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What is a combinatorial interpretation?

Igor Pak

ABSTRACT. In this survey we discuss the notion of combinatorial interpreta-
tion in the context of Algebraic Combinatorics and related areas. We approach
the subject from the Computational Complexity perspective. We review many
examples, state a workable definition, discuss many open problems, and present
recent results on the subject.

1. Introduction

1.1. What numbers? Traditionally, Combinatorics works with numbers. Not
with structures, relations between the structures, or connections between the rela-
tions — just numbers. These numbers tend to be nonnegative integers, presented
in the form of some exact formula or disguised as probability. More importantly,
they always count the number of some combinatorial objects.

This approach, with its misleading simplicity, led to a long series of amazing
discoveries, too long to be recounted here. It turns out that many interesting
combinatorial objects satisfy some formal relationships allowing for their numbers
to be analyzed. More impressively, the very same combinatorial objects appear in
a number of applications across the sciences.

Now, as structures are added to Combinatorics, the nature of the numbers
and our relationship to them changes. They no longer count something explicit or
tangible, but rather something ephemeral or esoteric, which can only be understood
by invoking further results in the area. Even when you think you are counting
something combinatorial, it might take a theorem or a even the whole theory to
realize that what you are counting is well defined (see e.g. §4.6).

This is especially true in Algebraic Combinatorics where the numbers can be,
for example, dimensions of invariant spaces, weight multiplicities or Betti numbers.
Clearly, all these numbers are nonnegative integers, but as defined they do not
count anything per se, at least in the most obvious or natural way.
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1.2. Why combinatorial interpretations? This brings us to the popular
belief that one should always look for a combinatorial interpretation (see §15.1).
As we see it, there are two reasons for this.

The first reason is clear: when you know what you are counting you have access
to a large toolkit already developed in Enumerative Combinatorics and areas further
afield. Essentially, the explicit combinatorial objects serve as a common playground
where the areas can meet and be understood (see §3.2).

The second, deeper reason, is largely based on the hope is that a combinatorial
interpretation would reveal some structures hidden in the algebraic objects they are
working with. One can think of combinatorial interpretations as projections — you
gather enough projections and hope the whole structure emerges. Consequently,
when a combinatorial interpretation is found it is hard to tell if it points to a new
structure without further study.

From our perspective, the first reason is terrific and can bring a lot of activity as
new combinatorial objects rise to prominence in the areas spurred by applications.
Meanwhile, the second reason is unfortunate and indicates that the area does not
have a workable definition of a “combinatorial interpretation”. This brings us to
the following difficult question.

1.3. What do we mean by a combinatorial interpretation? Well, this
is what this survey is about. The short answer is #P, a computational complexity
class which we discuss at length.

But before we proceed, let us make a trivial comment. The first step towards
building a theory is admitting the need for a formal definition. Without that, the
negative results are impossible to state while the positive results ring hollow and
cannot be fully appreciated for the miracle that they are.

According to Popper’s philosophy, a belief needs to be disprovable in order to
be scientific [Pop62]. Those who have unquestionable faith in the existence of
combinatorial interpretations for all problems they care about, might want to take
this lesson to heart.

1.4. There is no there there. We argue that many (all?) long-standing
open problems on combinatorial interpretations in Algebraic Combinatorics can be
formalized and resolved. We believe that few if any of them will have a solution of
the kind that people in the area are looking for.

We aim to give a negative solution to many of the combinatorial interpretation
problems using a formal definition we mentioned above. The goal of this paper is to
advance this as part of a larger project. Until recently, this seemed overly ambitious
and beyond the reach. Hopefully, this survey will leave you more optimistic.

1.5. Why bother? Given that until recently the notion of “combinatorial in-
terpretation” had been informal, why set on a quixotic journey? Let us frame the
question in much broader terms, from the perspective of Computational Combina-
torics. There are two fundamental questions we want to address in our study:

(1) How do you prove that given numbers have a (#P) combinatorial
interpretation?
(2) How do you prove that they do not?
Note that we are not so much interested in finding an explicit combinatorial in-
terpretation, just proving membership in #P suffices for our purposes. Mostly, we
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are interested in development of new tools coming both from Combinatorics and
Computational Complexity, to resolve the questions above.

In the last few decades, the area of Algebraic Combinatorics did a great job
proving relevance and applicability beyond its boundaries. From this point of view,
the open problems of finding combinatorial interpretations for numbers such as the
Kronecker and Schubert coefficients are key benchmarks. Resolving them in either
direction would be an important achievement in the whole Mathematics.

1.6. Why computational complexity? In other words, is there perhaps
a more suitable and easier to understand language in which the problem can be
phrased? Perhaps, in terms of integer points in convex polytopes or tilings in the
plane? Indeed, both type of combinatorial interpretations do frequently appear in
Algebraic Combinatorics and may seem like the natural place to start.

This is both the easiest and the hardest question to answer. The short answer
is this: “Computational complexity provides the broadest and the most flexible
language”. In fact, prior to converging to #P, we tried a handful of approaches
including the ones above. Since the types of “combinatorial interpretations” they
gave were rather constrained, we reasoned that negative results would be easier to
obtain. Eventually we discarded all such formulations as unconvincing and resigned
to the fundamental difficulty and its ever conditional nature of Computational
Complexity.

As we see it now, the Computational Complexity is truly foundational for the
whole of Mathematics, and allows one to ask questions on the deeper level. While
we constrain ourselves with the problem at hand, we refer to [Wigl9] for the
general picture.

1.7. What to expect from this survey. We assume that the reader is
familiar with standard notation, results and ideas in Algebraic Combinatorics, see
e.g. [Mac95, Man01, Sag01, Sta99]. After some hesitation, we decided to assume
the same about Computational Complexity. We realize this might be unreasonable,
and we will provide plenty of examples, but in the 21st century, a research survey
is probably not the best place to include a long list of basic definitions.

We do include a quick overview of basic complexity notions (Section 2), but
stop short of getting technical. For more details, we recommend [MM11] which is
a fun read, [AB09, Pap94b] for standard textbooks on the subject, and [Aar16]
for a very readable survey.

1.8. Structure of the paper. In Section 2, we introduce the computational
complexity language, followed by Section 3 with many motivating examples. In
Section 4, we discuss many examples from Enumerative Combinatorics, the original
motivation for combinatorial interpretations (cf. §15.1). In Sections 5 and 6 we
survey inequalities in Probabilistic Combinatorics and Order Theory, respectively.
The selection of results is somewhat biased and reflects some of our own interests.
The goal is prepare the reader for more difficult problems later on.

In Sections 7-10 is the core part of the survey. Here we discuss many func-
tions in Algebraic Combinatorics centered around four subjects: Young tableaux,
S, characters, Kronecker and Schubert coefficients. These should be read in order,
as they build on top of each other. Sections 9 and 10 have polemical portions at
the end, which some readers might disagree with.
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The last part of the survey presets our effort to organize the earlier material
and make digestible conclusions. In Section 11, we discuss results and bijections in
Algebraic Combinatorics centered around the LR rule and the RSK correspondence,
which we consider crucially important to the subject. In Section 12, we discuss our
recent work [IP22] which develops tools to prove nonexistence of combinatorial
interpretations.

In Section 13, we give an annotated list of #P-completeness and #P-hardness
results that we omitted earlier to avoid the confusion. These last three sections are
independent from each other and should be accessible to experts in the area who
skipped earlier section. We conclude with proofs postponed from earlier sections
(Section 14), and some final remarks (Section 15).

Notation. Let {0, 1}" denote the set of sequences of zeros and ones of length n,
and let {0, 1}* the set of all such sequences of finite length. We use N={0,1,2,...}
and [n] = {1,...,n}. The rest is pretty self-explanatory.

2. Basic Computational Combinatorics

For the purposes of this survey, we will make numerous shortcuts and imprecise
statements, largely sacrificing standard definitions and rigor for the sake of clarity
and conciseness. We also make our focus quite a bit more narrow than it could be.
We beg the experts for forgiveness.

2.1. Combinatorial objects. The notion of a combinatorial object can be
viewed as follows. A word is a binary sequence x € {0,1}*. The size of z is the
length |z|. In other words, combinatorial objects of size N are encoded by words
of length N, which in turn correspond to integers 0 < a < 2V.! For example, a
simple graph on n vertices can be viewed as a word of length (2)

Note that we view combinatorial object as more than an abstract concept be-
cause the definition includes the presentation. For example, a simple graph on n
vertices and m edges can also be presented as a list of edges. The resulting word
would be of size ©(mlogn). This makes some algorithms faster and other slower,
but since m = O(n?) the change is at most polynomial for general graphs, so we
can ignore it.

On the other hand, the presentation can make a lot of difference for problems in
Algebraic Combinatorics. For example, a partition A = (4,3,1) - 8 can be written
in binary (100,11,1) or in wnary (1111,111,1). The binary presentation is more
compact, so partitions A = (A1,...,A¢) F n with £ = O(1) have size O(logn).

On the other hand, for many problems in Algebraic Combinatorics the unary
presentation of size O(n) is more appropriate. For example if your problem involves
self-conjugate partitions A = X' n, we have £(\) > /n, so the binary presentation
still requires poly(n) space.? Similarly, the unary presentation is more natural when
one works with Young diagrams. In summary, every time the problem involves
partitions, one should always state whether partitions are given in unary or in
binary.

1We realize this is not how some combinatorialists think of combinatorial ob jects.
2Occasionally, people use Frobenius coordinates specifically to avoid this issue for partitions
with bounded Durfee size.
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2.2. Classes and functions. The notion of a combinatorial class can be
viewed as follows. Define the language as a subset of binary words: L C {0, 1}*.
For example, we can consider the language of words which encode all Hamilton-
ian graphs. Similarly, we can consider the language of unary encodings of Young
tableaux counted by the LR rule, i.e. for every triple of partitions (A, i, ), there
are exactly cf;,, words in the corresponding language.

We write L := {0,1}* \ L to denote the complement of L. There is some
ambiguity here depending on the presentation, but in principle L can be very large.
For example, the complement to the language of Hamiltonian graphs includes both
non-Hamiltonian graphs and all words corresponding to non-graphs.

We usually think of a combinatorial function as a function counting combinato-
rial objects. This can be viewed as special case of the following general definition.
Let f:{0,1}* — Z an integer function. Suppose f(z) =0 for x ¢ L, and f(x) > 1
for x € L. We then say that f is supported on L.

For example, the number of Hamiltonian cycles is a function supported on
Hamiltonian graphs. Similarly, the LR coefficients is a function f: (A, pu,v) — c;\“j
supported on triples of partitions where LR coefficients are nonzero.

Note that the language can be defined in a variety of ways: by an explicit
function f, by a Turing machine, by a formal grammar by an explicit mathematical
definition, or by an abstract logical construction. It is important to keep in mind
that the complexity of L can reflect the complexity of its definition, but that does
not always hold.

For example, the set of exponents n for which the Fermat’s Last Theorem (FLT)
holds, naturally correspond to a language L = {3,4,5,...}. From the mathematical
point of view, proving that n € L becomes increasingly more difficult as n grows,
but as a language L is rather simple now that FLT has been proved.

2.3. Decision, search and counting problems. A decision problem is a
computational problem defined by the membership in the language. For example,
HAMILTONICITY is a problem whether the language of Hamiltonian graphs contains
a word corresponding to given graph. Similarly, the non-vanishing of LR coefficients
problem cf‘w >? 0 is a problem whether a triple of partitions (), u,v) written in
unary is in the language given as a support of the LR coefficients.

A search problems is similar to the decision problem and asks not only to decide
x €’ L, but also to verify the answer by providing a witness. We formalize this no-
tion below, but for now let us think of this qualitatively rather than quantitatively.

For example, the search problem associated with HAMILTONICITY ask to find
a Hamiltonian cycle, since that implies that Hamiltonicity by definition. On the
other hand, for NON-HAMILTONICITY there is no natural witness as nonexistence
of a Hamiltonian cycle cannot be easily characterized (for a very good reason, see
below). The verifier can simply list all 2™ subgraphs and supplant a proof that
none are a Hamiltonian cycle.

While seemingly harder, in some cases it is possible to use the decision problem
as a black box to solve the search problem, by applying it repeatedly for smaller
instances. For example, given graph G, if G has a Hamiltonian cycle, check if so
does G~ e. Continue removing edges until eventually some edge cannot be removed.
Suppose now G \ e does not have Hamiltonian cycles. This means that e is an edge
in every Hamiltonian cycle in G. This reduces the problem to finding a Hamiltonian
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cycle in G/e obtained from G as contraction by e. Proceed in this fashion until the
whole Hamiltonian cycle is constructed.

Given a search problem, a counting problem is a problem of computing a func-
tion f given by the number of witnesses the verifier can accept. So if ¢ L, i.e.
the decision problem has a negative answer, the function f(z) := 0. Otherwise, the
function f(x) > 1 for all z € L, i.e. function f is supported on L.

For example, the number of Hamiltonian cycles is a function supported on
Hamiltonian graphs which naturally arises that way. Similarly, but less obviously,
the LR-coefficients c;}u is the counting function for the number of LR tableaux.

2.4. Polynomial time problems. Until now we avoided using the words
polynomial time, since it makes definitions quantitative and unnecessarily compli-
cates the matter. But we need it from this point.

The first truly important class for us is P. It is a class of languages where
the decision problem can be solved in polynomial time. There is a wide variety of
problems in this class, for example testing whether a graph is connected or bipartite.
More involved graph theoretic problems in P include planarity and having a perfect
matching.?

Historically, there was a variety of ways to formalize the definition of P, all
of which turn out to be equivalent. We will use a Turing machine (TM) mostly
out of habit and because it is best known (compared to RAM and other equivalent
models of computation). From our point of view, using the colloquial polynomial
time algorithm is absolutely fine.

We distinguish class P from the class FP of nonnegative functions which can be
computed in polynomial time.? To remember the difference, note that the former
outputs 0 or 1, while the latter can output larger numbers. Simple examples of
functions in FP include the number of connected components of a graph, the number
of (proper) 2-colorings, and the number of spanning trees.®

2.5. Polynomial time verifier. Now, given a language L, the polynomial
time wverifier is a Turing machine M such that for some fixed polynomials p,q we
have:

o for all z,w € {0,1}*, we have M (z,w) € {0,1},

o for all z € {0,1}", machine M runs in time < p(n),

o for all z € LN {0,1}", there exists w, s.t. |w| < ¢(n) and M(xz,w) =1,

o for all z € {0,1}™ \ L and all w s.t. |w| < ¢(n), we have M (x,w) = 0.

In particular, the verifier accepts, i.e. outputs 1, only if w is a witness for z € L.
Note that the witness w have to have polynomial size to avoid the type of witnesses
we had seen in the Non-Hamiltonicity problem. This constraint is also necessary
for M to work polynomial time, since otherwise it would take exponential time just
to read the exhaustive list of subgraphs in this case.

Continuing with our favorite example, in the HAMILTONIANCYCLE search prob-
lem, the verifier checks if a collection of edges (this is w) is a Hamiltonian cycle in
graph G (this is = in the notation above). Clearly, this can be done in polynomial

3These follow from the Kuratowski theorem and the blossom algorithm, resp., see
e.g. [Schr03, §3.1, §24.2].

430me experts use a different definition of FP. The one we use is more common in Counting
Complexity.

5The latter follows from the matriz-tree theorem.
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time. Similarly, in the LR TABLEAU search problem, a Young tableau can be veri-
fied to be a LR tableau corresponding to a triple (A, 4, V) in polynomial time. This
is done by checking all equalities for the shape and the content, and all inequalities
involved in the definition: non-increase in rows, strict increase in columns, and
balance conditions for the right-to-left reading word.

2.6. Complexity classes. Complexity class NP is the class of decision prob-
lems = €” L for which there exists a polynomial time verifier. Similarly, class coNP
is the class of decision problems z € L, such that there exists a polynomial time
verifier for the complementary problem z €’ L.

For example, HAMILTONICITY € NP and NON-HAMILTONICITY € coNP. Clearly,
P C NPNcoNP. There are several hard decision problems known to be in NPNcoNP,
so it is conjectured that P £ NP N coNP. It is also conjectured that NP % coNP.
It is known that P # NP would not imply either of these two conjectures (see
e.g. [Aarl6, §2.2.3]).

Next, complexity class #P is the class of counting functions for which there
exists a polynomial time verifier. Formally, a function f : {0,1}* — N is in #P if
there exists a polynomial time verifier M and polynomial g : N — N, such that for
all n € N we have:

flz) = {w € {0, 139 M(z,w) = 1} forall ze{0,1}"

Observe that FP C #P. Indeed, for f € FP the witness for = is any integer
in a € {07 o flx) = 1}, and the verifier first computes f(x) and then checks if
a < f(z). It is widely assumed that FP # #P. In fact, it is hard to overstate how
strong is this assumption.

For example, let f(G) be the number of Hamiltonian cycles in G. Then f € #P
since it is counting combinatorial objects which can be verified in polynomial time.
Similarly, LR coefficients are given as a function (A, pu,v) — c;},, is also in #P,
since it is counting LR-tableaux which can be verified in polynomial time by the
argument above. We give many more examples in the next section.

Note that we do not discuss problems that are NP-complete or #P-complete.
That’s largely because these notions are largely tangential to this survey. Like with
other complexity classes and standard computational complexity notation, we will
mention them at will when we need them and hope the reader can catch up. Here
is a partial list as a mental check for the reader:

P C UP C NP C 3§ C PH C PSPACE.

We do want to emphasize the distinction of NP-complete and NP-hard classes
— the former is contained in NP, while the latter does not. The same with #P-
complete and #P-hard classes.

3. Combinatorial interpretation, first steps

3.1. Main definition. We will be brief. Let f : {0,1}* — N be a function.
We say that f has a combinatorial interpretation if

f e #P.

Note that until now, we used the term “combinatorial interpretation” in both
its technical and colloquial meaning, which usually coincide but can also differ in



8 IGOR PAK

several special case. For the rest of the paper, we will use it only in the technical
sense, and use quotation marks for the colloquial meaning.

3.2. Basic examples and non-examples. We begin with some motivating
examples, mostly following [ITP22].

(1) Let e: P — N be the number of linear extensions of P, where P = (X, <) is a
poset with n elements. Clearly, e(P) > 1, so we can define a nonnegative function
e'(P) := e(P) — 1. Now observe that e’ € #P simply because finding the lex-
smallest linear extension L can be done in polynomial time by a greedy algorithm
(see e.g. [CW95]), so ¢/(P) counts linear extensions of P that are different from L.

