defined as the difference of a square ρ3k and
four rotated staircases δk. Use two partitions in Figure 14 to obtain lower bounds on
the number of standard Young tableaux of the k-octagon via exact formulas for shifted
staircases and truncated squares, see above. Try to guess which bound is sharper before
the calculation, and check if your guess is confirmed by the calculation.

Exercise 11.26. Use a 5-ribbon partition to get yet another lower bound for k-octagons
ωk. Compare with the bound in the previous exercise.

Exercise 11.27. Use an outpartition as in Figure 14 to get an upper bound for k-octagons
ωk. Compare with the chain upper bound.

Exercise 11.28. Consider the plane region Bk of squares which fit the circle of radius k.
Read about the Gauss circle problem. Prove that

log
∣∣SYT

(
Bk

)∣∣ =
1

2
n log n + O(n),

where n = |Bk| ∼ πk2. Do you think that O(n) can be replaced with cn+ o(n)?

Exercise 11.29. Find two subsets of squares D,D′ ⊂ N2 which are equal up to a
permutation of rows and columns, and | SYT(D)| 6= | SYT(D′)|. Generalize the Young
symmetrizer to obtain the corresponding Sn-characters χD = χD

′
. Conclude that we

do not always have χD(1) = | SYT(D)|, and the Algebraic Combinatorics technology no
longer applies.

Exercise 11.30. Use the #P-completeness of | SYT(D)| proved in [DP], to argue why
the determinant formula is unlikely to extend for general D.

12. Conjectures and open problems

12.1. Enumeration. Recall the definitions of classes of GFs from [P2, S2].

Open Problem 12.1 (see §5.2). Prove that the exponential generating function (EGF)

for F
(r)
m is D-algebraic (ADE), for every fixed r > 1.

Open Problem 12.2 (see §2.1). Prove that the EGF A(t) given by (2.1) is not D-finite.

https://en.wikipedia.org/wiki/Gauss_circle_problem
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12.2. Slanted exciting diagrams and lozenge tilings. We start with some unfinished
business.

Open Problem 12.3 (see §10.2). Improve the upper bound on uk = |EO(τk+1)|.

Note that even a relatively small improvement of the Upper Bound 10.6 can perhaps
give a bound better than Upper Bound 6.1.

Exercise 12.4. Prove that uk is equal to the number of lozenge tilings of a region Γk
as in the Figure 15. Note that asymptotically, after the region Γk is scaled by 1

k
in both

directions, this gives a piecewise linear region. Use the technology in [Gor2] to prove the
existence of limk→∞

1
k2

log uk. Use (10.3) to conclude Theorem 1.1.

Thus, Main Theorem 1.2 is equivalent to the following.

Open Problem 12.5. Compute limk→∞
1
k2

log uk .

Figure 15. Region Γk with uk lozenge tilings for k = 3.

12.3. Limits for general shapes. The main result in [MPT] of which Theorem 1.1 is
a corollary, proves existence of the limit

(12.1) lim
n→∞

1

n

[
log
∣∣SYT(λ/µ)

∣∣ − 1

2
n log n

]
,

where the skew shape λ/µ is obtained from a piecewise smooth region in the plane, scaled
by
√
n. For (usual) Young diagram shapes this follows easily from the (HLF), see [MPP4].

Conjecture 12.6. The limit (12.1) holds for general piecewise smooth regions, not just
for skew shapes.

This conjecture extends Exercise 11.9. It is open even in the special case of k-octagons.

Conjecture 12.7. Prove that for k-octagons ωk with n = 9k2 − 4
(
k
2

)
we have

log
∣∣SYT(ωk)

∣∣ =
1

2
n log n + cn + o(n) as k →∞,

for some c ∈ R.

