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1. The main result of the article is a bijective proof of the multiplicative formula for the dimension of 
an irreducible representation of the symmetric group, which is usually called the "hook-length formula." 
We also prove a formula for the Poincar6 series for the multiplicity of the isotypic component in the 
symmetric algebra S ( V )  (V = C ~) considered as a graded S,~-module. We use classical combinatorial 
interpretations (see [1, 2]) and establish the bijection in their terms. 

2. A set of pairs (i ,  j )  C Z 2 satisfying the conditions 1 _ j < )~/, "~1 ~-- /~2 :> " '"  E N ,  is called 
a Young diagram ~ = (~1,) ,~,  -..  ).  We suppose that Z 2 is situated in the plane R 2 so that the first 
coordinate i increases from top to bottom, while the second coordinate j increases from left to right. 
A diagram ~ is depicted by the set of 1 x 1-cells with centers at the points ( i ,  j )  E ~. A function 
A: ~ -+ N represented by numbers written in the cells of a diagram )~ that strictly increase from top to 
bottom along the columns and do not decrease from left to right along the rows is said to be a tableau A 
of shape )~. Denote by IAI the sum of the numbers in a tableau A; l.~l := E i~ l /~ i "  We call a tableau 
A standard if each number 1 , . . . ,  lal occurs in A just once. We denote by )~' = ( ~ ,  ~ , . . . )  the 
diagram transposed to ~. 

Recall that the equivalence classes [Tx] of irreducible representations of the symmetric group Sn 
are parametrized by diagrams ~ ,  = n;  dim T~ =: K~ is the number of standard tableaux of 
shape ,~. Consider the space 7t = O71  / of harmonic polynomials in n variables (i.e., those anihilated by 
C[O/OX1 , . . .  , O/OXn] S~) as an Sn-module, and put K~(t) := 2 i  d imHom(T~,  71i)ti. Then the regular 
representation of S~ is realized in 71 (see [3]), Ka(t)  being the generating function for the number of stan- 
dard tableaux of shape £ with a given charge (see below). Similarly, P~(t)  := ~-~k dim Hom(Ta,  S k ( Y ) ) t  k 
is the generating function for the number of tableaux A of shape ~ with a given sum ]A I (see [1]). 

T h e o r e m  1. 

K~(t) = 

where h( i ,  j )  = hi + ;~} - i - j + l . 

Coro l l a ry  1 (hook-length formula). 

Kx(1) = I~'x = 

H i ~ l ( l +  t + . . .  ÷ t/-1) 

1-I(i,j)C),(1 -t- t + . . .  + th( i ' j ) - l ) / t  i-1 ' 

n! 

H(/ , j )E)~ h( i ,  j ) "  

T h e o r e m  2. 
~i-1 

H 
(i,j)@)~ 

R e m a r k .  The polynomials Kx(t) play an important role in representation theory of the group GL (n) 
over the complex or a finite field (see [1]); they are particular cases of the Kazhdan-Lustzig polynomials. 
The generating function P~ is also well-known in combinatorics (see [1, 4]), as well as in representation 
theory (see [5-7]); its superanalog is also known (see [8]). 
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3. To prove Theorem 1, we establish a bijection between the following sets (,~ is fixed, I)~ I = n): 
I is the set of pairs of the  form 

(a s t andard  tableau of shape A ; 

a funct ion  f :  ~ ~ Z such tha t  (Ai - j) >_ f ( i ,  j) >_ -()~} - i), V(i, j )  E )~), 

II is the  set of bijective fillings of the  d iagram )~ by the numbers  { 1 , 2 ,  . . .  , n} .  
Fix a filling A E I I  and  set f --- 0 .  We shall order the numbers  in A ,  beginning f rom the right column 

and moving to the  left, and  from b o t t o m  to top inside the columns. Suppose  tha t  the  filling is already 
ordered up to the  cell (i0,  j 0 ) ,  i.e., the  numbers  increase along rows and columns for all ( i ,  j )  such tha t  
either j > j0 or j = j0 and i > i0. We shall execute the following procedure:  

S e t  i = i0,  j = j0 ,  a = A(io, Jo). 

1) Put 

b = A ( i , j + l )  for j < A i ,  
! c= A(i + l ,  j) for i < /~j, 

2) If a > b and c > b, then  A(i ,  j + 1) := a 
go to 1). 

and b = n + l  for j = ) ~ i ;  

and c = n + l  for i = ) u .  

, A ( i , j ) : = b ;  f ( i , j o ) : = f ( i , j o ) + l ,  j : = j + l ;  

3) If a > c and b > c ,  then  A ( i + l , j )  := a, A ( i , j )  := c;  exchange the  values f ( i , j o )  and 
f ( i  + 1, J0); f ( i ,  Jo) := f ( i ,  j o ) -  1, i := i + 1; go to 1). 