(2) Let G = (V,E) be a simple graph with n = |V| vertices and m = |E| > 1
edges. Let ¢(G) be the number of proper 3-colorings of G. Clearly, ¢ € #P. Note
that 3" — ¢(G) is also in #P, since verifying that a 3-coloring is not proper is in P.

Now, taking into account permutations of colors, observe that f(G) := ¢(G)/6
is an integer valued function. To see that f(G) € #P, note that of the six possible 3-
colorings corresponding to a given 3-coloring one can easily choose the lex-smallest.
In other words the combinatorial interpretation for f(G) is the set of lex-smallest
3-colorings of G.

The key point here is that starting with a 3-coloring x : V. — {1,2,3}, we
can compute in polynomial time the lex-smallest 3-coloring x’ from the set of 6
recolorings of x. If x = x/, we verify that x is a combinatorial interpretation, and
discard x if otherwise.

(3) Let G = (V,E) be a simple graph with |V| = n vertices and |E| = m edges.
Consider the following elegant inequality by Grimmett [Gri76]:

0 e = (2 )

n\n—1

for the number 7(G) of spanning trees in G.° We can turn this inequality into a
nonnegative integer function as follows.

f(G) = 2m)" ' —nn-1)""17(G).

Recall 7(G) € FP by the matriz-tree theorem. Then f € FP, and so f(G) has a
combinatorial interpretation according to our definition.

One could argue that a “combinatorial interpretation” should explain why the
inequality (*) holds in the first place. In fact, there are several schools of thought
on this issue (see a discussion in [Pak18, §4]). We believe that the computational
complexity approach is both the least restrictive and the most formal way to ad-
dress this. Indeed, the combinatorial interpretations we study depend solely on the
functions themselves and not of the difficulty of the proof of the functions being
integer or nonnegative.

(4) Let h(G) be the number of Hamiltonian cycles in G, and let f(G) := (h(G) —

1)2. This is our most basic non-example. While we cannot prove unconditionally
that f ¢ #P, we can prove it modulo standard complexity assumptions. Intuitively
this is relatively straightforward. Clearly, a poly-time verifier that f(H) # 0 is also

6The original proof is a nice two-line argument using the AM-GM inequality for the product of
eigenvalues of the Laplacian matriz of G. One could argue whether this proof is “combinatorial”,
but it definitely does not extend to an explicit injection.
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a poly-time verifier that h(G) # 1. A poly-time verifier for h(G) > 2 is easy:
present two distinct Hamiltonian cycles. On the other hand, a poly-time verifier
for h(G) = 0 is unlikely since that would imply that NP = coNP.”

(5) As above, let h(G) be the number of Hamiltonian cycles in G. Recall Fermat’s
little theorem states that p|aP — a for all integers a, and prime p.® Let

£(@) = (G - h(@).
It was shown in [IP22, Prop. 7.3.1], that f(G) € #P. The proof is very short,

and a variation on the original proof in [Pet72] (see also [Ges84, Gol56]). We
reproduce it here in full.

Proof. Consider sequences (a1, ...,ap) of integers 1 < a; < h(G) and partition
them into orbits under the natural cyclic action of Z/pZ. Since p is prime, these
orbits have either 1 or p elements. There are exactly p orbits with one elements,
where a; = ... = a,. The remaining orbits of size p have a total of h(G)? — h(G)
elements. Since p is fixed, the lex-smallest orbit representative can be found in
poly-time. [

(6) Recall the following Smith’s theorem [Tut46]. Let e = (v, w) be an edge in a
cubic graph G. Then the number N.(G) of Hamiltonian cycles in G containing e is
always even. Denote f(G,e) := N.(G)/2. Is f € #P? We don’t know. This seems
unlikely and remains out of reach with existing technology. But let us discuss the
context behind this problem.

There are two main proofs of Smith’s theorem. Tutte’s original proof in [Tut46]
uses a double counting argument. An algorithmic version of this proof is given by
Jensen [Jen12]. The algorithm starts with one Hamiltonian cycle in G containing e,
and finds another such cycle. Jensen also shows that this algorithm requires an
exponential number of steps in the worst case.

The Price-Thomason lollipop algorithm [Pri77, Tho78] gives a more direct
combinatorial proof of Smith’s theorem. This algorithm also partitions the set of
all Hamiltonian cycles in G' containing e into pairs,” and is also exponential, see
[CamO01, Kra99b].'°

Conjecture 3.1. The function f(G,e) is not in #P.

Note that if either Jessen’s algorithm or the lollipop algorithm were poly-time,
this would imply that f € #P. Indeed, by analogy with (2), a poly-time algorithm
would allow us to search for Hamiltonian cycles and only count the ones that are
lex-smaller than their pairing partner.

"This is because NONHAMILTONICITY is coNP-complete [Pap94b, Prop. 10.2].

8Fermat stated this result in 1640 without proof, and the first published proof was given by
Euler in 1736. According to Dickson, “this is one of the fundamental theorems of the theory of
numbers” [Dic52, p. V].

9Finding another Hamiltonian cycle was first raised in [CP88] in the context of Smith’s
theorem. This was a motivational problem for the complexity class PPA, see [Pap94a], as well
as large part of our work in [IP22]. Whether it is PPA-complete remains open.

10There are other results similar to Smith’s theorem which can be proved by a parity argument
by a variation of the lollipop algorithm, see e.g. [CE99] and references therein.
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3.3. First observations. From the limited number of examples above, here
are a few observations. We will develop them further later on.

(i) In combinatorics, nonnegative integer functions don’t come from nowhere. They
are either already counting something, e.g. orbits under the action of some group
as in (2) and (5), or are byproducts of inequalities as in (1), (3) and (4).

(i4) The inequality in (¢) could be rather trivial. For example, we have the trivial
inequality e(P) > 1 in (1), the AM-GM inequality in (3), and x? > 0 in (4). It is
the nature of the inequality that determines whether the function is in #P.

(#41) The computational hardness of the functions works only in one direction: if
f € FP then f € #P, see (3), but if f € #P-hard then it can go both ways.

(iv) Even for some classical problems like (6), membership in #P can be open.

4. Sequences

The problems in this section come from Enumerative Combinatorics. Although
they are not the most interesting questions from the complexity point of view, the
problems of finding combinatorial interpretations of integer sequences are much
too famous not be addressed. In our notation and problem selection we largely
follow [Pak18|.

Throughout this section we assume that the input n is in unary. We say that an
integer sequence {a,} has a combinatorial interpretation if a function f : n — a,
is in #P. Similarly, we say that {a,} can be computed in poly-time if f € FP. By
abuse of notation, we also say that {a,} is in #P and FP, respectively.

4.1. Catalan numbers. Recall the Catalan numbers

1 2n 2n 2n
e = 1 (n) = () = ()
see e.g. [OEIS, A000108]. The fractional formula implies that Cat(n) > 0, the
subtraction formula implies that Cat(n) € Z, but a priori it is not immediately
obvious that Catalan numbers have any combinatorial interpretations. Of course,
there are over 200 “combinatorial interpretations” of various types given in [Stal5].

Let us show that {Cat(n)} € #P. Recall that Cat(n) is equal to the number
of ballot sequences, defined as 0 — 1 sequences with n zeros and n ones, s.t. every
prefix has at least as many zeroes as ones. This can be checked in time poly(n),
which proves that Catalan numbers are in #P.!!

In fact, just about all “combinatorial interpretations” in [Stal5] can also be
used to show that Catalan numbers are in #P, but some are trickier than others.
For example, Cat(n) is the number of 123-avoiding permutations in S, and one
would need to observe that there are (3) = O(n?) possible 3-subsequences. Thus,
verifier checking the 123-avoidance is in P, as desired.

On the other hand, some “combinatorial interpretations” in [Stal5] are not
even counting combinatorial objects, and it can take some effort to give them an
equivalent presentation which is in #P. Notably, Exc 195 counts certain regions
in R™ in the complement to the Catalan hyperplane arrangement C, . This setting
raises some interesting computational questions.

U This is because n is in unary. Note that if n is binary, the ballot sequences have exponential
length.
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To present the regions as a combinatorial objects one can use a collection of
signs, one for each hyperplane. Since the arrangement C, has ©(n?) hyperplanes,
a trivial consistency check of all (n + 1)-tuples of hyperplanes would give an expo-
nential time algorithm for testing whether the resulting region is nonempty. This
is not good enough for being in #P.

Now, in this specific case of the Catalan arrangement, there is an easy poly-time
testing algorithm which uses the simple structures of hyperplanes in C,, and avoids
the redundancy in the exhaustive testing above.!? This algorithm is the verifier
giving the desired combinatorial interpretation.'?

4.2. Polynomial time computable combinatorial sequences. Note that
since n is in unary, the sequence {Cat(n)} is in FP since it can be computed in
polynomial time. The same holds for Fibonacci numbers [OEIS, A000045], numbers
of involutions [OEIS, A000085], partition numbers [OEIS, A000110], and myriad
other sequences which can be computed via recurrence relation.

Formally, we observe in [Pak18, Prop. 2.2] that every D-algebraic sequence is
in FP when the input n is in unary. Thus, in particular, this holds for all algebraic
and P-recursive sequences, see e.g. [Sta99, Ch. 6].

On the other hand, there are sequences which likely cannot be computed in
poly(n) time. For example, the number SAW (n) of self-avoiding walks of length n
in Z? starting at the origin, is conjectured not to be in FP [Pak18, Conj. 2.14].
Clearly, {SAW(n)} € #P, so we turn our attention to sequences which are unlikely
to be in #P, or are in #P for less obvious reasons.

4.3. Unimodality and log-concavity. Both unimodality and log-concavity
properties of combinatorial sequences are heavily studied in the literature, see
e.g. [Brals] (see also [Bre89, Bre94, Sta89] for more dated surveys). Follow-
ing [Pak19], every time you have an inequality X < Y, we can convert it into a
nonnegative integer (Y — X) and ask if it has a combinatorial interpretation. For
combinatorial sequences this is especially notable, and the approach above works
well again.

To see explicit examples, recall multi-parameter combinatorial sequences such
as binomial coefficients (}), Delannoy numbers D(i, j) [OEIS, A008288], Stirling
numbers of both kinds [OEIS, A008275] and [OEIS, A008277], g-binomial coef-
ficients (Z)q (see e.g. [Sta99, §1.7]), etc. All of these satisfy various unimodality
and log-concavity properties, e.g.

n n n 2
() G = ()
D(i,j) < D(i+1,j—1) forall i<j, and

a1 (), < @M (7), forall 0<m < b,

We refer to [Sag92, CPP22a] for the first two of these inequalities both of which
have a direct injective proof. The last inequality is due to Sylvester [Syl78], see

12y fact, the problem of counting the number of regions in the complement of general rational
hyperplane arrangements is in #P. Indeed, one can use standard results in Linear Programming
to give a poly-time verifier for all regions encoded by subsets of the set of halfspaces defined by
the hyperplanes. This implies that counting regions problem is always in #P. We thank Tim
Chow for this observation, see mathoverflow.net/a /428272

13The bijection in the solution of Exc 195 in [Stal5] (which requires a proof!) is another
approach to have these regions being in bijection with combinatorial objects.
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also [PP13, Pro82, Sta89] for modern treatment. Clearly, each of these inequal-
ities has a combinatorial interpretation simply because both sides are in FP. For

n 2 n n
example, {(k) — (k_l) (k+1)} € FP, etc.

4.4. Partitions. Let p(n) denote the number of integer partitions of n. Ra-
manugan’s congruence p(bn — 1) = 0 (mod 5) has a famous “combinatorial inter-
pretation” by Dyson, who conjectured (among other things) that p(5n — 1) is
equal to the number of partitions A F (5n — 1) with rank Ay — A} =0 (mod 5), see
[Dys44]. This conjecture was proved in [AS54] and later extended in a series of
remarkable papers, see [AG88, GKS90, MahO05].

In the same direction, Ramanujan proved many more congruences such as
p(25n — 1) = 0 (mod 25), see e.g. [Har40, §6.6], but there seem to be no Dyson-
style rank statistics in this case. On the other hand, now that the congruence is
known, it follows that {%p(%n - 1)} € FP. This is because

o0

S v = I 1=

n=0 =1

is D-algebraic, or because {p(n)} can be computed in poly(n) time via Euler’s
recurrence (among several other ways), see [Pak18, §2.5] and references therein.
This implies that {% p(25n — 1)} already has a combinatorial interpretation.

Similarly, recall the curious inequality p14(n) > p2s(n) for the numbers of
partitions of n into parts £1 (mod 5) and £2 (mod 5), respectively. Finding an
explicit injection proving the inequality was suggested by Ehrenpreis, see [AB89,
Kad99]. From the computational complexity point of view, we already have
{p14(n) — p23(n)} € FP, which shows that the desired injection can be computed
in poly-time.'*

Finally, the log-concavity of the partition function [DP15], implies that the
sequence {p(n)>—p(n—1)p(n+1), n > 25} is in #P, simply because {p(n)} € FP.

4.5. Unlabeled graphs. Let u, be the number of non-isomorphic unlabeled
graphs on n vertices, see [OEIS, A000088]. Wilf conjectured in [Wilf82], that {u, }
cannot be computed in poly(n) time, see also [Pak18, Conj. 1.1]. Does {u,} have
a combinatorial interpretation? This is not so clear. The difficulty is that we are
counting orbits rather than combinatorial objects and there is no obvious way to
choose orbit representatives:

Open Problem 4.1. The sequence {u,} is in #P.

To understand the context of this problem, consider a closely related sequence.
Let a,, be the number of nonisomorphic unlabeled plane triangulations on n vertices,
see [OEIS, A000109]. In [Pak18, Conj. 1.3], we conjectured that {a,} can be
computed in poly(n) time. This would immediately imply that {a,} is in FP and
thus in #P. Since the conjecture remains open, we show the latter directly:

Proposition 4.2. The sequence {a,} is in #P.

We postpone the proof until §14.1. The idea is that the group of automorphisms
of triangulations has polynomial size and all automorphisms can be computed ex-
plicitly via a poly-time algorithm for the isomorphism of planar graph (cf. [CM92]).

14T his is similar and partially motivated by the discussion of complexity of partition bijections
viewed as algorithms, see [KP09, §6.1] and [Pak06, §8.4.5].
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We are able to compute the whole orbit and then use symmetry breaking by taking
lex-smallest orbit representative.

Conjecture 4.3 ([Pak18, Conj. 1.3]). The sequence {a,} is in FP.

We believe that this conjecture can be derived using the tools in [Fusy05,
KS18, Wal05]. Back to the sequence {u,}. If GRAPHISOMORPHISM was known
to be in P,'® one could try to use the symmetry breaking approach in the proof
of Proposition 4.2. Babai’s recent quasipolynomial upper bound n@((egm)%) op
graph isomorphism [Bab18], falls short of what we need towards resolving Open
Problem 4.1.

Note that plane triangulations are dual to 3-connected cubic graphs, so the
following problem lies in between Proposition 4.2 and Open Problem 4.1.

Conjecture 4.4. Let Ri(n) be the number of k-reqular unlabeled graphs on n
vertices. Then {Ry(n)} is in #P, for all k> 1.

We are optimistic about this conjecture since for k-regular graphs the GRAPHI-
SOMORPHISM problem is in P. This was proved by Luks in [Luks82], see also [BL83,
SW19].

Finally, there is a curious connection to log-concavity (see §4.3). Denote by
un(m) the number of nonisomorphic graphs with n vertices and m edges. It
follows from [PR86] (see also [Vat18)]), that w,(m)? > u,(m — 1)u,(m + 1). If
{un(m)} € #P (see Open Problem 4.1), it would make sese to ask if we also have
{un(m = 1) up(m + 1) — uy(m)?} € #P. Analogous questions can be asked about
non-isomorphic planar graphs, plane triangulations, etc.

4.6. Knots. Denote by k, the number of distinct knots with bridge number
at most n, see e.g. [OEIS, A086825]. Here the bridge number is a knot invariant
defined as the minimal number of bridges required to draw a knot in the plane, see
e.g. [Mur96, §4.3].

Open Problem 4.5. The sequence {ky,} is not in #P.

To underscore combinatorial nature of the problem, note that knot diagrams
are a (subset of) planar 4-regular graphs with signs at the vertices, so n is the
bound on the number of vertices. The difficulty starts with the word “distinct”
which is formalized as non-isotopic and is also combinatorial in nature: two knots
are isotopic if they are connected by a finite sequence of Reidemeister moves. Un-
fortunately, from computational point of view, the issue with identifying distinct
knots is much deeper than with nonisomorphic graphs.

First, note that it is not at all obvious that the isotopy is decidable. Could it
be that the number of necessary Reidemeister moves between two isotopic knots
with n crossings grows faster than the busy beaver function? The answer turns out
to be “No”; the sequence {k,} is computable indeed. The best known upper bound
on the number of Reidemeister moves is the tower of twos of height 2°(™ and was
given by Coward and Lackenby [CL14].'6

15Formally, we need an effective version of GRAPHISOMORPHISM, which produces generators
for Aut(G) as a subgroup of S,,. This is known in many cases and related to the notion of canonical
labeling, see [Bab19, BL83, SW19].

16There are also various hardness results suggesting that such sequence is hard to compute,
see e.g. [dM+21, Lacl7, KT21].
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We conclude with a simpler problem, or at least the one that has been resolved.
Denote by a,, the number of knot diagrams on n labeled crossings which are isotopic
to the unknot. The fact that {a,} is in #P follows from a famous result by Hass,
Lagarias and Pippenger [HLP99].!” Similarly, denote by b, the number of knot
diagrams on n labeled crossings which are not isotopic to the unknot. The sequence
{bn} is also in #P by a recent result of Agol, see [Lacl7, §3.5].

5. Subgraphs

Discrete Probability is a major source of combinatorial inequalities, most of
which can be converted into nonnegative functions. Whether these functions are
in #P is then a challenging problem. In this section we concentrate on various
counting subgraphs problems.

5.1. Matchings. Let G = (V, E) be a simple graph, and let p(G, k) denote
the number of k-matchings in a simple graph G = (V, E) defined as the number
of k-subsets of F of pairwise nonadjacent edges. Clearly, p(G,k) € #P. Follow-
ing [Pak19], consider a function

f(Gk) := p(G, k)* — p(G, k—1)p(G,k+1).