In Rd, the analogous conjecture is likely to hold as well but is open even for 3-
dimensional Young diagram shapes (also called solid partitions).
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Conjecture 12.8. Let S ⊂ R3
+ be a 3-dimensional piecewise linear shape, such that

(a, b, c) ∈ S implies (x, y, z) ∈ S for all x ≤ a, y ≤ b, z ≤ c. Then there is a limit:

(12.2) lim
n→∞

1

n

[
log
∣∣SYT(Λn)

∣∣ − 2

3
n log n

]
,

where the shape Λn is obtained by a scaling of S by 3
√
n.

Even in the special case of a 3-dimensional cube this conjecture is open, and is especially
attractive.

Conjecture 12.9. Let Hk ⊂ N3 be a k × k × k cube. Then there is a limit:

(12.3) lim
n→∞

1

k3

[
log
∣∣SYT(Hk)

∣∣ − 2k3 log k
]
.

In view of §2.3, we also conjecture the existence of the limit surfaces for the shapes of
integers ≤ αn in random A ∈ SYT(Λn). It would be exciting to prove this even for the
cube, but this goes beyond the scope of this paper.

13. Brief historical remarks

The study of Young tableaux goes back to the works of Alfred Young (c. 1900), and is so
extensive that a quick overview would not give it justice. We refer to the extensive Ch. 7
in [S2] which gives a thorough overview of the subject, textbook [Sag] for the friendly
introduction, and to [AR] for an extensive survey of enumerative results. See also [DP]
for complexity aspects and the recent #P-completeness of | SYT(D)| for general D ⊂ N2

(cf. Exercise 11.30).
The hook-length formula goes back to Thrall (1952) and Frame–Robinson–Thrall (1954).

It has been reproved and generalized in numerous ways. We refer to [CKP, §6.2] for a
survey. Similarly, the Littlewood–Richardson coefficients are classical and go back to the
1930s. They are the subject of intensive investigation in its own right with many gener-
alizations and variations. We refer to [vL] for a somewhat dated but helpful entry point,
and to [PPY] for a recent asymptotic analysis based in part on some earlier observations
by Stanley.

The study of limit shapes and the Vershik–Kerov–Logan–Shepp theory is in itself a
subject of intensive investigation. We refer to [Rom] for a thorough treatment and con-
nections to longest increasing subsequences in random permutations. A related followup
story of random lozenge tilings, the Arctic circle phenomenon, etc., is well presented
in [Gor2]. It relates to the subject of this paper in connection with excited diagrams, and
provides the motivation for many of the limit questions and conjectures above.

The equation (NHLF) is in an unpublished work by Naruse, and is discussed at length
in [MPP1, MPP2]. We refer to [Kon, MPP2] for elementary proofs, to [MPP1, §9] for
a survey of other formulas for fλ/µ = | SYT(λ/µ)|, to [MPP3, §9] for a variety of other
exact formulas (some conjectured and proved in later work by other authors), and to [NO]
for further generalizations. The asymptotic applications of (NHLF) were first introduced
in [MPP4], and advanced in [MPP3, MZ].

Despite superficial similarities, our two variations on (NHLF) have very different na-
ture. Equation (Flipped-HLF) is given in [MPP3, §3] and further explored in [MPP5]. A
simple proof via reduction to (NHLF) is given in [PP]. Equation (Slanted-HLF) is due
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to Morales and Zhu [MZ], and is equivalent to the Okounkov–Olshanski formula [OO]
(see also [S1]). In [MZ], the authors also give a simple proof, and establish a previously
conjectured equivalence to the rule in [KT].

In conclusion, let us mention that the unusual style of this paper borrows ideas from
several sources. First, we are heavily influenced by the brief exercise-based presentation
by Lovász [Lov], which is itself a continuation of a long tradition, see e.g. the celebrated
problem books by Pólya–Szegő (1925) and Yaglom–Yaglom (1954). Second, we learned
the value of worked out publishable examples clarifying the theory from the Pemantle–
Wilson papers, see [PW]. Third, while the idea of a “running example” is standard, we
personally were influenced by Krattenthaler’s presentation [K4].
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