4) If c > a and b > a ,  the procedure  is over. 

Finally we order  the  filling (an element of the set II) and obta in  a s t andard  tableau A and a function 
f (i.e., an element  of the  set I ) .  

P r o p o s i t i o n  1. The constructed map II --~ I is a bijection. 

Let w(A) be the  pe rmu ta t i on  of numbers  1, . . . ,  IAI obta ined by reading a tableau A along the rows 
from right to left and f rom top to bo t tom.  Pu t  ind(1)  := 0; ind( i  + 1) := ind( i )  if ~ - 1 ( i  + 1) > w-~(i), 
and ind(i  + 1) := ind( i )  + 1 if w - l ( i  + 1) < w - l ( i ) .  The  number  c(A) := ~I~1i ind( i )  is said to be 
the charge of the  s t andard  tableau A .  We define a grading on the set I as c(A) + ~(~,~)ea f ( i ,  j ) ,  and 
transfer it to the set II by means of the bijection. 

P r o p o s i t i o n  2. The grading thus obtained is equivalent to the standard grading on the set oc~ defined 
by the number of inversions (see [9]) (equivalence means the equality of numbers of elements with a given 
grading). 

From Proposi t ions  1 and 2 we derive the  equat ion 

Kx(t) 1 ]  1 + t + . . .  + th( ,i) 
, = H ( 1  + t + . . .  + 

(i,j)e.k i = 1  

which immedia te ly  implies Theorem 1. 

To prove Theorem 2, we establish a bijection between the two following infinite graded sets: 
III is the  set of pairs of the form 

(a s t andard  tableau A of shape A; a par t i t ion p = (#1 _>""  _> # n ) ,  n = IAI), 

where the grading is defined as c(A) + I~1, 
IV is the  set of tableaux B of shape ~ with the  grading IBI. 

We construct  an explicit map  III -* IV .  Let I ( i ,  j )  = i n d ( A ( i ,  j ) ) ,  D(i ,  j )  = p . + I - A ( i , j ) ,  
( i , j )  E A. It is easy to see tha t  I is a tableau of shape .k, [I I = c(A),  and D is a filling which 
is nondecreasing along rows and columns,  IDI = I~l. Now we pu t  B(i ,  j)  := I ( i ,  j)  ÷ D(i ,  j ) .  It is the 
desired tableau of shape ~ ,  and IBI = c(A) + I#l, i.e., our  map  preserves the  grading. 
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Propos i t ion  3. The constructed map III --* IV is a bijection. 

Therefore, from Proposition 3 and Theorem 1 we obtain 

P,~(t) = ~-]A to(A) 1FIin=l(1 -- ti) l-I(i,j)ex t i - l (  1 - th(i'J)) -1 t i-1 

]lin=l(1 _ ti) =- 1-Ii=1(1 _ ti) = H 1 - -  th(i,J) ' 
(i,j)e,x 

thus establishing Theorem 2. 
R emar k .  The latter bijection is a combinatorial analog of the Kostant decomposition (see [3]), S ( V )  = 

A ® ~ ,  where A is the algebra of invariants with respect to the Weyl group (in our case, the algebra of 
symmetric polynomials). 
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Translated by A. I. Ovseevich 

Invariant Semil inear  Ell iptic Equat ions  on Manifo lds  
of  Constant  Negat ive  Curvature  

A. A. Pankov  UDC 517.97 

0. At present, numerous results on solvability of semilinear elliptic equations of the form - A u  = f ( u )  
in IR n are known (see [1, 2] and detailed references therein). Similar equations are of interest on arbitrary 
complete Pdemannian manifolds. However, the papers referred to lean heavily on specific features of the 
flat case (for example, on the presence of homotheties). It seems that, besides R ~ , the most simple case 
is that of the hyperbolic space Hn (with curvature -1) .  We consider its standard model, namely, the 
unit ball in R n supplied with the Poincar6 metric. Consider the equation 

- A u  + m u  = f ( u )  (1) 

in IBIn, where A is the Laplace-Beltrami operator. We are interested in decaying solutions, more precisely, 
in those belonging to the invariant Sobolev space HI(H~).  This space is defined as the completion of 
C~°(Hn) with respect to the norm given by 

where d V  is the invariant volume form in IHI~, and the gradient V and ] • I correspond to the Poincar@ 
metric [3]. This space coincides with the space of functions from L2(H~) having finite norms defined by 
(2). Note also that HI(1HI2) = H](f t2) ,  where f~2 C R 2 is the Euclidean unit disk. To Eq. (1) we assign 
the action functional 

S(u)  = ~1 IWl2dY - F ( u )  2 d V ,  (3) 
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