Famously, Heilmann and Lieb proved that f(G,k) > 0 [HL72], see also [God93,
§6.3] and [MSS15] for more context on this remarkable result. It was observed
in [Pak19] that f € #P follows immediately from Krattenthaler’s injective proof
of the Heilmann—Lieb theorem [Kra96].

Define ¢(G) to be the number of spanning subgraphs H = (V,E’), E' C E,
which contain a perfect matching. Observe that the function g € #P, since testing
whether H has perfect matching is in P, see e.g. [LP86, §9.1]. The following
subsection shows that this is unlikely for other graph properties.

5.2. Hamiltonian subgraphs. Let f(G) denote the number of Hamiltonian
spanning subgraphs of a simple graph G = (V, E). Whether f €’ #P is a difficult
question and does not follow directly from the definition since we need a poly-time
algorithm to decide Hamiltonicity of G.18

Note that this is a close call, since there is an algorithm to verify that each H
is Hamiltonian by showing a Hamiltonian cycle C' in H. Thus, one would think
that pairs (H,C) give a combinatorial interpretation of f, but of course one would
need to pick only one such cycle C per H. For example, the lex-smallest C' would
work, but there is no poly-time algorithm to verify that.

Open Problem 5.1. Function f is not in #P.*°

Even more difficult is the f(G) := 2™ — f(G) function which counts non-
Hamiltonian spanning subgraphs of G, since there is no efficient verifier in this
case. That makes the following problem a little more approachable, perhaps:

1714 is also an immediate corollary from [Lac15], which shows that unknot can be obtained
by a sequence of O(n'!) Reidemeister moves.

18This is another example where a combinatorialist might disagree, since the definition f(G)
already gives a kind of “combinatorial interpretation”.

9Here and all other open problems and conjectures in this paper we implicitly allow the use
of any of the standard complexity assumptions. Otherwise, these open problems are both deeper
and less approachable.
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Conjecture 5.2. Function f is not in #P.

5.3. Spanning forests. Let G = (V, E) be a simple connected graph with
n = |V| vertices, and let F(G,k) denote the number of spanning forests in G
with k edges. A special case of the celebrated result by Adiprasito, Huh and Katz
[AHK18], proves log-concavity of {F(G,k)}:

(%) F(G,k)> > F(G,k—1)-F(G,k+1) forall 1<k<n-—2.
Following [Pak19], define f(G,k):= F(G,k)?> — F(G,k —1)F(G,k +1).
Conjecture 5.3. Function [ is not in #P.

We have relatively little evidence in favor of this conjecture other than we tried
very hard and failed to show that f € #P. The original proof was significantly
strengthened and simplified in [ALOV18, BH20, CP21] (sce also [CP22a] for a
friendly exposition).?°

5.4. Perfect matchings. Let G = (V, E) be a k-regular bipartite multigraph
on 2n vertices, and let PM(G) be the number of perfect matchings in G. The
celebrated van der Waerden Conjecture, now proved (see e.g. [vL82] and [LP86,

§8.1]), is equivalent to

npl
PM(G) > E™"n!
nn

Let f(G) := n"PM(G) — k™n! The following result is a variation on [IP22,
Thm. 7.1.5], and shows that it is unlikely that f has a combinatorial interpretation.

Proposition 5.4. Assume that edge multiplicities in graph G are given by #P
functions.
If f € #P, then PH = X5.

PRrROOF. Let n =2, V = {ay,a9,b1,b2}, and let E consists of edges (a1, b1) and
(az, by) with multiplicity x1, edges (a1, bs) and (ag, by) with multiplicity xo. Then
G = (V, E) is bipartite and k-regular, where k = x1+z2. We have PM(G) = x2 + 23
and

f(G) = 4PM(G) — 2k? = 4(z? +22) — 2(z1 + 22)? = 2(x1 — 22)°.
The result now follows from Corollary 2.3.2 in [IP22]. O
Compare this result with Schrijver’s inequality [Schr98]

o) > (G107

for all n >k > 3. An elementary proof of the k = 3 case is given in [Voo79]. We
challenge the reader to give a direct combinatorial proof of this inequality for any
fixed k > 3.

Finally, let us mention Bregman’s inequality [Bre73| formerly known as Minc’s
conjecture (see also [Minc78, §6.2]). In the special case of k-regular bipartite simple
graphs, the setting of the former Ryser’s comjecture, it gives PM(G)* < (k™.

201y [Sta00, p. 314], Stanley writes about (x): “Our own feeling is that these questions have
negative answers, but that the counterexamples will be huge and difficult to construct.” We think
of this quote as a suggestion that there is no direct combinatorial proof of (x), pointing in favor
of Conjecture 5.3.
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Since the proof in this case is relatively short, it would be interesting to see if this
inequality is in #P.

5.5. Bunkbed conjecture. Let G = (V,E) be a multigraph. Denote by
G x K5 the bunkbed graph obtained as a Cartesian product. Formally, two copies
of G are connected by parallel edges as follows: each vertex v € V' corresponds to
vertices vg = (v,0) and v; = (v, 1) which form an edge (vg, v1).

For vertices v,w € V, denote by By(v, w) and B (v, w) the number of spanning
subgraphs H of G x K, such that vy <>y wo and vy <>y w;, respectively. In
other words, we are counting subgraphs where wg or wy lie in the same connected
component as vg.

Conjecture 5.5 (Bunkbed conjecture). For all G = (V,E) and all v,w € V, we
have By(v,w) > Bi(v,w).

This conjecture was formulated by Kasteleyn (c. 1985), see [vdBKO01, Rem. 5],
in the context of percolation, and has become popular in the past two decades,
see e.g. [Hdag03, Linll] and most recently [Gri23, HNK23].?! The fact that
it is notoriously difficult to establish, combinatorially or otherwise, suggests the
following:

Conjecture 5.6. Function By — By is not in #P.

At first glance this might seem contradictory to the bunkbed conjecture, but no-
tice that it only says that if Conjecture 5.5 holds then it holds for “non-combinatorial
reasons”, like the van der Waerden Conjecture. More precisely, Conjecture 5.2 rules
out a simple direct injection establishing B; < By.2? On the other hand, if Conjec-
ture 5.5 is false, then Conjecture 5.2 is trivially true. In other words, Conjecture 5.2
is complementary to the bunkbed conjecture and could be easier to resolve.

Let us note that the bunkbed conjecture is known in a few special cases, such
as complete graphs [vVHL19] and complete bipartite graphs [Ric22]. It would be
interesting to see if the proofs imply that By — B; € #P in all these cases.

5.6. Kleitman’s inequality. Let A be a collection of labeled graphs on [n] =
{1,...,n}. We say that A is hereditary, if for every G € A and every spanning
subgraph H of G, we have H € A. Examples of hereditary properties include
planarity, 3-colorability, triangle-free, non-connectivity, non-Hamiltonicity, and not
containing a perfect matching.

THEOREM 5.7 (Kleitman [Kle66]). Let A and B be hereditary collections of
labeled graphs on [n]. Then:

1|18 < 2() .|An Bl

21The conjecture is usually formulated more generally, as an inequality for p-percolation.
Replacing edges with series-parallel graphs simulates p-percolation on G x K3 for all rational p,
and shows that two formulations are equivalent.

22Formally, denote by Bo(v, w) and B (v, w) the sets of subgraphs counted by Bo and By,
respectively. Suppose there exists an injection ¢ : Bi(v,w) — Bo(v,w), s.t. both ¢ and p~1!
(where defined) are computable in polynomial time. Then By (v, w)— B (v, w) has a combinatorial
interpretation as the number of elements in Bo (v, w) \ ¢(B1(v,w)).
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This Kleitman’s inequality is easier to understand in probabilistic terms, as
having a positive correlation between uniform random graph events:

P[Ge A] < P[Ge A|G € B].
It is then natural to ask if Kleitman’s inequality is in #P.

Proposition 5.8. Let A and B be hereditary collections of labeled graphs on [n],
such that the membership problems G €° A and G €’ B are in P. Then:

2G) |ANB| — |A] - |B| € #P.

The result follows from Kleitman’s original proof. In this context, let us men-
tion the Ahlswede—Daykin (AD) inequality, which is an advanced generalization of
Kleitman’s inequality, see §12.5. Other classical inequalities such as the FKG in-
equality and the XYZ inequality (see e.g. [AS16, Ch. 6]) are direct consequences of
the AD inequality.

In [IP22, Prop. 2.5.1], we prove that assuming the (univariate) Binomial Basis
Conjecture (BBC), then AD inequality is not in #P. In fact, our proof shows that
already Harris inequality [Har60] is not in #P under BBC. This is in sharp contrast
to Proposition 5.7.

5.7. Ising model. In this section, we consider a counting version of the Ising
model, see e.g. [Bax82, §1.7] for the introduction.

Let G = (V, E) be a multigraph with n = |V| vertices and m = |E| edges. For
a subset S C V., let

a(S) = {(v,w) e E : v,we S} U {(v,w) €eE : v,w ¢ S}.
Define the correlation function®?
Cor(v,w) := Z gleSI _ Z 4l
SCV:v,wea(S) SCV:v,wé¢a(S)
Note that the statistical sum here is over induced subgraphs rather than the spanning
subgraphs in the previous two problems.
Griffiths [Gri67] showed that Cor(v,w) > 0 by an inductive combinatorial
argument. When untangled, it can be used to prove the following:
Proposition 5.9. The correlation function Cor : (G,v,w) — N is in #P.
The Griffiths—Kelly-Sherman (GKS) inequality [Gri67, KS68] is a triangle-
type inequality for the correlation functions:
2™ Cor(v, w) Z gl > Cor(v,u) Cor(u,w) for all u,v,w €V,
scv
cf. [GP20, Thm. 3.14] for the planar graphs case.
Conjecture 5.10. The GKS inequality is not in #P.

We refer to [GHS70] for an even more curious Griffiths—Hurst-Sherman (GHS)
inequality, and to [E1185] for Statistical Physics context, unified proofs and further
references.

23Compared to the original version in [Gri67, KS68], we modify the definition by fixing the
same weight (log2) on all edges in E, so the correlation functions have integral values. Since our
graphs can have multiple edges, both the Griffiths and the GKS inequalities remain equivalent to
the original.
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6. Linear extensions

Linear extensions of finite posets is another rich source of inequalities, some
of which are mysterious and largely misunderstood, see [CP23c|. As structures
go, linear extensions occupy the middle ground between easy combinatorial objects
such as standard Young tableaux or spanning trees, and hard objects such as 3-
colorings of graphs or Hamiltonian cycles.?*

6.1. Bjorner—Wachs inequality. Let P = (X, <) be a finite poset. A linear
extension of P is a bijection p : X — [n], such that p(z) < p(y) for all x < y.
Denote by E(P) the set of linear extensions of P, and write e(P) := | E(P)].

For each element z € X, let B(z) := {y eX 1 y= Jc} be the upper order ideal
generated by z, and let b(z) := |B(z)|. The Bjorner—Wachs inequality [BW89,
Thm 6.3] states that

e(P) ] b(z) > n!
zeX
Proposition 6.1 ([CPP23b, Thm 1.13]). The Bjorner—Wachs inequality is in
#P.

The proof in [CPP23b, §3] is essentially the same as the original combinatorial
proof by Bjorner and Wachs. This is in contrast with a probabilistic proof in
[CPP23b, §4] via (another) Shepp’s inequality [She80] which in turn uses the
FKG inequality. Similarly, this is in contrast with the Hammett—Pittel analytic
proof [HPO08], and Reiner’s g-analogue based proof given in [CPP23b, §5]. Neither
of these three proofs seem to imply the proposition.

6.2. Sidorenko’s inequality. A chain in a poset P = (X, <) is a subset
{z1,...,m¢} C X, such that z; < x2 < ... < ;. Denote by C(P) the set of chains
in P.

Suppose P = (X, <) and Q = (X, <’) be two posets on the same set with
|X| = n elements, such that |[C NC’'| <1 for all C € C(P) and C’ € C(Q).
Sidorenko’s inequality states that e(P)e(Q) > n! [Sid91].

Proposition 6.2 ([CPP23b, Thm 1.15] and [GG20b, §3]). Sidorenko’s inequality
is in #P.

Natural examples of posets (P, Q)) as above, are the permutation posets (Pg, Pg),
where P, = ([n], <) is defined as 7 < j if and only if ¢ < j and o(i) < o(j) for all
i,7 € [n], and 7 := (U(n), ceey 0(1)). In this case P, is a 2-dimensional poset, and
P5 is its plane dual.

The original proof by Sidorenko was based on combinatorial optimization.
Other proofs include and earlier direct surjection by Gaetz and Gao [GG20a],
and the geometric proof by Bollobés, Brightwell and Sidorenko [BBS99], via Stan-
ley’s theorem on poset polytopes [Sta86] and Saint-Raymond’s proof of Mahler’s
conjecture for convex corners [StR81]. Neither of these three proofs imply the
proposition, at least not directly.

245ee [CP23c, §12.2] for a complexity theoretic explanation. We refer to survey articles
[BWO0O, Tro95] for the notation, standard background on posets, and further references.
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6.3. Stanley’s inequality. Let P = (X, <) be a finite poset. For an element
x € X and integer k € [n], denote by N(k) = N(P,z,k) the number of linear
extensions p € £(P), such that p(z) = k. Stanley’s inequality [Sta81, Thm 3.1]
states that:

N(k)? > N(k—1) N(k+1) forall 1<k <n.
Conjecture 6.3. Stanley’s inequality is not in #P.

In the past few years, we made a considerable effort trying to resolve this
problem. The original proof in [Sta81] is an easy but ingenuous reduction from
the Alexandrov—Fenchel inequality, that was used previously to prove the van der
Waerden conjecture (see §5.4). Since poset polytopes are rather specialized, initially
we hoped that Stanley’s inequality is in #P. Another positive evidence is the
recent effective characterization of the equality conditions in Stanley’s inequality,
by Shenfeld and van Handel [SvH23]| (see also [MS24]). In our terminology, they
showed that the vanishing problem {N(k)? =" N(k — 1)N(k + 1)} can be decided
in poly-time.

With Chan [CP21], we develop a new combinatorial atlas technology (see
also [CP22a]), which gave a purely linear algebraic proof of Stanley’s inequality
and its generalization to weighted linear extensions (see also [CP22b, CP23a]).
This also allowed us to give a new proof of the equality conditions. Unfortunately,
the limit argument in our proof does not allow to give a #P description (see [CP21,
§17.17]). Separately, with Chan and Panova, we employed several combinatorial ap-
proaches in [CPP23a, CPP22b] to posets of width two, and an algebraic approach
in [CPP23b, §7 and §9.11]. Unfortunately, Conjecture 6.3 remains elusive.?

6.4. XYZ inequality. Let P = (X, <) be a finite poset, and let z,y,z € X
be incomparable elements. Let P, := PU{zx < y}, Py, == PU{z < z} and
P, = PU{z < y,z < z}. Shepp’s classic XYZ inequality [She82], states that

e(P) e(Ppy.) > e(ny) e(Prz).

As with other correlation inequalities, the XYZ inequality is easier to understand
in terms of uniform random linear extensions p € £(P):

Plp(z) < p(y) | p(z) < p(2)] = Plp(z) < p(y)].
Conjecture 6.4. The XYZ inequality is not in #P.

The original proof (see also [AS16, §6.4]), uses the FKG inequality, which, like
the AD inequality, is not in #P in full generality. A double counting argument
proving the XYZ inequality is given in [BT02]. Unfortunately, it does not prove
that the inequality is in #P, both because of the double counting argument and the
use of BIPARTITEUNBALANCE problem, see [IP22, §9.2]. This makes the conjecture
especially interesting.

25Most recently, we proved in [CP23b] that the generalized Stanley’s inequality is not in #P
unless the polynomial hierarchy collapses. We also showed that the vanishing problem in this case
is not in PH, see [CP23c, §10] for an overview.
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7. Young tableaux

We adopt the standard and largely self-explanatory notation from Algebraic
Combinatorics. We refer to [Sag92, Sta99] for both notation and the background.
Unless stated otherwise, we use unary encoding for all partition and integer param-
eters throughout this section. For convenience, we are using notation f <x g to
mean that (g — f) € #P.

7.1. Standard Young tableaux. Let f* = |SYT()\)| be the number of
standard Young tableaux of shape A - n. Recall the hook-length formula:

1
(HLF) P=n ] —
(i.)EN h)\(lvj)
where hy(i,j) = A\i + A; —i —j + 1 is the hook-length in A\. This implies that
f* € FP. Consequently, we have that n!/f* € FP and (f*)? <y n!

Similarly, let f*/# = |SYT(\/u)| be the number of standard Young tableaux
of skew shape A\/u, where |A/u| = n. Recall the Aitken—Feit determinant formula:

N 1 )
(AFDF) AV =nl det( — )
(Xi =y =i+ J)!
which proves that f* € FP. Consequently, we have that f*/# <y n!
Now, it follows from the Naruse hook-length formula (NHLF) that

(®) AL MG = nl,

(6,5)EX/ 1
see [MPP18b]. Note that this is a much sharper bound than the one given by the
Bjorner—Wachs inequality (see §6.1).

With Morales and Panova, we gave several proofs of the NHLF and its gen-
eralizations, both algebraic and combinatorial [MPP17, MPP18a]. A recursive
proof is given by Konvalinka [Kon20]. Finding a direct combinatorial proof which
allows efficient sampling from SYT(A/u), perhaps generalizing the NPS bijection or
the GNW hook walk, remains an important open problem, see e.g. [H+23, §5.6].

ij=1

Conjecture 7.1. Inequality (®) is in #P.

Remark 7.2. Even the simplest special cases of (®) are hard to establish directly. For
example, rotate diagram A by 180° and denote by A\* be the resulting skew shape. Let
hi(i,7) ==+ j — 1 be the hook-lengths in A*. Inequality (®) in this case follows from
(®®) H h(ab)(i7j) = H hi(l,.]) Z H h)\(ivj)7
(4,4)EX* (i,5)EX (4,5) €A
where a = A1 and b = 4()\), see [MPP18b, Prop. 12.1]. A direct combinatorial proof of

(®®) is given in [PPS20]. This proof uses Karamata’s inequality that is not in #P in
full generality, see [IP22, §7.5].

7.2. Semistandard Young tableaux. Let Ky, = |SSYT(A, )| be the Kostka
numbers, where A, u = n. The inequality Ky, <u Kxi» = f* is easy to show di-
rectly. Much more interesting is the following generalization.

Let @ = (a1,...,a¢) and b = (by,...,by) be two weakly decreasing vectors.
We say that a majorizes b, write @ > b, if ay +...4+a; > by + ...+ b; for all
1<i</l and a1 +...+ar=b1+...4+bs. Recall that K, < Ky, for all p> v.
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Proposition 7.3. K, <y K, forall p>v.

Although not stated in this language, the proof follows easily from the combi-
natorial proof in [Whi80]. Here we are using the following trivial observation: if
fis---y fx € #P for k = poly(n), then f1+ ...+ fi € #P.

Finally, let \,«, 3,7 F n be such that o > S > v and o+ v = 25. Kostka
numbers then satisfy log-concavity property given by the HMMS inequality: K3 52>
K)\QKA,Y [H+22, Thm 2]

Open Problem 7.4. The HMMS inequality is not in #P.

The original proof of the HMMS inequality is based on the Lorentzian property
of Schur polynomials. Solving the open problem would give an early indication
in favor of Conjecture 5.3, since the log-concavity of forest numbers {F(G,k)} is
proved in [BH20] based on the same general approach.

Remark 7.5. The Dominance order “>” is motivated by a technical part in the proof
of the Young symmetrizer construction, see e.g. [Weyl39, §IV.2] and [Sag01, §2.4], and
reflects the inherent planarity of Young diagrams. The algebraic proof of Proposition 7.3
given in [LV73] is based on iterative calculations.?® We note that [Ver06] emphasizes the
importance of the identity

Sn . Sn
(A) 1TSM><SH2><~< m sign Tsmxsugx =St

(see also [May75]). This is a curious byproduct of the dominance order and its reverse.

7.3. Contingency tables. Let T (A, i) be the set of contingency tables, de-
fined as nonnegative integer matrices with rows sums A and column sums p. Denote
by T(A, p) == |T(A, p)| the number of such tables. Note that Ky, <u T(A,u),
where the injection sends A € SSYT(A, ) into a matrix (m;;) € T (A, 1), where
m;; is the number of letters j in i-th row of A.

Barvinok’s inequality [Bar07], states that T(\, u) < T(v,7) for all A > v and
e

Proposition 7.6. Barvinok’s inequality is in #P.

There are two natural proofs of Proposition 7.6. First, following the original
proof in [Bar07, p. 111], one can use the RSK correspondence, which is poly-time
by definition. This gives T(A, ) = > KrxKr, and then use Proposition 7.3. We
then need to use the inverse RSK correspondence, which is also poly-time. A more
direct (still rather involved) approach is outlined in [Pak19].%”

Remark 7.7. We note in passing that the log-concavity property for contingency tables
remains open. Formally, let A\, «,8,7 b n be as in the HMMS inequality (see §7.2).
Barvinok asks if T(\, 8)? >” T(\, a) T(),7), see [Bar07, p. 110].

26Dennis White kindly informed us that he meant [LV73] as a missing reference [4] in
[Whiso].

27TA crucial part of the injective proof of both White’s and Barvinok’s inequality is the
parenthesization construction by Greene and Kleitman, see [GK76] and [GKT78, §3] (see
also [dB+51]).
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7.4. Littlewood—Richardson coefficients. Let cﬁu be the Littlewood—Richardson
(LR) coefficients, where A+ n, ut k and v - n — k. Standard combinatorial in-
terpretations for LR coefficients imply:

G fUIY <y fAand e, [ <y () UV

We refer to [Ker84, Whi81, Zel81] for the motivational explanation on how to
derive these inequalities from the RSK correspondence or via the jeu-de-taquin
correspondence. Taking their product gives (cfw)2 < (2), as was recently observed
in [PPY19, §4.1]. We call this the PPY inequality.

Open Problem 7.8. The PPY inequality is not in #P.

As we discussed earlier, the problem could be resolved either by a direct injec-
tion proving the PPY inequality, or by giving an explicit combinatorial interpreta-
tion for (Z) — (cﬁu)?

The remarkable Lam-—Postnikov-Pylyavskyy inequality [LPPOT] states that:?®
(LPP) A, <

nwr — FuNVv pAv o

where © Vv and pu A v denote the union and the intersection of Young diagrams.
The original proof is heavily algebraic and does not seem to give a clue on how this
can be proved injectively, see [BBROG] for some special cases.

Open Problem 7.9. The LPP inequality is not in #P.?°
Note a closely related Bjorner’s inequality:
()P (e,
where |p| = m, |u| + |v| =n and |p Av| =r [Bjoll, §6]. It follows by summing

over all A\ - n, of (LPP) multiplied by f*. Of course, Bjérner’s inequality is in FP
and follows from the HLF.

7.5. Inverse Kostka numbers. Denote by K = (KM) the Kostka matriz.
Ordering all partitions w.r.t. the size n = |\| = |u| and the majorization order “>”
and using K = 1, we conclude that the matrix is upper triangular and thus has
an integer inverse. Denote by K ' = (K;Ml) the inverse Kostka matriz, and by

K;,} the inverse Kostka numbers.

Egecioglu and Remmel [ER90] showed that K ;: has a signed combinato-
rial interpretation as a sum over certain rim-hook tableaur (RHT) of shape A and
weight p. It follows from the construction that K ! is in GapP = #P — #P. Direct
involutions proving validity K-K ' = K. K = I were given in [ER90, LMO06).
Other signed combinatorial interpretations are given in [Duan03, PR17].

Conjecture 7.10. The function |K;Ml| is not in #P.

28The actual LPP inequality in [LPP07] is more general and written in terms of skew Schur
functions.

29We state both open problems in the negative largely because we would much rather see
negative solutions than positive. Unfortunately, at the moment there is very little evidence in
favor of either direction.
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In other words, the conjecture claims that the absolute value of the inverse
Kostka numbers does not have a combinatorial interpretation. Thus, a signed sum
over combinatorial objects is the best one can have. Further motivation behind the
conjecture will become clear in the next section.

8. Characters

In this section we discuss complexity problems related to S, characters. As
before, n and all partitions are given in unary.

8.1. The values. Let x*(1) denote the character value of the irreducible S,,
module S* on the conjugacy class [u], where A, i = n. The Murnaghan-Nakayama
(MN) rule, see e.g. [Sag92, §4.10] and [Sta99, §7.17], gives a signed combinatorial
interpretation for x*(u) as a sum of signs over rim-hook tableauz RHT(A, i) of
shape A and weight p. Similar to the inverse Kostka numbers, it follows from the
construction that function x : (A, u) — Z is in GapP = #P — #P.

Does there exist a combinatorial interpretation of the character square (X)‘ (u)) %9
This is an interesting question, and the answer is even more interesting. On the
one hand, the answer is yes when p = (k™/*) is a rectangle. In this case, all rim-
hook tableaux in RHT (A, ) have the same sign, see e.g. [JK81, §2.7] and [SW85],
so (x* (,u))2 = |RHT(\, 1)|? has a combinatorial interpretation as the number of
ordered pairs of rim-hook tableaux.?’

On the other hand, in full generality we have:

THEOREM 8.1 ([IPP22]). If (x)? € #P, then coNP = C_P and PH = X}.

In other words, it is very unlikely that character square has a combinatorial
interpretation, assuming the polynomial hierarchy does not collapse to the second
level.

Remark 8.2. Following [IPP22], one way to understand the implications of the theorem
is to compare two identities:

nl — Z (Xx(l))Q and n! = Z (XA(TK‘))Q, for all A+ n.

AFn TESy

The former is the Burnside identity since x*(1) = f*, and follows from the RSK corre-
spondence. The latter is the character orthogonality formula, and the theorem explains
why there is no natural analogue of the RSK correspondence in this case. Simply put, the
terms on the right are not actually counting any combinatorial objects.3?

8.2. Row and column sums. In [Sta00, §3], Stanley defines
ay = Z xMp) and by = Z x*(A), where AFn.
puEn puEn

which he calls row sums and column sums in the character table, respectively. It
is known that by = [{w € S,, : w? = o}|, where o € [A] is a fixed permutation of

301n fact, it follows from [FS98, SW85] that {IRHT(A, )|} € FP in this case.
31There is, however, an involutive proof of both character orthogonality relations based on
the MN rule [Whi83, Whi8&5].
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type A, see e.g. [Sta99, Exc 7.69] and [Mac95, Ex. 11, p. 120].3? Thus, the column
sums are in #P. One can ask a similar question about the row sums.

First, we note that a), > 0 for all X33 This follows from the fact that
ax = (pn,X"), where p, is the character of the conjugation representation, see
e.g. [Sta99, Exc 7.71].3

Conjecture 8.3 (cf. Problem 12 in [Sta00]). Row sums {ax} are not in #P.

In fact, there are very few cases when a combinatorial interpretation of ay is
known. For example, a¢,y = p(n) and agny = {A Fn : A = N}, see [BE16,
Prop. 1]. Proving the conjecture would represent a major advance in the area, as
we explain below.

Remark 8.4. The total sum of the entries in the character tables of S, is a sequence
of interest in its own right, see [OEIS, A082733]. So is the determinant of the character
table, see [Jam78, Cor. 6.5] and [OEIS, A007870], and even the permanent [SS84].

8.3. Refinements. Denote by p#(0) := {w € [p] : wo = ow}|, where [u] C
Sy is the conjugacy class of permutations of type p = n. In other words, p# is
the character of the conjugation action on the conjugacy class [u]. From above, we
have p, =3, p". Define refined row sums ax, = {p"*,x*) € N, and note that

ax = Zpl—n A -
Conjecture 8.5. Refined row sums {ax,} are not in #P.
Clearly, the proof of Conjecture 8.3 implies the same for Conjecture 8.5. We

warn the reader that it does not follow from definition that {ay,} € GapP. Indeed,

the definition states
1

n!

S 0) W)

wWESH

axe = (P x*) =

Even though the terms on the RHS are in #P, there is no obvious way to divide
the sum by n! The claim is true nonetheless, as we explain later in this section.

Toward the open problem, it was proved by Kraskiewicz and Weyman [KW01]
(see also [Sta99, Exc 7.88b] and [RW20, §3]), that

(KW) axm) = |[{A€SYT(A) : maj(4) =0 mod n}|,

where maj(A) denotes major index of A. This implies that {ax(,)} € #P. The
following result show how close (KW) gets us to resolving the open problem.

Proposition 8.6 (folklore). Denote by D the set of partitions into distinct parts.
Then
{ax, : € D} € #P. Furthermore, if {ax, : p= (r"/")} € #P, then {ay,} € #P.

Versions of this result are well-known. For completeness, we include a short
proof in §14.2. The proposition implies that to disprove Conjecture 8.3 it suffices
to give a combinatorial interpretation for {a N M/T}.

3214 follows form here that by > 0 if and only if every even part of A has even multiplicity,
see e.g. [BOO04].

337t is known that ay > 1 forall A F n > 2 [Fru86]. For the alternating group Ay, this
strict positivity is proved in [HZO06] by a non-combinatorial (and much shorter) argument. For
other finite simple groups, strict positivity is proved in [HSTZ13|.

34In fact, this approach can be used to show that row sums of characters are nonnegative
integers for all finite groups [Sol61].


https://oeis.org/A082733
https://oeis.org/A007870
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Remark 8.7. Curiously, refined row sums can be defined and generalized using Pélya’s
theory for general permutation groups, see [Whil9, RW20]. This approach leads to a
plethora of numbers in search of combinatorial interpretations, including some of those
in §4.5. From our point of view, this is a good starting place to prove for non-existence of
such combinatorial interpretations in full generality.

8.4. Plethysm coefficients. Denote by py(u,v) the plethysm coefficient,
which can defined in terms of Schur functions as px(u,v) = (su[s.],sx), see e.g.
[Sta99, §7.A2] and [Mac95, §1.8]. Note that the bracket product s,[s,] is non-
commutative and equal to the trace of the composition of irreducible GL-modules
corresponding to p and v: S*(S*V).

Conjecture 8.8 (cf. Problem 9 in [Sta00]). Plethysm coefficients {px(u,v)} are
not in #P.

Computing plethysm coefficients is so exceedingly difficult, there are very few
special cases when they are known to have a combinatorial interpretation. The
formalism in [LR11, §4] implies that {px(u,v)} € GapP.??

The refined character sums can be expressed in terms of plethysm coefficients:

ax(mry = pa((k),pt™) = Z ay (m) Px((k), v),
vkEm
where A F n = mk, see e.g. [AS18, Sun18]. By (KW), a combinatorial interpre-
tation for plethysm coefficients py(u, ) when p is a row shape, suffices to disprove
Conjectures 8.3 and 8.5. In summary, we have:

Corollary 8.9. Conjecture 8.3 = Conjecture 8.5. =— Conjecture 8.8.

Remark 8.10. There is a closely related study of multiplicities @y, in the higher Lie
modules, see [AS18, Kly74]. The special case u = (n) is given by

Ax(m) = ‘{A € SYT(A) : maj(A) =1 mod n}‘ ,
see [KWO1]. The results are completely parallel here: it is not known whether {E,\H}

are in #P, and it suffices to resolve this problem in the rectangular case 'd/\(mk), which in

turn reduces to plethysm coefficients px ((k),v). We refer to [AS18, Sun18] for details
and further references.

8.5. Hurwitz numbers. Let u = (p1...,4¢) F n, and let ¢ < 0 be a fixed
constant. Denote by H,, the number of products of transpositions (1, j1) - - - (im, jm) =
w in Sy, such that

o m=2—2+n+p),

o w € S, has cycle type p, and

o ((i1,41),- -+, (im,Jm)) C Sp is a transitive subgroup.

The (single) Hurwitz numbers are defined as hg,, := Hy,/(n — 1)!, see e.g. [GJ97,
LZ04]. Although one can use the Frobenius character formulas to prove that they
are integers, the following result comes as a surprise.

Proposition 8.11 (Folklore). Hurwitz numbers {hg,} are in #P.

35See also [FI20] for the binary case.
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The proof idea goes back to Hurwitz [Hur91], although it takes some effort
to obtain it in this form. We refer to [DPS14, Prop. 1] for an explicit combi-
natorial interpretation via bijection with certain Hurwitz galazies defined by the
authors. The result extends to double Hurwitz numbers which we leave undefined,
see e.g. [GIVO05].

In the minimal case g = 0, Hurwitz numbers have a product formula, and thus
is in FP. The proposition is remarkable since most proofs of this formula are rather
technical, see e.g. an elegant proof in [BS00] which also uses both double counting
and inclusion-exclusion. Notably, we recall Dénes’s beautiful proof of hg,) = n"2
formula for the number of minimal factorizations of a long cycle. See [GY02] for
a bijection in this case.

Remark 8.12. The subject of Hurwitz numbers is quite extensive and ever growing,
so giving comprehensive references is a challenge. Hurwitz numbers naturally arise in
the study of branched covers of CP! in Enumerative Algebraic Geometry, see [CM16,
ELSV99, Oko00, OP09]. We refer to [BS00, DPS14, GJV05, PS02] for a more
combinatorial treatment.

9. Kronecker coefficients

9.1. Reaching for the stars. Let g(\, u,v), where A, u,v F n, denote the
Kronecker coefficients:
1

n!

3 @) N (0) ¥ (o).

oceS,

g\ 1) = OO YY) =

By definition, g(\, 4, v) € N. Whether it has a combinatorial interpretation remains
a major open problem first posed by Murnaghan [Mur38, Mur56].

Conjecture 9.1 (cf. Problem 10 in [Sta00]). Kronecker coefficients {g(\, p,v)}
are not in #P.

It is known that {g(\, u,v)} € GapP, see [BIO8]. This follows, for example,
from

g\ p,v) = Z Z Z sign(wrr) - T(A+ (1Y) —w, p+(1™) =7, A+(1")—17),
wESy TES,, TES,

where £(\) = ¢, L(p) = m, £(v) = r, and T(a,B,7) is the number of 3-dim

contingency arrays with 2-dim marginals given by (a, 8,7), see [PP17, Eq. (8)].

The same equation implies that {g(A\,u,v)} € FP for partitions with bounded

number of rows: £,m,r = O(1), see [CDW12, PP17].%6

9.2. Where to look. There are several families of examples when Kronecker
coefficients are known.?” These include Blasiak’s remarkable combinatorial inter-
pretation of {g(A, p,v)}, where v is a hook [Blal7] (see also [Liul7]), and an NP-
complete combinatorial interpretation for simplex-like triples (A, p,v) in [ IMW17,
§3]. That contrasts with the following:

36When the encoding is in binary, both GapP and FP claims remain true, but the argument
now requires Barvinok’s algorithm for counting integer points in polytopes of bounded dimension
in poly-time [Bar93].

37For a quick guide to the literature, see e.g. the MathSciNet review of [Bla17] by Christo-
pher Bowman.


https://mathscinet.ams.org/mathscinet/search/publdoc.html?r=1&pg1=MR&s1=3650220
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Conjecture 9.2. Kronecker coefficients {g(A,\,\) : A= X'} are not in #P.

This conjecture is motivated by our inability to improve upon basic bounds
in this case: 1 < g(\,A\,\) < f* for all A = X. Here the lower bound is proved
in [BB04], while the upper bound follows from an observation g(\,u,v) < f
in [PPY19, §3.1]. Even for the staircase shape A = (k,k — 1,...,1) these re-
main the best known bounds. For the square shape, we recently showed a lower
bound g(k*,k* k*) = eQ(VE) [PP23], which is very far from the upper bound
g(k* kR kR) = eO(k*1ogk) that is conjecturally tight.

Remark 9.3. When A = p and v is a two-row partition, we have the following formula
for Kronecker coefficients:

B gAANMm=kR) =3 > (@) = D D ()

akk BFn—k atk—1 BFn—k+1

see [PP14, Lem. 3.1]. Consider the inequality “RHS of (f) > 0”. While different from
the LPP and PPY inequalities in §7.4, it has the same flavor and is sufficiently similar to
be out of reach by direct combinatorial tools in full generality.>®

In a special case when A\ = (mf) is a rectangle, the equality (f) gives:

g(m’,m", (n— k. k) = ["1("), = 1" "),

see [PP13, PP14] (see also [Vall4, Lem. 7.5]). In one direction, this proves unimodality
of g-binomial coefficients (see §4.3). In the other direction, this highlights the obstacle
towards a natural “combinatorial interpretation” of Kronecker coefficients, since proving
this unimodality by an explicit injection is famously difficult.>®

9.3. Taking a step back. Let «, 3,y be fixed integer partitions, not neces-
sarily of the same size. The reduced Kronecker coefficients g(a, 8,7) are defined as
stable limits of Kronecker coefficients when a long first row is added:

(0) gl B,7) = lim g(aln], B[n],7[n]),
n—oo
where «a[n] := (n — |a|,a1,as,...) and n > |a| + a1, see [Mur38, Mur56]. Here

the sequence {g(a[n], 8[n],y[n])} is weakly increasing and stabilizes already at
n > |a|+ 18| + ||, see [BOR11, Val99]. In other words, the reduced Kronecker
coefficients are a special case of Kronecker coefficients for triples of shapes with a
long first row.

The problem of finding a combinatorial interpretation of the reduced Kronecker
coefficients goes back to Murnaghan and Littlewood, and has been repeatedly asked
over the past decades, see e.g. [Kir04, Man15]. Part of the reason is that they
generalize the LR coefficients g(a, 8,7) = c§,, for |a| =8|+ |1/, see [Lit58], and
thus play an intermediate role.

Conjecture 9.4. The reduced Kronecker coefficients {g(«, 8,7v)} are not in #P.

Depending on your point of view, this conjecture is either the harder to prove
or the easier to disprove, compared to Conjecture 9.1.

38When \; > 2k — 1 or £()\) > 2k — 1, a combinatorial description of g\ p, (n =k, k)) is
given in [BOO5].

39With Greta Panova, we gave a cumbersome “combinatorial interpretation” for
g(mé,mé7 (n — k:,k:)) in terms of certain trees, see these slides, p. 9. The proof is obtained

by recursing O’Hara’s g-binomial identity [O’H90].


https://www.math.ucla.edu/~pak/hidden/papers/Panova_Porto_meeting.pdf
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9.4. Questioning the motivation. There are several traditional reasons why one
should continue pursuing the multidecade project of finding a “combinatorial interpreta-
tion” for the Kronecker coefficients. Let us refute the most important of these, as we see
them, one by one.

(1) Estimating the Kronecker coefficients is enormously difficult, especially getting the
lower bounds. One might argue:

Having a “combinatorial interpretation” would be a bonanza for getting good
lower bounds on g(\, u, v).

Sure, quite possibly so. But given the poor state of affairs where in most cases we do
not have any nontrivial lower bounds obtained by any method (cf. [BBS21, PP20a]),
shouldn’t that be a reason to not believe in the existence of a “combinatorial interpreta-
tion”?

(2) Recall the saturation property for LR coefficients states that c’,zf; e > 0 <= c?“, > 0,
for all integer k > 1. The original proof by Knutson and Tao [KT99] crucially relies on
a variation of the LR rule. One might argue:*°

Having a “combinatorial interpretation” could help proving some sort of sat-
uration property for the Kronecker coefficients.

No, it will not. First, the saturation property fails: g(12,1%,1%) = 0 while g(22,22,2%) = 1.
Second, Mulmuley’s natural weakening of the saturation property in [Mull1] also fails,
already for partitions with at most two rows [BORO09]. Third, even for the reduced
Kronecker coefficients, the saturation property fails: g(1°,1°,32) = 0 while g(2°,2°,6%) =
12 [PP20b].4!

(3) The saturation property for the LR coefficients easily implies that their vanishing can
be decided in poly-time using Linear Programming [DM06, MNS12] (see also [BI13]
for a faster algorithm). One might argue:

Even without the saturation property, perhaps having a “combinatorial in-
terpretation” could give a complete description or possibly even an efficient
algorithm for the vanishing of the Kronecker coefficients.

No, it will not (most likely). Here we are assuming that a “complete description” includes
both necessary and sufficient conditions verifiable in poly-time, which puts this problem
in NP N coNP. We are also assuming that an “efficient algorithm” is being in P.

Now, it is already known that the vanishing problem for the Kronecker coefficients is
NP-hard [IMW17], so an efficient algorithm implies P = NP. Similarly, if an NP-hard
problem is in NP N coNP, then NP = coNP. So unless one expects a major breakthrough
in Computational Complexity, this approach will not work.

(4) There are obvious social aspects to problem solving. This is an old open problem,
perhaps the oldest in the area. Famous people worked on it and reiterated its importance.
One might proclaim:

The victor gets the spoils.

40This argument appears frequently throughout the literature in different contexts. See
e.g. [Kir04, Mulll] for many conjectured variations and generalizations of the saturation
property.

“1This was independently conjectured by Kirillov [Kir04, Conj. 2.33] and Klyachko [Kly04,
Conj. 6.2.6]. We disprove the conjecture in [PP20b], by providing an infinite family of coun-
terexamples. It is, however, concerning how little computational effort was made to check the
conjecture which fails for relatively small partitions, yet first disproved by a theoretical argument.
Could there be more conjectures which are not sufficiently tested? Perhaps, the “minor but inter-
esting” Foulkes plethysm conjecture [Sta00, §3] is worth another round of computer testing, see
[CIM17], as its fate may be similar to that of a stronger Stanley’s conjecture disproved in [Pyl04].
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Absolutely! But shouldn’t then proving nonexistence of a combinatorial interpretation be
just as much a “victory” as finding one?*2

(5) Finally, the intellectual curiosity is not to be discounted. The problem is clearly
attractive and has led to a lot of nice results even in small special cases. One might
reasonably argue:
While we may never be able to resolve the problem completely, many inter-
esting results might get established along the way.

Sure, of course. But again, why limit yourselves to working only in the positive direc-

tion?43

10. Schubert coefficients

For notation and standard results on Schubert polynomials, see [Mac91] and
[Man01]. An accessible introduction to combinatorics of reduced factorizations is
given in [Gar02], and the geometric background is given in [Ful97, §10]. A friendly
modern introduction is given in [Gil19]. The presentation below is self-contained
but omits the background.

10.1. RC-graphs. For a permutation w € S,,, denote by RC(w) the set of
RC-graphs (also called pipe dreams), defined as tilings of a staircase shape with
crosses and elbows as in Figure 10.1 which satisfy two conditions:

(i) curves start in row k on the left and end in column w(k) on top, for all
1 <k <n,and

(#1) no two curves intersect twice.

It follows from these conditions that every G € RC(w) has exactly inv(w) crosses.

For G € RC(w), denote by & the product of z;’s over all crosses (i,j) € G,
see Figure 10.1. Define the Schubert polynomial &,, € N[z1,2o,...] as**

Sy(x) = Z zC.

G €RC(w)

For example, S1430 = 717273 + 2303 + 125 + 2323 + 2322 as in the figure. Note
that Schubert polynomials stabilize when fixed points are added at the end, e.g.
G432 = G14325. Thus we can pass to the limit &,,, where w € S, is a permutation
N — N with finitely many nonfixed points.

Polynomials {&,, : w € So} are known to form a basis in the ring Z[z1, xo, .. .].
Schubert coefficients are defined as structure constants:

GGy = ) b6,

WESoo

It is known that ¢, € N for all u,v,w € S .

42For more on this argument, see our blog post “What if they are all wrong?” (Dec. 10,
2020), available at wp.me/p211iQ-uT

43As the renowned 19th century British philosopher the Cheshire Cat once said, “it doesn’t
much matter which way you go”, you will definitely get somewhere “if only you walk long enough”
[Car65, Ch. VI].

44The usual definition of Schubert polynomials is algebraic, making this definition a crucial
result in the area, see [BB93]. Let us mention other combinatorial models of Schubert polynomi-
als: compatible sequences [BIJS93] and bumpless pipe dreams [LLS21]. See also [GH23] for the
bijections between them.
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FIGURE 10.1. Graphs in RC(1432) corresponding to the monomi-
als mywox3, 23, 1122, 2313 and x?x4, in this order.

Conjecture 10.1 (cf. Problem 11 in [Sta00]). Schubert coefficients {c, : u,v,w €
Soo} are not in #P.

For Grassmannian permutations (permutations with one descent), Schubert
polynomial coincide with Schur polynomials, so Schubert coefficients generalize
LR coefficients. This is a starting point of a number of further generalizations, see
[Knul6, Kog01, MPP14].

10.2. Schubert—Kostka numbers. For a permutation w € S,, and an inte-
ger vector a € N, the Schubert-Kostka number Ky, := [£*] &,, is the coefficient
of a monomial in the Schubert polynomial. By definition, {K,,,} € #P.

Proposition 10.2 (Morales®®). Schubert coefficients {c¥, : u,v,w € Sx} are in
GapP.

PRrOOF. Let 0 € S,, and let p, :=(n—1,...,1,0) € N”. Define
Qo) = {(a,b,c) € (N")® : a+b+c=0p,}.
It was shown by Postnikov and Stanley in [PS09, Cor. 17.13], that

el = sign(o) Kyo Kyp Kye -
D DD (o)

oSy (a,b,c) € Q(o)

Separating positive and negative signs shows that {c% } € #P — #P, as desired.*6
O

Following [PS09, §17], define the Schubert—Kostka matriz K= (Kua), which
naturally generalizes the Kostka matrix K = (K ku)' Similarly, define the inverse

—~—1

K = (Ka_ul) which generalizes the inverse Kostka matrix K ' = (K;Ml)

Proposition 10.3. The inverse Schubert-Kostka numbers {K;} : a € N®, u €
S} are in GapP.

Similarly to the previous proposition, the result follows directly from the iden-
tity in [PS09, Prop. 17.3]. One can ask if the absolute values {|K ! |} are in #P.
Conjecture 7.10 implies that the answer is negative, but perhaps this more general
problem is an easier place to start.

45 Alejandro H. Morales, personal communication (2016).
460ne can also use Monk’s rule (see e.g. [Gil19]), to obtain the same result. We thank Alex
Yong for this observation.
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10.3. Has the problem been resolved? There are two issues around Conjec-
ture 10.1 worth mentioning, as both, in different ways, suggest that the conjecture has
already been resolved in the negative (i.e. a combinatorial interpretation has already been
found).

First, Izzet Coskun in [Cos+]| claimed to have completely resolved the problem of
finding combinatorial interpretations for Schubert coefficients*” using the technology of
Mondrian tableauz.*® Earlier, he used Mondrian tableaux to give a combinatorial interpre-
tation for step-two Schubert coefficients (corresponding to permutations with at most two
descents) in [Cos09] extending Vakil’s earlier work [Vak06], see a discussion in [CV09].

Unfortunately, paper [Cos+] has not been peer reviewed and has been largely ignored
by the community (see [Bil21] for a notable exception).*® We should mention that the
state of art recent work [KZ17] gives a tiling combinatorial interpretation for the step-
three Schubert coefficients. It seems, we are nowhere close to resolving Conjecture 10.1 in
full generality.

Second, Sara Billey suggested in [Bil21], that Schubert coefficients already have a
“combinatorial interpretation”, since by definition they are equal to the number of irre-
ducible components in certain intersections of three Schubert varieties,?® and thus “they
already count something”. Can one create a #P function out of this definition?

While it is true that Schubert coefficients count the number of certain points in C",
these points are not necessarily rational. In fact, they are usually roots of a large sys-
tem of rational polynomials. On the other hand, Billey and Vakil prove in [BV08, §4],
that there are some remarkable pathologies for these intersections related to realizabil-
ity and stretchability of pseudoline arrangements. It follows from the Mnév universality
theorem [Mnév88] (see also [Shor91]), that these problems are IR-complete.>!

The 3R complexity class is in PSPACE and not expected to have polynomial size
verifiers. This suggests that in the worst case, Billey’s approach needs a superexponential
precision with which one would want to compute the intersection points (i.e. the floating
point computation needs superpolynomially many digits), implying that it is unlikely that
there exists a poly-time verifier in this case.

The issue is not too different from that of Kronecker coefficients, which can be written
as g(\, p,v) = dim (SA RSt ® S")S”‘ Thus, one can argue that they count basis vectors
in this space of invariants. But since the Kronecker coefficients can be exponential in n,
see e.g. [PPY19], how would one present such a basis so it can be verified (or at least
read) in poly-time?>?

10.4. Elements of style. There are both cultural and mathematical reasons why
the type of issues we discuss in §9.4 do not apply to the study of Schubert coefficients,”3
so let us quickly address the differences.

Schubert polynomials were originally introduced by Lascoux and Schiitzenberger in
1980s in the geometric context, see [Las95]. They remain deeply entrenched in the area

47This paper is undated, but cited already in [CV09].

48These are aptly named after a Dutch painter Piet Mondrian (1872-1944), who developed
his signature style in the “tableau” series in 1920s, and did not live to see his work’s influence in
Schubert calculus.

49The author has maintained that the paper is “currently under revision”. Meanwhile, no
public statements have been made by experts in the field regarding the accuracy of the work or
the provision of a counterexample. We find this state of affairs extremely unfortunate.

50Equivalently, this is the number of points in a generic intersection of three Schubert
varieties.

51Gee e.g. [Schal0] for a computational complexity overview of the existential theory of the
reals (3R), and connections to Mnév’s theorem.

52We thank Greta Panova for suggesting this comparison (personal communication).

53For the generalized saturation problem in this case, see [ARY13] (see also [Buch02, §7]).
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which offers a melange of tools nonexistent on the combinatorial and representation the-
oretic side. Arguably, this resulted in a deeper study with a long series of achievements,
too long to outline in this survey (see e.g. [Knu22]).

By now, the Schubert theory outgrew the “combinatorial interpretation issue” as its
raison d’étre. Arguably, the area was always about developing the theory to understand
the geometry of flag varieties from a combinatorial point of view (cf. [LS85]).

This brings us to the curious case of puzzles, a type of tilings on a triangular lattice
with labeled edges (see e.g. [Knul16]).>* Aesthetically pleasing for sure, is there some
additional value such combinatorial interpretation bring to the study?

To us, the answer is a mixture. On the one hand, when the set of tiles is finite they
clearly define a combinatorial interpretation.’® Having a nice or highly symmetric set of
tiles can be convenient to prove structural results about vanishing and other properties of
the numbers, cf. [KT99].

On the other hand, there is nothing surprising in the labeled tiles from the com-
putational point of view. By adding new labels, one can always break them into single
triangles, which can then be viewed as a variation on Wang tiles [Wang61]. The latter
can also be broken into triangles leading to the same model of computation. Wang’s cel-
ebrated insight is that such tilings are just as powerful as Turing machines. In fact, the
example of Wang tilings with the boundary was one of Levin’s six original NP-complete
problems [Lev73|.

And yet, there is a clear computational difference between various types of increasing
tableaux (such as set-valued tableaur) vs. puzzles. While the former need some memory
to check which numbers appear, the latter can be verified by checking only local label
conditions (think of finite state automata), making the puzzles (slightly) less powerful as a
computational model.?® Part of the weakness here comes from the fixed triangular region
space requirement, further constraining the puzzle tiling model.?”

11. The magic of the symmetric group

Before we can explain why, in our view, so many numbers in Algebraic Combi-
natorics are not in #P, we need to deconstruct the wonderful world of the symmetric
group. Only after reducing all the great features to just one, we can fully appreciate
its power as well as its limitation.

11.1. Pruning down the list. We start with representation theoretic point
of view, demystifying some of the magic. All these results are routine and well
known, so we restrict ourselves to quick pointers to the literature.

(a) f*|n! This is non-specific to S, since the dimension x(1) of an irreducible
character of a finite group G always divides the order |G|, see e.g. [Ser77, §6.5].

(b) {f*} € #P. This is a consequence of x* ingl having a simple spectrum, i.e.
multiplicities at most one. Irreducibles in the restriction (given by the branching

54For other models and combinatorial interpretations in this context, see an overview in
[RYY22, §1.3].

55Qccasional infinite sets tiles can be reduced to a finite set by breaking them apart and
adding colors.

56Note that giving a combinatorial interpretation in a weaker computational model is a
stronger result.

57In [GP14], we exploited this model by constructing sets of Wang tiling which simulated
several classical sequences such as the Catalan numbers. Our model uses a large number of square
tiles, just like [KZ17] which uses 151 triangular pieces.
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rule) correspond to removing a corner from Young diagram A. Iterating the restric-
tions along the subgroup chain S, D S,_1 O ... D S; implies that f* = |SYT())],
cf. [OV96].

(©) Yam, (fY)?=n! This is non-specific to S,,. Burnside’s identity > x(1)? =
|G| holds for all finite groups, cf. Remark 8.2.

(d) x*(u) € Z.  This follows from a property of conjugacy classes of S,,, that
o € [u] for every o € [u] and (k,ord(c)) = 1, see e.g. [Ser77, §13.1]. See also §8.2
for references to row and column sums of character tables of general finite groups.

(e) {Irreps of S,,} <— {Irreps of GL(N)}.  This is a direct consequence of
the Schur-Weyl duality: S, x GL(N) act on (C)®" and the action has simple
spectrum S* ® V, of tensor products of corresponding irreps, see e.g. [FH99, §6.2].

(f) {Kx.} € #P. This is a direct consequence of the highest weight theory for
GL(N). Indeed, the induced product for S,, reps corresponds to the tensor product
of GL(N) reps, via (e). Now use the definition Ky, = <X)\a 1 ngl XSy X >

(9) {f*} € FP.  This extension of (b) is a consequence of dimensions dim(V})
of GL(N) irreps given by a product. The latter is computed as a ratio of two
Vandermonde determinants. The product formula for f* = dim(S*) follows by
taking the limit, see e.g. [Sta99, §7.21].58

11.2. Hook-length formula. The results above are both fundamental in the
area and have conceptual proofs explaining away some of the magic. The hook-
length formula (HLF) (see §7.1) may also seem fundamental at first, until one
realizes that all proofs are a byproduct of calculations highly specific to symmetric
groups. Here is a quick overview of the proofs:

o Direct cancelation proof via the product formula in §11.1(g), see the original
proof in [FRT54], see also [Sta99, §7.21].

o NPS bijection [NPS97], an intricate argument seemingly based on the jeu-
de-taquin, but neither using its properties nor originally motivated by it (see e.g.
[Sag01, §3.10]).

o Hillman—Grassl bijection [HGT6], see also [Kra99a] (plus a limit argument, see
e.g. [Pak01]), an elegant bijection that is equivalent to RSK, see [Gan81], [PV 10,
§6.5] and [VW83, §5].

o Geometric bijection (plus a limit argument) in [Pak01], obtained as a decon-
struction of RSK via local transformations (cf. [Hop14]).

o Lagrange interpolation inductive arguments, see [Ban08, GNN04, Kir92, Ver92].
These are elementary analytic proofs which require the most calculation.

o GNW hook walk [GN'WT9], a ingenuous argument which embeds the Lagrange
interpolation inductive argument in probabilistic disguise as shown by Kerov [Ker93].
o Inductive proof via bijection of the branching rule in [CKP11], obtained as a
combinatorial deconstruction of the GNW hook walk argument, cf. [Zei84].

o Naruse HLF [MPP17, MPP18a], an advanced generalization of the HLF which
easily implies it (see also [Kon20]). All currently known proofs are technically
involved.

581f you are unsurprised by this result, try answering if dimensions of Sp(2n,q) irreps are
in FP. What about other simple groups of Lie type? Let me know what you figure out.
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Neither of these proofs explains the HLF on a deeper level, since each of them either
has a substantive computational part, or outsources the computation to RSK and
its relatives.

11.3. Robinson—Schensted—Knuth correspondence. We argue that the
RSK is the one true miracle in the area. Let us count some of the ways it emerges,
in historical order:

o The (original) Robinson—Schensted algorithm, later extended by Knuth [Knu70].
o The Burge correspondence [Bur74] (see also [Ful97, §A.4.1]).

o The Hillman—Grassl correspondence [HGT6] (see above).

o Schiitzenberger’s jeu-de-taquin [Schii77] (see also [Sag01, §3.7]).

o Viennot’s geometric construction [Vie77] (see also [Sag01, §3.6]).

o Quantum version of Désarménien’s straightening algorithm [Dés80], see [LT96].
o Steinberg’s unipotent variety approach [Ste88] (see also [VLO0O]).

o Fomin’s growth diagrams approach [Fom95] (see also [Sta99, §7.13]).

o Benkart—Sottile-Stroomer tableau switching [BSS96].

o Our geometric bijection [Pak01] (see above).

o Lascoux’s double crystal graphs version [Las03].

o The octahedral map [KTWO04, DKO05b] (cf. [DK08, HK06, PV10, Spe07)).

There are many more versions of RSK — these are just the ones we find most
interesting. There are also numerous extensions, generalizations and applications
both in and outside of the area. Let us now clarify some items on this list.

Some of the bijections above, such as the geometric construction by Viennot
and the double crystal graphs by Lascoux, are restatements of RSK into a different
language. Several others require a serious proof that they coincide with RSK,
e.g. the Hillman—Grassl correspondence and the jeu-de-taquin. In a difficult case,
Désarménien’s straightening algorithm is similar but not equal to RSK, but the
quantum versions do coincide.?”

In [PV10], we set up a technology which allow one to prove that various maps
in the area are in fact linear time reducible to and from the RSK. This allows
us to put the Schiitzenberger involution, the tableau switching and the octahedral
recurrence on the list.

Now is the time to ask a key question: Given so many different approaches to so
many different problems, why do they result in the same bijection? There is a formal
mathematical reason to explain coincidences between any two RSK appearances.
The explanations could be algebraic or combinatorial, but neither would resolve a
question given the multitude of instances.

The answer is simple and unambiguous. It does not really matter what is the
deep reason behind the RSK, whether it is the highest weight theory, the straight-
ening algorithm or something else. What matters is that each RSK appearance is
a shadow of one fundamental result that is yet to be formalized. This suggests we

59This similarity puzzled Gian-Carlo Rota, who asked for years to find a connection, see e.g.
[BTO0O0]. The mystery was eventually resolved by Leclerc and Thibon in [LT96], who noticed that
sometimes the leading coefficient in the straightening is “incorrect” because of the cancellation
which disappear when ¢ # 1. We recall Rota’s great joy upon learning of this discovery. See also
[GL21] for another closely related connection.
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treat RSK as the one true miracle which causes much of what we consider magical
about the symmetric group.

11.4. LR rule. Consider the Littlewood—Richardson coefficients and its many
combinatorial interpretations (see e.g. [vLO1] for an extensive albeit dated survey):

o The original LR rule: ¢}, = |LR(A/p,v)|, see [LR34].

The LR variation: ¢, = |LR(po v, N)], see e.g. [RW84].

James—Peel pictures [JPT9], see also [CS84, Zel81].

Gelfand—Zelevinsky interpretation using Gelfand-Tsetlin patterns [GZ85].
Leaves of the Lascouz—Schiitzenberger tree [LS85].

Kirillov—Reshetikhin rigged configurations [KR88] (see also [KSS02]).
Berenstein—Zelevinsky triangles [BZ92].

Fomin—Greene good maps [FG93].

Nakashima’s interpretation using crystal graphs [Nak93| (cf. [BS17, §9]).
Littelmann’s paths [Lit94].

Knutson—Tao hives [KT99], see also [GP0O].

Kogan’s interpretation using RC-graphs [Kog01].

Buch’s set-valued tableauz [Buch02].

Knutson—Tao-Woodward puzzles [ KTWO04].

Danilov—Koshevoy arrays [DKO05a].

Vakil’s chessgames [Vak06].

Thomas—Yong Ss-symmetric LR rule [TYO0S].

Purbhoo’s mosaics [Pur08] (see also [Zin09]).

Coskun’s Mondrian tableaur [Cos09).

o Nadeau’s fully packed loop configurations in a triangle [Nad13] (cf. [FN15]).
The list above is so lengthy, it is worth examining carefully. Most of these LR rules
are byproducts of (often but not always, successful) efforts to find a combinatorial
interpretation of more general numbers. Some of these are closely related to each
other, while others seem quite different, both visually and mathematically.

Now, on the surface the RSK is nowhere in the picture. We already mentioned
[Ker84, Whi81, Zel81] which make the connection explicit, but here is a quick
outline of how to get the original LR rule.

Start with a skew shape A/u, and run the jeu-de-taquin on SYT(A/u). The
number of times each A € SYT(v) is the image jdt(SYT(A/p)) is exactly c,, for
all A and v.°° Taking the lex-smallest such A (obtained by reading squares of v
left-to-right as commonly done), gives a combinatorial interpretation ¢, = {B e
SYT(A/u) : jdt(B) = A}|.

While the above combinatorial interpretation suffices to show that {cﬁy} €
#P, minor adjustments can be made to beautify the resulting rule. First, note
that preimage of squares in every row of A cannot be in the same column of
B = jdt_l(A), so we can relabel A by placing 7 in the squares of i-th row. We
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60No‘ching in this claim is obvious: from the fact that jeu-de-taquin is well defined (indepen-
dent on the order of moves), to the fact that preimage sizes are equinumerous and equal to c;)l,,
see e.g. [Sta99, App. 1 to Ch. 7].
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get a unique Ay € SSYT(v,v). Now, the preimage in LR(\/p, v) := jdt~'(A4g) C
SSYT(A/u,v) can be described using the ballot condition,’' giving the usual de-
scription of LR(\/u,v).%2

We emphasize that RSK is omnipresent in the LR study [vLO1]. It helps to
approach this historically (we will try to be brief). The LR rule was introduced
in [LR34]. Soon after, Robinson introduced the first version of RSK in his (incom-
plete) effort to prove the original LR rule [Rob38]. As James describes in [Jam87],
the LR rule “is much harder to prove than was at first suspected.”%?

Macdonald [Mac95, §1.9] credits Schiitzenberger [Schii77] and Thomas’s the-
sis [Tho74] with first complete proofs. Both were obtained in the context of RSK
and its relatives. Since then, many proofs of the LR rule were discovered, too many
to be cited here, all related to RSK relatives (ibid.) We single out the proof in
[KTWO04] based on the associativity property given by the octahedral map, and a
geometry inspired proof in [BKTO04] based on the jeu-de-taquin. Note that both
use properties of RSK relatives.%

Given that the role of RSK is often invisible without carefully examining the
proofs of the LR interpretations above, this brings us to the following question: Are
these “combinatorial interpretations” of LR coefficients equivalent in some formal
sense?

11.5. Little boxes all the same.’® There are several ways to formalize the
question above. First, note that all “combinatorial interpretations” above are naturally
in #P, with the exception of crystal graphs which can have exponential size;°¢ the issue
can be fixed if one follows the bijection in [NS11].

Second, all of these combinatorial interpretations are related to the original LR rule via
a sequence of explicit poly-time bijections. For example, the LR tableaux are in bijection
with: hives and BZ triangles [PV 05], crystal graphs [NS11], Mondrian tableaux [Liul0],
etc. This is unsurprising, perhaps, compared with parsimonious reductions between many
#P-complete problems such as the number of 3-colorings and the number of Hamiltonian
cycles, see e.g. [Pap94b, §18].

More surprising is that with few notable exceptions these bijections have linear time
complexity. For example, when there is a natural presentation as integer points in poly-
topes, these polytopes are essentially the same and the bijection is given by a special
linear map, see [PV05]. This holds for LR tableaux interpreted as GT patterns, as well
as for hives, BZ triangles and DK arrays, where the natural presentation is binary, see
[DP16, PVO05].

61The ballot condition is often called “lattice” or “Yamanouchi” depending on the context
and how the tableau is being read. The differences between these are inconsequential.

62The LR variation can be obtained in the same way, by doing jeu-de-taquin to SYT(u o v)
and looking at a preimage of A € SYT(X). The difference is that after relabeling, all tableaux
in jdt~1(Ag) € SSYT(p o v, \) have the same filling of v, which can then be omitted from the
description. The result if the subset of SSYT(u, A/v) with a v-ballot condition.

63See also his famous “get men on the moon” sentence [Jam87, p. 117] (also quoted
in [Mac95, p. 147]).

646t us also mention the involutive proofs of variations on the LR rule: [BZ88, Gas98,
RW98, Ste02]. As far as we can tell, these are essentially the same “verification type proofs”
stated in different languages.

65See Malvina Reynolds Sings the Truth, Columbia Records, 1967, CS9414.

66 Arguably, moving from the LR tableaux to crystal graphs trades conciseness for elegance,
in roughly the same way as moving from standard Young tableaux to vectors in the Young basis.
While crystal graphs can be inspirational and amenable to generalizations, ultimately all such
results can be obtained in the language of LR tableaux (cf. [Gall7]).
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It is thus most surprising, that RSK is behind so many other combinatorial interpre-
tations, the bijection LR(A/u,v) — LR(u o v, ) being the most natural such example.
Recall the (algebraically obvious) fundamental symmetry cf“, = cf,‘m which is not trans-
parent on the LR tableaux or the highly symmetric BZ triangles. Nor does it follow from
integer points in polytopes of GT patterns since the GZ polytopes are asymmetric. In
other words, proving |LR(M/p,v)| = |LR(\/v, u)| bijectively is rather nontrivial, and
indeed is linear time equivalent to computing the RSK map as proved in [PV10].

Applying the fundamental symmetry can double the number of combinatorial inter-
pretations, each time leading to a nontrivial bijections, see e.g. [ACMO09] for puzzles and
[TKA18] for hives.5” It follows from [PV10], that the RSK is behind them all. One
can argue that the S3-symmetric LR rule already has the fundamental symmetry “embed-
ded” into the rule. But the way the rule is constructed, to verify that the combinatorial
interpretation is valid one needs to perform the RSK.

Let us mention an experiment we made in [PV10, §7], where we used ingredients
from different bijections to cook up four (!) bijections proving the fundamental symmetry
for LR tableaux. In the scientific method style, we conjectured all four to be identical
without much of any checking [PV10, Conj. 1]. This conjecture is now completely proved
by a combination of results in [DKO05a] and [TKA18]. We followed the same approach
to conjecture that two versions of the octahedral map coincide [PV10, Conj. 3]; this was
later proved in [HKO06].

Finally, we note a negative sort of evidence: as soon as one needs a different kind of
combinatorial interpretation for the LR coefficients which does not involve the RSK, noth-
ing emerges. This is why both Open Problems 7.8 and 7.9 are so challenging, cf. §9.2(1).

11.6. What gives? Combinatorics of the symmetric group is so vast, it is easy to get
lost. There are thousands of papers, hundreds of bijections, and dozens of combinatorial
interpretations which we cannot possibly mention here for the lack of space and limited
lifespan. And yet, we claim that there is a unifying principle for a large part of the field.

Fundamentally, the Algebraic Combinatorics is the study of bases in symmetric spaces
via combinatorics of transition matrices between them. The dimensions of these symmet-
ric spaces tends to be exponential (think S, irreps, tensor powers, cohomology ring of
Grassmannians, etc.) Thus, we need to be able to handle not only the exponential size
bases, but also the exponential size of vectors in these bases.

In fact, most natural bases of these spaces do have vectors with exponential size
support (think Young bases, Schur functions, Schubert polynomial, etc.) Fortunately, the
components of the whole vector can often be computed from name of the vector (think
of semistandard Young tableaux from the Young diagrams for Schur functions, or RC-
graphs from permutations). The coefficients are not necessarily positive (e.g. tabloids in
the Young basis of S, irreps can have alternating signs), which is why given a choice it is
best to use positive bases, e.g. work with Schur functions rather than Young bases.

Now, when applying operations to our symmetric spaces, one needs to be able to
extract the standard symmetric bases out of these new large spaces. Since one cannot work
with exponential size vectors, the symmetry must be traded for a concise presentation of
the lex-smallest vector (in principle, any orbit representative of the underlying group of
symmetries). For example, this easily leads to standard Young tableaux as lex-smallest
vectors among tabloids of a given shape, see e.g. [Sag01, §1.6]. We refer to [KR84] for
more on this philosophy from the Invariant Theory point of view.

67 Another way to double the number of combinatorial interpretations is to use the conjugation
symmetry cf;l, = cf;jy,. This symmetry is easy to prove algebraically. It was proved bijectively
in [HS92], and the authors attributed to Dennis White a connection to the jeu-de-taquin. It
makes sense only for the unary encoding.
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To see a more interesting example, consider the left-right action of G x G on C[G],
which has a simple spectrum as the sum of m ® w over all irreducibles. For G = S,
one is then tempted to look for how lex-smallest components of vectors in the invariant
subspaces of C[S,], leading to the straightening that Rota liked to much. The details
behind the RSK correspondence and the LR rule are more technical, but the underlying
story is similar and not much more complicated. And as we emphasize earlier, this all
comes down to the miracle of RSK and its relatives.

What is amazing here is not that the resulting algorithm is nice and interrelated, but
that it is correct. The former is a property of the underlying algebra, while the latter
is a combinatorial miracle behind RSK. We don’t need to work hard to imagine a world
where RSK does not exist — the (original) straightening is not in poly-time, or at least
not obviously so (this is due to unexpected sign cancellations). If not for the Schur—Weyl
duality we could be stuck there for a long time, at least until a quantum version was
discovered.

For a more recent example, consider a interesting story of three papers by Thomas—
Yong [TY18] and Pechenik—Yong [PY17a, PY17b], where the authors first introduce a
generalization of jeu-de-taquin to obtain some combinatorial interpretation for the theory
they wanted, and then developed another generalization of jeu-de-taquin to prove the de-
stred combinatorial interpretation (conjectured earlier by Knutson and Vakil, see [CV09,
§5]).

We finish this section on a positive note. If one wants to find a combinatorial inter-
pretation for Kronecker coefficients, in my opinion one would need to find an appropriate
generalization of RSK. It is even clear how to start — the map should be from 3-dim
contingency arrays into triples of semistandard Young tableaux, so that the number of
elements in preimage is always g(\, u,v), which would then have a combinatorial inter-
pretation as the number of certain contingency arrays.

The idea would be to exploit the generalized Cauchy identity

1

II ———— = > 9wy sa(@)su(y)su(z)

A1 1 — xy52k

i, 4,k A, v
(see e.g. [Mac95, Exc. 1.7.10] and [Sta99, Exc. 7.78]). Unfortunately, the structure of such
arrays is more complicated than in the 2-dim case of contingency tables, so finding lex-
smallest (under the action of the triple products of symmetric groups) does not appear to
be feasible in full generality.’® Thus, unsurprisingly, until now this approach is worked out

only in a few special cases where lex-smallest contingency arrays are easy to distinguish,
see e.g. [Val00] and [IMW17, §2].%°

12. How to prove a negative?

By the title of this section we mean: How to prove that a given function does
not have a combinatorial interpretation? Unfortunately, we really can’t, at least
not unconditionally. For all we know, it could be that P = NP = PSPACE and
FP = #P. In that case, poly-time verifiers can do magic, not just give combinatorial
interpretations.”® Now that we accepted the need for some complexity assumptions,
we can proceed to discussing special cases.

68A closely related issue is well known in Algebraic Statistics, see e.g. [Sull8, §10].

69 Although we personally don’t expect this can be done in full generality (otherwise this
would have been done by now), we believe in telling both sides of the story.

70See e.g. [For97] for a quick review of Counting Complexity.
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12.1. Nothing comes from nothing. Let f : {0,1}* — N be a function.
There is always a mathematical reason why we have f(z) € N for all = € {0,1}*.
This reason could be an easy consequence from the definition, an observation, a
routine calculation, a standard result in the area, or a technically difficult theorem.
Whether this reason can be replaced by a counting argument is exactly the same
as asking if f € #P.

Consider some examples. For f(z) = 2/l the combinatorial interpretation
is “all subsets of [n],” where n = |z| is the length of the word z. For f(z) =
x(x — 1)(x — 2)/3, the combinatorial interpretation is “all 3-subsets of [z] counted
twice”. Here the (easy) number theoretic result “3|m(m —1)(m —2) for all m € N”
is proved by a counting argument.

In the other direction, for f(x) = 2%, there is no combinatorial interpretation
since the function is doubly exponential in the size of the input. There is still a
(trivial) counting argument here, placing this function in a counting class #EXP,
but that goes outside the scope of this survey.

Next, consider a polynomial ¢(x) = (z — 1)? and let f € #P. The function
©(f) is trivially nonnegative and in GapP = #P —#P. However, there is no natural
combinatorial interpretation in this case, as we already discussed in §3.2(4). There,
we used a substitution” x + h(G) := #Hamiltonian cycles in graph G. Note that
if we used a different substitution x < e(P) := #linear extensions of a poset P,
then (x — 1)% € #P, see §3.2(1). This mean that the inequality (z —1)? > 0 may
be trivial analytically, but cannot be proved by a counting argument in the worst
case even if it can be proved in special cases, as this example shows.

Back to the LR and Kronecker coefficients, there is a very clear algebraic reason
why we have cf;V > 0 and g(\, pu,v) > 0. Fundamentally, it is reduced to the
(easy) inequality (¢,£) > 0 for every two characters (,£ of a finite group G. Tt
seems unlikely that this general inequality would have a proof based on a counting
argument.

Now note that we have a really good understanding why LR coefficients are
in #P, and a very poor understanding why the Kronecker coefficients are not (thus,
Conjecture 9.1). As we mentioned above, it is neither unusual nor surprising that
an inequality can be in #P is some special cases and not in others. Unfortunately,
at the moment, the Kronecker coefficients are much too unapproachable to admit
a resolution of the problem.

In summary, we are concerned not so much with whether any particular func-
tion is in #P, although we do care about that. Instead, we examine what proof
ingredients (of general results) can be shown to be in #P, and refute those which
are not. This is the subject of our long and technical paper [IP22]. In this section
we present a brief and non-technical introduction.

12.2. Polynomials. A rational polynomial ¢ € Q[z] is called integer-valued
if p(z) € Z for all x € Z. It is well known and easy to see that ¢ is integer-valued if
and only if ¢ is an integer linear combination of binomials: ¢ € Z<17 x, (;), (g), . >
See e.g. [CC16] for the background and many related results.

Polynomials ¢ in the semigroup N<1, T, (‘72”), (g), .. > are called binomial-good
(binomial-bad, otherwise). Binomial-good polynomials have a combinatorial inter-

pretation for ¢(z). Formally, for every function f € #P, the function o(f) is also

"1We elaborate below on the meaning of this substitution.
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in #P. For example, let f + h(G) be the number of Hamiltonian cycles in G, and
let o(z) = +a(x —1)(z —2). Then we have ¢(f) = 2({;) € #P as discussed above,
since (f) counts twice the number of triples of distinct Hamiltonian cycles in G.

Let us emphasize that the combinatorial interpretation of ¢(f) is oblivious, i.e.
it works with the verifier for the function f as a black box without ever looking at
the graph G or the notion of Hamiltonicity. Note that the black box is not allowed
to compute f, and all it can do is give a combinatorial interpretation for f. In
other words, the black box verifier for f looks at « € {0,1}* and says Yes/No in
poly-time, and the verifier for ¢(f) works the same way by calling on the verifier
for f.7?

Denote by B the set of binomially-good polynomials, and by O the set of
polynomials which have an oblivious combinatorial interpretation. From above,
B C O. It was proved in [HVW95, Thm 3.13] (see also [IP22, §4.3]), that B = O,
i.e. we show that binomial-bad polynomials ¢ cannot have oblivious combinatorial
interpretation.”® For example, ¢ = (z —1)? = 2(”25) —x + 1 is binomial-bad, and
for f < h(G) we do not expect a combinatorial interpretation.

We also generalize this result to multivariate polynomials, where ¢ € Q[z1, ..., 2]
is integer-valued if ¢ € Z<(§i) e (2:», see [Nagl9]. By analogy with the univari-
ate case, we say that ¢ is binomial-good if ¢ € N< (21) e (2’;)>, and prove B =0
for this generalization [IP22, §4.3].

Denote by C the set of polynomials ¢ € Q[z1, ..., zx| such that o(f1,..., fi) €
#P for all f1,...,fr € #P. Clearly, O C C. Our Binomial Basis Conjecture
(BBC) states that O = C, see [IP22, §4.4]. Since this conjecture implies P # NP
(ibid.), there is little hope to resolve it even in the univariate case. Thus, from the
computational complexity point of view, the “combinatorial interpretation problem”
for polynomials is completely resolved.

Example 12.1. Let ¢ := (z—y)?. Clearly, ¢(z,y) = 2(5) +2(}) —2zy+z+y ¢ B,
which implies that ¢ ¢ C. Consider the classical geometric proof of a? + b? > 2ab
obtained by reflection of triangles as in Figure 12.2. Since reflected triangles cover
both a x b rectangles, the inequality follows. The reader might want to ponder
(before reading the footnote), why does this construction not give an oblivious
combinatorial interpretation?”

12.3. Making weaker assumptions. For some polynomials and some #P
functions, the BBC can be replaced by a weaker complexity theoretic assumption.
To explain what is going on, we need a few definitions.

Let f,g:{0,1}* — Z be two #P functions. We say that f has a parsimonious
reduction to g, if there is a polynomial reduction {0,1}* — {0,1}* which maps f
into g. Typically, if f and g count the number of solutions to problem A and B,
the parsimonious reduction preserves the number of solutions.

72This notion is completely formal. In computational complexity terminology, this says that
@ relativizes with respect to oracle f. We find the algorithmic notions more transparent.

"3To repeat ourselves, we use “oblivious” to restrict combinatorial interpretations of ¢(f) to
only those whose verifier ignores the nature of f. If you have never seen oblivious algorithms and
this notion seem confusing, just think of “oblivious”="“nice”.

TAThe difference a2 + b2 — 2ab is the area of two triangles on the sides of the square. To
decide whether point (¢, j) is in one of these triangles, you would need to determine the sign and
absolute value of (a — b), which oblivious algorithms are not allowed to do.
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a /7N

a | ( ;

b x_/

FIGURE 12.1. Geometric proof of the inequality a? 4+ b% > 2ab.
Here the blue and red triangles are reflected to completely cover
yellow rectangles.

It is known, for example, that #SAT has a parsimonious reduction to #HAMIL-
TONIANCYCLES (and vise versa). This means that for every SAT formula @, there
is a polynomially constructed graph G, such that the number of satisfying as-
signments of ® is equal to h(G), see e.g. [Pap94b, §18]. The same holds for #
3COLORINGS, #WANGTILINGS, and many other #P-complete functions. For the
lack of a better name, we call such #P functions counting-complete, and use CCF
to denote the set of such functions.”

On the other hand, unless P = NP, the function # PERFECTMATCHINGS is not
in CCF, since the corresponding vanishing problem PM(G) =" 0 is in P. The same
holds for #LINEAREXTENSIONS. So while these two functions are #P-complete,
they are not counting-complete.”®

A map ¢ : N¥ — Q is called monotone if p(a1,...,ar) < ¢(al,...,a,) for all
integer a1 < af, ..., ar < aj,. For example, polynomials z/2,  — 1 and z +y are
monotone, but 22 — 2z and (x — y)? are not. Denote by M the set of monotone
polynomials, and note that B C M.

We can now state two results which allow weakening of the “oblivious” assump-

tion:
(1) Let ¢(z,y) = (x —y)®> ¢ O. We prove a stronger claim in this case, that
¢ ¢ C unless a standard complexity assumption fails. Formally, we prove in [IP22,
§2.3], that for every two (independent) functions f, g € CCF, we have ¢(f, g) ¢ #P
unless X5 = PH.

This is the strategy used in [IPP22] to prove Theorem 8.1. Recall that by
MN rule, the character x*(u) € GapP, so it can be written as (f — g) for some
(usually, not independent) functions f, g € #P. We found some instances of (A, p),
for which the corresponding (f,g) are both independent and counting-complete.
This implied the result. We believe the same approach could potentially work for
Conjecture 7.10.

(2) Let ¢ € Q[xq,...,zx] be a non-monotone polynomial, so ¢ ¢ B. We prove a
stronger claim in this case, that ¢ ¢ C unless a standard complexity assumption
fails. Formally, let fi,..., frx € CCF be independent counting-complete #P func-
tions. We prove in [IP22, §2.3], that o(f1,..., fx) ¢ #P unless UP = coUP, see
[IP22, §2.4]. In particular, (f — 1) ¢ #P unless UP = coUP, cf. §3.2(4).

For another example, recall the Motzkin polynomial M (z,y) := x?y* + 2*y* —
322y + 1. It follows from the AM-GM inequality applied to positive terms, that

751f you like the NSF, this name is both appropriate and rewarding.
"6This is also why these two problems are more interesting, and the proof of their #P-
completeness is more challenging as they cannot have a parsimonious reduction to #SAT.
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M(z,y) > 0 for all x,y € R. On the other hand, this polynomial is famously not
a sum of squares, and is a fundamental example in Semidefinite Optimization, see
e.g. [Blel3, Mar08]. Now, observe that M (z,y) is not monotone: M(0,1) =1
and M (1,1) = 0. This gives M ¢ C unless UP = coUP.

Note that non-monotone polynomial (z — y)2 has a stronger property: (x —
y)*1 ¢ M, forall ¢ € Z[z,y]. By contrast, the multiple (z—1)%-z = 6(3)+2(3) € B
is binomial-good, and thus monotone.

12.4. Algebraic inequalities. Let ¢, ¥ € Qlt1,...,tx], so that ¢ < ¢ for
all (ty,...,t) € N*. Suppose that polynomial (¢ — ¢) € #P and has an oblivious
combinatorial interpretation. From above, we have (¢ —¢) is binomial-good. Since
inequalities are routine building blocks across mathematics, it is worth examining
which of them are binomial good.

First, note that the inequality a?+b? > 2ab is equivalent to the complete square
case (1) above. In [IP22, §7.1], we show that a number of standard inequalities are
also not in #P (in a sense of substitutions), including the Cauchy inequality, the
Minkowski inequality, and the Alexandrov—Fenchel inequality. All these proofs are
routine and similar to our proof of Proposition 5.4.

Let us single out the Hadamard inequality for real d x d matrices:

2
aipr - aid

d

det | © .. < [J (6 + .. +ak).
aq1 ' Qdd =1
Geometrically, it says that the volume of a parallelepiped in R? is at most the
product of its basis edge lengths, with equality when these edges are orthogonal.
Note that the standard proof use eigenvalues, see e.g. [HLP52, §2.13] and [BB61,
§2.11], suggesting that translation into combinatorial language would be difficult.

Denote by Hy (all, . ,add) the polynomial defined by the Hadamard inequal-
ity. Note that we have Hs(a,b,c,d) € C, since

2
Ha(a,b,c;d) = (a + 12)(c + d2) — det (‘C‘ Z) — (ac + bd)>.

On the other hand, Hs(a,b,c,—d) > 0 has different properties from our point of
view. Indeed, we have Hy(a,b,c,—d) = (ac — bd)? ¢ C unless X5 = PH. Finally,
observe that

mfo § 1) = 56 0 - 56 + 30 + 0 + w0 ¢5
1 0 1

By the BBC, we have H3 ¢ C. Since Hz € M, this is the best we can prove with
our tools.

12.5. Algebraic inequalities restricted to semialgebraic sets. In many
cases, one is interested in polynomial inequalities where the variables are themselves
constrained by a system of polynomial inequalities and equations. Our Diagonal-
ization Theorem [IP22, Thm 6.2.1] gives a complete algebraic characterization of
such systems with an oblivious combinatorial interpretation.



WHAT IS A COMBINATORIAL INTERPRETATION? 43

The results in [IP22] are both technical to state, difficult to prove and hard to
apply. Instead of presenting or even outlining them here, we discuss two examples
(one easy and one difficult) which give a glimpse at our arguments.

(1) The Ahlswede-Daykin (AD) inequality, see e.g. [AS16, §6.1], for n = 1 states:

{LUOZ/O < ugug , Toyr < ugvy

— xo+x + < (ug 4+ uy)(vg +v1),
1Yo < UpV1 , T1Y1 < Uvy (%0 1o +11) (uo 1o v

for all z;,y;, u;,v; > 0, where ¢ € {0,1}. We prove in [IP22, Prop. 2.5.1], that the
AD inequality does not have an oblivious combinatorial interpretation. In other
words, we prove that ¢ ¢ O, where ¢ := (ug + u1)(vo +v1) — (2o + z1)(yo + ¥1)
restricted to the above system of four inequalities. Below is the outline of the proof.

Following [IP22; §7.4], we rewrite the inequality in terms of #P functions as
follows:

{Oéoﬁo + &1 =700, apfr + & = Y001
180+ &3 =001, a1fB1 + & =710,

for all (oo, a1, Bo, B1,70, 71500, 01,61, €2, €3,€4) € (#P)'. Second, make the fol-
lowing substitution into these 12 functions: (17 1,z,2,2,1,1,2,0, 2(%), 2(;),0) and
check that the above system of inequalities is satisfied. Now let x < f, where

f € #P. This substitution gives ¢(f) = (f —1)? ¢ B, and thus ¢ ¢ O.

(2) Let a,b € R™ be weakly decreasing, such that a > b, see §7.2. The Karamata
inequality says for every convex function f:R — R, we have

flar) + ... + flan) > f(b1) + ... + f(bn),

see e.g. [HLP52, §3.17] and [BB61, §28, §30]. We refer to [BP21, PPS20] for
some recent applications to linear extensions and Young tableaux, and to [MOA11]
for numerous generalizations and further references.

Following [IP22, §7.5], we rewrite the inequality in the language of #P func-
tions. Suppose

= (Y0+71)(00+01) — (vo+a)(Bo+P1) € #P,

where f;,g;, h; € #P, and h,, = 0. Suppose also that
fi=fir1+diy, gi=giy1 + e, forall 1<i<n,

where d;,e; € #P. Finally, let v : Z — N be a nonnegative convex function. The
Karamata function K7 is defined as

n n

Kfyn>(fl7"'afnagl,“'agn) = Z V(fl) - Z "Y(gz)

i=1 i=1
Clearly, K§"> € GapP and nonnegative by the Karamata theorem. It is thus an
interesting question if KSI> € O, ie. if Kg")(fl,...7gn) € O, i.e. in #P for all
fiagiahivdiaei € #P
For example, for v(t) = at + 3, we have Kg") = 0. Similarly,
K'<yz>(f1>f23.glag2) = (e1+h1)hy € #P for y(t)= (), and
K (f1, f2, f3,91.92,93) = (di +e1)hy + (d2+ea)ha € #P for ~(t) =t
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It follows from here that 2K!* € O where ~(t) = (1), since linear terms cancel

out. We prove in [IP22, Prop. 7.5.5], that K<f’> ¢ O for y(t) = (}). The proof
requires a computation of lattice points in a 12-dimensional polytope defined by

linear equations and inequalities corresponding to constraints on f;, g;, hi, d;, €;.

12.6. What’s next? By now the (exhausted) reader knows what kind of re-
sults we want to prove — the many “not in #P” conjectures throughout the paper.
And they know how we imagine the plan of attack — by simulating the proofs of
positivity and integrality of these combinatorial functions with polynomial equa-
tions.

There are two main obstacles on the way. First, the proof of positivity and
integrality can be rather involved, so distilling a single reason and expressing it
as a polynomial inequality can be difficult.”” Naturally, one would want to start
with counting graphs and linear extensions rather than Kronecker and Schubert
coeflicients, as the former seem much more generic and less involved. It may take
a long time before this project can reach the latter.

Second, the family of polynomials for which we know that they don’t have
an oblivious combinatorial interpretations is rather large and seems satisfactory
for applications. But to make the final results more accessible and convincing to
the general audience, it is important to weaken the assumptions (see §12.3). This
direction is certainly worth exploring in the context of Computational Complexity.

13. Counting complexity addendum

13.1. We need a list. Throughout the whole survey we tried to mention #P-
completeness and #P-hardness as little as possible. There are two reasons for that: we
wanted not to distract the reader from the main problem (membership in #P), and we
wanted to minimize the confusion that invariably arises.

There is, however, a direct connection to these complexity classes. As we mention
in §2.6, we have FP C #P, which makes combinatorial interpretation of problems in FP
trivial. Naturally, we are thus interested in problems that are not in FP. The best evidence
that a function is not in FP yet potentially in #P, is if a function is #P-hard. This is
why it is worth checking #P-hardness of functions in every conjecture and open problem
that we pose (cf. §15.2).

If this was about NP-completeness, we would stop here and refer to [GJ79] along with
some recent comprehensive list of NP-complete problems (such as this one on Wikipedia).
Unfortunately, there does not seem to be such comprehensive sources about #P-completeness.
Thus we present an annotated short list of such results, restricted only to functions which
we consider relevant to the survey.

13.2. Graph theory problems. We proceed roughly according to the sections in
this survey.

(1) #MONOTONE 2SAT is #P-complete but ¢ CCF. This implies that #VERTEX-
COVER is #P-complete [Val79a)].

771t is now well understood how to translate general mathematical proofs in a formal language
of low degree polynomials which can then be “checked” with few queries, see [A498]. The
connection is somewhat superficial as the latter uses polynomials over finite field, while in [IP22]
we work over C. Still, this suggests commonality of the ideas, keeping alive the hope that such
translation can be made in special cases.
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(2)

3)
(4)

()
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#HAMILTONIANCYCLES is #P-complete [Val79a]. Moreover #HC is in CCF,
since the proof is based on a parsimonious bijection. In the context of Smiths’s
theorem (see §3.2), this remains true for #HC in cubic planar graphs [LOTO03].

#3COLORINGS is #P-complete [Val79a]. Moreover #3C is in CCF, since the
proof is based on a parsimonious bijection.

#PERFECTMATCHINGS is #P-complete via reduction to PERMANENT [Val79c]|.
This implies that #k-MATCHINGS {p(G,k)} is #P-complete (see §5.1). Thus,
{f(G,k)} is #P-hard by telescoping. The problem remains #P-complete for
subgraphs in Z° [Val79b], and even for the number of 3-dim domino tilings
[PY13]. For planar graphs #PERFECTMATHINGS is in FP by the Kasteleyn
formula, see e.g. [LP86, §8.3]. The wvanishing problem {PM(G) =’ 0} is in P,
see e.g. [LP86, §9.1].

#SPANNINGFORESTS {F(G, k)} is #P-complete (see §5.3). This holds because
the total number of spanning forests 1+F (G, 1)+...+F(G,n—1) = T(G;2,1) is
an evaluation of the Tutte polynomial known to be #P-complete, see e.g. [Wel93,
Thm 6.2.9]. This implies that {f(G,k)} is #P-hard. For a fixed k& > 1, both
{F(G,k)} and {F(G,n — k)} are in FP [Myr92].

#SPANNINGSUBGRAPHS is #P-complete [PB83]. This is an evaluation of the
Tutte polynomial (see e.g. [Bol98, Ch. X]). We conjecture that the function in
Conjecture 5.6 is #P-hard.

ISINGMODELSTATISTICALSUM is #P-complete [JS93, Thm 15]. In notation
of §5.7, this and Proposition 5.9 implies that {Cor(v,w)} is #P-complete. For
planar graphs, the problem is in FP by the Kasteleyn—Fisher determinant for-
mula [Kas63, Fis66].

For general rational hyperplane arrangements, the problem of counting the num-
ber of regions in the complement is #P-complete. For membership in #P, see
§4.1. The hardness follows from graphical arrangements where the number of
regions equal to the evaluation |xg(—1)| of the chromatic polynomial (see e.g.
[Sta99, §3.11, Exc. 94-95]). This evaluation is equal to the number of acyclic
orientations of G, known to be #P-complete, see e.g. [Wel93, Thm 6.2.9].
#LINEAREXTENSIONS {e(P)} are #P-complete [BW91]. Thus, the function
defined by the Bjorner—Wachs inequality is #P-complete (see §6.1). By telescop-
ing, the function defined by the Stanley inequality is #P-hard (see §6.3). Com-
puting e(P) remains #P-complete for P of height two, and of width two [DP18].
The function defined by the Sidorenko inequality (see §6.2) is conjectured to be
#P-complete in [CPP23b, §9.6].

#WANGTILINGS of a square is #P-complete; this follows e.g. from the proof of
Thm 3 in [DDO07] that the decision problem in NP-complete.

VOLUME is #P-hard via reduction to #LINEAREXTENSIONS of order polytope
[BW91], remains #P-hard for zonotopes [DGH98]. MIXEDVOLUME is #P-
hard for boxes via reduction to PERMANENT (ibid.)
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13.3. Algebraic combinatorics problems with binary input. The type of in-
put makes so much difference for problems in Algebraic Combinatorics, we decided to
separate them altogether and make a clear indication in the name, so they would be
impossible to confuse.

Note that if the problem is in FP in the binary input, then this is also true in the
unary input. Vice versa, if the problem is #P-complete or #P-hard in the unary input,
then this is also true in the binary input. Similar claims hold for the decision problems as
well.

(1) CONTINGENCYTABLESBINARYINPUT {T(A, )} is #P-complete even for £(\) =
2 [DKM97]. The vanishing problem {T(\,u) >" 0} € P, since it is equivalent
to {|A] =7 |u|}. When £()\) is fixed, the problem has FPTAS [G4+11]. When
£(N\), £(u) are fixed, the problem is in FP by [Bar93].

(2) KOSTKABINARYINPUT {K),} is #P-complete [Nar06]. The vanishing problem
{K»x, >" 0} € P, since it is equivalent to {\ >7 pu}, see §7.2. The uniqueness
problem {K», =" 1} € P, see a complete characterization in [BZ90].

(3) LITTLEWOODRICHARDSONBINARYINPUT {c},, } is #P-complete [Nar06].

The vanishing problem {cf;l, >7 0} € P, see [DM06, MNS12].7
The uniqueness problem {cfw =" 1} € P. More generally, {ijy ="t} € P for
every fixed ¢t > 0, see [Ike12, Thm 11.3.2] and [Ikel6].

(4) KRONECKERBINARYINPUT g(A, p,v) is #P-hard. This follows easily from the
result that LITTLEWOOD-RICHARDSONBINARYINPUT is #P-complete, and triv-
ially from the unary case. The vanishing problem {g(\,u,v) >° 0} is NP-hard;
this follows trivially from the unary case.

(5) REDUCEDKRONECKERBINARYINPUT {g(a,f,7)} is #P-hard, same reason as
above. We conjecture that the vanishing problem {g(a,B,~) > 0} is NP-hard.

(6) ExcrrepDIAGRAMS {|E(A/p)|} € FP viareduction to flagged tableauz [MPP18a,
Cor. 3.7]. This is the number of terms of the summation in the NHLF. The van-
ishing problem is trivial.

(7) CHARACTERSQUAREDBINARYINPUT {(x*(1))?} is doubly exponential and thus
not in PSPACE. For example, x*(1) = Cat(m) = e, where A\ = (m,m) and
n = 2m. The vanishing problem {x*(u) #° 0} is NP-hard [PP17, §7]; a
stronger result follows from the unary case.

(8) HURWITZBINARYINPUT {hg,} is doubly exponential and thus not in PSPACE.
For example, ho ) = n"2,

13.4. Algebraic combinatorics problems with unary input. This is the most
interesting case, and the one we discuss throughout the paper.” To minimize the overlap,
we don’t include here some of the poly-time result which hold already for the binary case.

(1) CONTINGENCYTABLESUNARYINPUT {T'(A, )} is not known to be #P-complete,
see [DO04, §1.1] and [PP17, §8.1]. We conjecture this to be true. When £())
is fixed the problem is not #P-complete unless P = NP.%°

"8This is based on the saturation property, see §9.4(2), which fails for other root systems.
Notably, for the B-C—-D Lie types, it holds up to a factor of two [Sam12]. It is open whether the
vanishing problem is in P in these cases; this would follow from [DMO06, Conj. 4.7] (cf. [GOY21,
§5.2] and [RY'Y22, §7.4]).

"To indicate unary input, the literature often refers to “strong” NP- and #P-completeness,
see [GJ78] and [Vaz01, §8]. We find this terminology misleading and best to be avoided, as some
results become weaker while others stronger when the input size changes.

80This follows from having FPTAS in the binary input, see e.g. [Vaz01, §8.3].
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(2) KOSTKAUNARYINPUT {K),} is not known to be #P-complete [PP17, §8.1].
We conjecture this to be true. This would follow from the conjecture that
#CONTINGENCYTABLESUNARYINPUT is #P-complete, via the reduction in [Nar06].
Moreover, we conjecture that {K)\(zalb)} is #P-complete.

(3) LITTLEWOODRICHARDSONUNARYINPUT {c},, } is conjectured to be #P-complete
[PP17, §8.1]. This would follow from the conjecture that KOSTKAUNARYIN-
PUT is #P-complete, via the reduction in [Nar06]. The vanishing problem has a
recursive description, see [Zel99, Prop. 9]. The vanishing of generalized LR co-
efficients (tileability using Knutson—Tao puzzles regions in the triangular lattice
with given boundary), is NP-complete [PY14].

(4) KRONECKERUNARYINPUT g(A, p1,v) is #P-hard. This follows from IMW17].
The vanishing problem {g(\, u,v) >* 0} is NP-hard, ibid. We conjecture that
{gM A A) @ X = X'} is #P-hard, cf. Conjecture 9.2 and [PP23], and that
{g(A\ A\, 1) : p=(n—k,k)} is also #P-hard, cf. Remark 9.3 and [PP14].5!

(5) REDUCEDKRONECKERUNARYINPUT g(a, 8,7) is #P-hard [PP20b]. The van-
ishing problem {g(a, B,~) > 0} is conjectured to be NP-hard in [PP20b, §4.4].

(6) CHARACTERSQUAREDUNARYINPUT {(x*(1))*} is #P-hard [Hep94], and (x*(1))* ¢
#P unless X5 = PH, see Theorem 8.1. The vanishing problem {x*(u) =" 0} is

C—P-complete, and thus NP-hard [IPP22]. The positivity problem {x*(p) >
0} is PP-complete, and thus PH-hard, ibid.

(7) INVERSEKOSTKAUNARYINPUT {K;;} has not been studied. We conjecture it
is #P-hard. For the vanishing problem {K;; =7 0}, we conjecture it is C=P-
complete (cf. Conjecture 7.10).

(8) BRUHATORDERIDEAL {B(0)}, where B(o) := |[{w € Sn : w < o}|, is #P-
complete [DP18]. This problem is equivalent to #LINEAREXTENSIONS for per-
mutation posets: B(o) = e(Py).

(9) REDUCEDFACTORIZATIONS {r(w) : w € S,} [Sta84], are defined as
r(w) = #{(i1,...,ie) : (i, i1+ 1) (ig,ie+1) =w, 1 <ij <n, £ =inv(w) }.

The problem is conjectured to be #P-complete [DP18, §8.5], cf. [MPY22,
§6].52 When w € S, is vexillary (2143-avoiding), we have {r(w)} € FP from
[ManO01, Cor. 2.8.2] and the HLF.

(10) ScHUBERTCOEFFICIENT c¥, is not known to be #P-hard.®3 We conjecture this

to be true. The vanishing problem {c%, >" 0} is not known to be NP-hard
[ARY19, §4].

(11) ScHUBERTKOSTKA {Kyu.} and #RC-GRAPHS {G&,(1) = >, Kus} have not
been studied. We conjecture that both are #P-complete.

(12) INCREASINGTABLEAUX {g := |IT(\)|}, where an increasing tableau A € IT(X)
is a plane partition strictly increasing in rows and columns, and no gaps between
1 and maximal entry of A, see [TY09]. Note that g* > f*. This problem {g*}
was proposed in [TY11, §1.3], and conjectured to be #P-complete in [MPP22,
§7.10].

81The last conjecture was suggested by Greta Panova (personal communication, Sep. 2022).

82IMPY22, §6] observes that {r(w)} ¢ #P when permutations are presented in binary via
the Lehmer code.

83The argument in [MQ17, p. 885] claiming that {c%,} is #P-complete via reduction to
{cﬁu} is erroneous as it conflates the input sizes. The authors acknowledge the mistake (personal

communication, 2022).
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(13) SETVALUEDTABLEAUX {s(\, k) := [ SVT(X, k)| }, where a set-valued tableau A €
SVT(\, k) is a surjection from [k] to squares of Young diagram A, s.t. the
numbers increase in rows and columns of the image, see [Buch02]. Complexity
of {s(\,k)} was asked in [MPY22, §5.2] and [H422, §5.7]. We conjecture
that {s(\ k)} is #P-complete.

(14) HURWITZNUMBERUNARYINPUT {hg,} is #P-complete [PP24+].

13.5. Related problems. Here are a few additional problems we think are worth
solving (all in unary).

(1) Let A C N® be a 3-dim Young diagram. Denote by Pa the corresponding poset.
We conjecture that {e(Pa)} is #P-complete. In fact, we conjecture this holds
for A of height two.

(2) Let A C N® be a 8-dim Young diagram. We conjecture that the number of
domino tilings of A is #P-complete. Again, we conjecture this holds for A of
height two.

(3) Let A= (Ai,...,A,) and B = (Bi,..., Bys) be two collections of points in N.
Denote by f(A,B) the number of collections (v1,...,7vn) of nonintersecting
shortest paths v; : A; — B;, 1 < ¢ < n. We conjecture that {f(A, B)} is
#P-complete.

(4) Let F(d1,...,dn) be the number of simple graphs with given degree sequence.
We conjecture that {F(di,...,dn)} is #P-complete. For many related results
and further references, see e.g. [Wor18]. The vanishing problem {F(di,...,d,) >
0} is in P even in binary, by the Erdds—Gallai theorem (see e.g. [ALO5]).

(5) Let G C Sn be a permutation group given by its generators. Recall that the size
|G|, the size of the commutator |[[G,G]| and many other functions are in FP,
see e.g. [Ser03]. What about the number ¢(G) of conjugacy classes?

?

(6) We conjecture that tileability of simply-connected regions in R? with the unit
square and the unit edge equilateral triangle is NP-complete (rotations are al-
lowed, see [Zin09, App. 1]), and that the number of such tilings is #P-complete.

(7) Let Q C R? be a centrally-symmetric polygon with integer side lengths, and let
T is a fixed set of rhombi tiles with unit sides. We conjecture that the number
of tilings of @ with T is #P-complete.®* Note that the existence of such tilings
isin P, see e.g. [KS92]. We refer to [Ken93, §5] and [Pak03, §5.3, §7] for some
background.

(8) We conjecture that for binary matroids represented by vectors in Fy, the number
of bases is #P-complete.?? Note that for paving matroids represented by cycles,
and for bicircular matroids, the number of bases is #P-complete, see [Jer06,
§3] and [GNO6, §3].

14. Proofs

14.1. Proof of Proposition 4.2. Let 7, be the set of rooted plane triangulations
on n vertices, and let b, := |T,|. Here the root in a triangulation G = (V, E) is a flag
(v,e, F), where v € V, e = (v,w) € E and F is a face in G containing e. Tutte’s product
formula shows that {b.} can be computed in poly(n) time, see e.g. [Schal5]. Moreover,
Poulalhon and Schaeffer [PS06] gave a bijective proof of Tutte’s formula, by constructing
a bijection ® : 7, — B, between rooted plane triangulations on n vertices and certain

84For the connection to reduced factorizations, see [EIn97].
85Despite claims in [Ver98], this problem is unresolved since Vertigan’s proof remains unwrit-
ten, and even the proof idea is unavailable (Dirk Vertigan, personal communication, April 2010).
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balanced plane trees with two additional markings. It follows from the construction that
both & and ®~! can be computed in O(n) time.

Let I' = Aut(G) be the group of automorphisms of graph G. It is easy to see that
the stabilizer subgroup Stabg(v, e, F) = 1, because rooted triangulations have a unique
topological embedding into a sphere. In particular, this implies that |I'| < 4|E| = O(n).
Recall that for all planar graphs, the effective graph isomorphism can be done in linear
time [HW74]. In summary, for each ¢’ = (v, w’) € E, it can be decided in poly(n) time
whether there is an automorphism g € I' s.t. g-v =v' and g - w = w’. Moreover, when it
exists such g can be computed explicitly.

Now, a combinatorial interpretation for {a,} can be constructed as follows. Let
t € By. Use the Depth First Search (DFS) around t to obtain a unique labeling of vertices
of t. Use @' to transferred this labeling onto 7 := ®~'(t) € T,,. Use the argument above
to compute all O(n) relabelings 7’ of 7. For all such 7/, check if they are isomorphic to 7,
and if not discard such 7'. Compute ®(7’) for all such rooted triangulations. We obtain
exactly |T'- 7| = O(n?) balanced plane trees. Accept ¢ if it is lex-smallest, and reject
otherwise. The details are straightforward. O

14.2. Proof of Proposition 8.6. Recall that p(”) =1 Tg’;, where C,, ~ Z,, is the
usual cyclic subgroup of S,,. Let u = (u1,...,ue) F n be a partition into distinct parts:
p1 > ... > pe > 0. We have:

Sn Sn
pu =1 TCMX ch — p(Hl) ® - ®p(ﬂé) TS ><Sw

n1 X

A A
Z Z Z Com @ G (uy) T G (g | X

An Ly, v (Ok g,

where the generalized LR coefficient

Cim, e = Z 03(1>T<1>CZ§;;T<2> e C;Ei—f;l,u)
7‘(1),.4.,7(1]’_%
are written as sums of products of LR coefficients. Combining (KW) and the LR rule, this
gives a (rather cumbersome) combinatorial interpretation of the multiplicity ax, of .
This is clearly in #P, which proves the first part. The second part follows from the same
argument, with rows (u;) replaced by rectangles with distinct lengths. O

15. Final remarks

15.1. The term combinatorial interpretation seems to be relatively recent and was
first used by Hardy [Har40, §6.9], in connection with the Rogers—Ramanujan identities.
There, the meaning was literal, to say that the RR identities can be restated in a combina-
torial language. The first modern usage was by Kaplansky and Riordan [KR46, p. 262],
to say that the Stirling numbers of second kind have a “combinatorial interpretation” as
the number of rook placements on the staircase shape.3¢

Part of the reason is linguistic. For example, MacMahon used plenty of “interpreta-
tions” in his celebrated Combinatory Analysis [Macl5], so the term “combinatory inter-
pretation” can be found in several papers, e.g. in [Ing26].

15.2. There is a reason we are so cavalier with many #P-hardness conjectures in
Section 13. Roughly speaking, this is because the universe of interesting combinatorial FP
functions is quite small, and is reduced to:

o dynamic programming (see e.g. [CLRS09, §15]),

86T his paper was extremely influential, and the result can be found e.g. in [Sta99, Cor. 2.4.2].
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o determinant formulas, e.g. (AFDF), the matriz-tree theorem (MTT), the
Lindstrém—Gessel-Viennot theorem (LGV, see e.g. [GJ83, §5.4.2]), and the
Kasteleyn formula (cf. §13.2),87

o explicit formulas, e.g. (HLF) and MacMahon’s box formula (see e.g. Eq. (7.109)
in [Sta99]).%®

If your function clearly does not belong to either of these (not well-defined) classes, there
is a good chance it is not in FP. Although in principle there are are intermediate counting
classes between FP and #P (unless FP = #P), in practice no one has seen them.%? Various
dichotomy NP-completeness results only reinforce this belief, see e.g. classic paper [HL9O0]
and the most recent breakthrough [Zhuk20]. In summary: If you don’t see how to compute
a function using standard approaches, then most likely it is provably hard to do.

15.3. We have used a lot of space presenting our arguments in support of our
conjectures that many combinatorial functions in Algebraic Combinatorics are (probably)
not in #P. Here is a quick summary of our arguments, TLDR style:

o Are you smarter than everyone? So many people worked on these prob-
lems, if there was a combinatorial interpretation it would have been discovered
by now.

o You can’t get there if you are going in the wrong direction. If everyone
in a community thinks a problem has a positive solution and they can’t even
agree what would it mean to have a negative solution, there is a chance the
problem never gets solved. At the very least the community should hedge and
pursue both directions.

o There is already one miracle. Why are you expecting another one?
The LR rule and all its variations are magical. But they are caused by one true
miracle: the RSK. All the variations on the theme (jeu-de-taquin, octahedral
map, etc.), are equivalent in a formal sense, and thus simply the RSK in disguise.
Given the scarcity of miracles, it seems unreasonable to hope for a positive
solution without using the RSK or its relative in an essential way.

o Nothing comes from nothing. The proof that a function is positive or
integral is based on a sequence of arguments. For certain type of arguments
that are given by algebraic inequalities, we can show they do not have oblivious
combinatorial interpretations. So either your favorite function is very special
and its proof avoids all such arguments, or you need another proof.

15.4. While writing this survey, we had an unmistakable feeling of mapping the
terra incognita. This reminded us of Nicolas Sanson’s 1650 map of North America, where
the author made a logical leap and extend shore lines to create the Island of California,
see below.?° You can imagine why he did it, of course. Unfortunately, it took about fifty
years to correct this error. We can’t wait to find out if it’s us who are making unjustified
logical leaps, or it’s others who have been using a wrong map. We just hope it will take
less than fifty years.

87TExcept for the MTT, the clue to all of these is planarity. Note that the (AFDF) follows
from the LGV and the limit argument. The bijection in [KPWO0O] shows that the MTT implies
the Kasteleyn formula.

88 As we mentioned earlier (see §11.2), both of these formulas are derived from determinant
formulas.

89 Joshua Grochow proposed the number of graph isomorphisms as an intermediate function;
that was before Babai’s breakthrough [Bab18]. Also, a well-known expert once suggested to us
(personal communication), that computing the number T(A, 1) of contingency tables might be
intermediate (in unary); we disagree.

90Nicolas Sanson (1600-1667), Public domain, via Wikimedia Commons.
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