
THE COMPUTATIONAL COMPLEXITY OF INTEGER

PROGRAMMING WITH ALTERNATIONS†

DANNY NGUYEN⋆ AND IGOR PAK⋆

Abstract. We prove that integer programming with three alternating quantifiers is NP-
complete, even for a fixed number of variables. This complements earlier results by Lenstra
and Kannan, which together say that integer programming with at most two alternating
quantifiers can be done in polynomial time for a fixed number of variables. As a byproduct
of the proof, we show that for two polytopes P,Q ⊂ R3, counting the projections of integer
points in Q\P is #P-complete. This contrasts the 2003 result by Barvinok and Woods,
which allows counting in polynomial time the projections of integer points in P and Q

separately.

1. Introduction

1.1. Background. In a pioneer paper [Len83], Lenstra showed that integer programming
in a bounded dimension can be solved in polynomial time. The next breakthrough was
obtained by Kannan in 1990 and until recently remained the most general result in this
direction (see [Eis10]).

Theorem 1.1 (Parametric integer programming [Kan90]). Fix d1 and d2. Given a polyhe-

dron P ⊆ Rd1 , a matrix A ∈ Zm×(d1+d2) and a vector b ∈ Zm, the following sentence can be

decided in polynomial time:

(1.1) ∀x ∈ P ∩ Zd1 ∃y ∈ Zd2 : A (x,y) ≤ b.

Here P is given by a system C x ≤ γ, with C ∈ Zn×d1 and γ ∈ Zn. The numbers m,n are

part of the input.

Here we slightly abuse the notation by writing A (x,y) to denote the multiplication of A
with the (column) vector (x,y) ∈ Zd1+d2 . In [Kan92], Kannan asked if Theorem 1.1 can be
extended to three alternating quantifiers. We give an answer in the negative direction to
this question:

Theorem 1.2. Fix d1 ≥ 1, d2 ≥ 2 and d3 ≥ 3. Given two polyhedra P ⊆ Rd1 , Q ⊆ Rd2 , a

matrix A ∈ Zm×(d1+d2+d3) and a vector b ∈ Zm, then deciding the sentence

(1.2) ∃x ∈ P ∩ Zd1 ∀y ∈ Q ∩ Zd2 ∃z ∈ Zd3 : A (x,y, z) ≤ b

is an NP-complete problem. Here P and Q are given by two systems C x ≤ γ and D y ≤ δ,
with C ∈ Zn×d1 , γ ∈ Zn, D ∈ Zq×d2 , and δ ∈ Zq.

†Earlier proceeding version: Danny Nguyen and Igor Pak, The Computational Complexity of Integer
Programming with Alternations, in Proceedings of the 32nd Computational Complexity Conference (CCC
2017), Leibniz International Proceedings in Informatics (LIPIcs), 6:1–6:18.

⋆Department of Mathematics, UCLA, Los Angeles, CA, 90095. Email: {ldnguyen,pak}@math.ucla.edu.
September 12, 2018.

1

2 DANNY NGUYEN AND IGOR PAK

Let us emphasize that in both Theorem 1.1 and 1.2, there is no bound on the number
of inequalities involved. In other words, the parameters m,n and q are not fixed. Theo-
rem 1.2 is especially surprising for the following reasons. First, in [NP17a], we gave strong
evidence that (1.2) is decidable in polynomial time if m,n and q are fixed. Second, by
an easy application of the Doignon–Bell–Scarf theorem [Sch86, §16.5], the sentence (1.1) is
polynomial time reducible to the case with m and n fixed. Unfortunately, this simple re-
duction breaks down when there are more than two quantifiers (see Section 8.1) as in (1.2).
Still, in [NP17a], we speculated that a more involved reduction argument might still ap-
ply to (1.2). Theorem 1.2 refutes the possibility of any reduction from (1.2) to an easier
form with m,n and q bounded for which decision could be done in polynomial time, unless
P = NP. In fact, Theorem 1.2 holds even when P is an interval and Q is an axis-parallel
rectangle (see Theorem 4.1 and §8.8). Thus, the problem (1.2) is already hard when n, q
are fixed and only m is unbounded.

In [Sch97], Schöning proved that it is NP-complete to decide whether

(1.3) ∃x ∈ Z ∀y ∈ Z : Ψ(x, y).

Compared to (1.2), this has only two quantifiers. However, here the expression Ψ(x, y) is
allowed to contain both conjunctions and disjunctions of arbitrarily many inequalities. So
Theorem 1.2 tells us that disjunctions can be discarded at the cost of adding one extra
alternation. In the next subsection, we generalize this observation.

One can also consider a “hybrid” version of (1.2) and (1.3) with only 2 quantifiers ∃∀
and only 2 disjunctions in Ψ. In Section 7, we show this is still NP-complete to decide.

1.2. Presburger sentences. In [Grä87, Grä88], Grädel considered the theory of Pres-

burger Arithmetic, and proved many completeness results in this theory when the numbers
of variables and quantifiers are bounded. Those results were later strengthened by Schöning
in [Sch97]. They can be summed up as follows:

Theorem 1.3 ([Sch97]). Fix k ≥ 1. Let Ψ(x,y) be a Boolean combination of linear inequali-

ties with integer coefficients in the variables x = (x1, . . . , xk) ∈ Zk and y = (y1, y2, y3) ∈ Z3.

Then deciding the sentence

Q1 x1 ∈ Z . . . Qk xk ∈ Z Qk+1 y ∈ Z3 : Ψ(x,y)

is ΣP

k -complete if Q1 = ∃, and ΠP

k -complete if Q1 = ∀. Here Q1, . . . , Qk+1 ∈ {∀,∃} are

m+ 1 alternating quantifiers.

HereΣP

k andΠP

k denote the k-level in the standard Polynomial Hierarchy, which basically
characterized the complexity of the satisfiability problem in Boolean logic with k alternating
quantifiers (see [MM11, Pap94, AB09]). This result characterizes the complexity of so
called Presburger sentences with k+1 quantifiers in a fixed number of variables. The main
difference between Presburger Arithmetic versus integer programming is that the expression
Ψ allows both conjunction and disjunction of arbitrarily many inequalities. This flexibility
allows effective reductions of classical decision problems such as QSAT. For some time,
it has remained unknown whether such reductions can be carried with only conjunctions,
and at the same time keeping the number of variables fixed. We prove the following result,
which generalizes Theorem 1.2:

Theorem 1.4. Integer programming in a fixed number of variables with k + 2 alternating

quantifiers is ΣP

k/Π
P

k -complete, depending on whether Q1 = ∃/∀. Here the problem is

allowed to contain only a system of inequalities.

THE COMPUTATIONAL COMPLEXITY OF INTEGER PROGRAMMING WITH ALTERNATIONS† 3

We refer to Theorem 5.1 for the precise statement, and to Remark 5.2 for the reason why
the innermost quantifier of integer programming should always be ∃. Thus, we see that
integer programming requires only one extra quantifier alternation to achieve the complexity
of Presburger Arithmetic as given by Theorem 1.3. Again, we emphasize that while the
number of variables and quantifiers are fixed in Theorem 1.4, the linear system is still
allowed to have arbitrarily many inequalities.

1.3. Counting points in projections of non-convex polyhedra. Counting integer
points in polytopes of arbitrary dimensions is classically #P-complete, even for those with
0/1 vertices. In a fixed dimension d, Barvinok famously showed this can be done in poly-
nomial time:

Theorem 1.5 ([Bar93]). Fix d. Given a polytope P ⊂ Rd, the number of integer points in

P ∩ Zd can be computed in polynomial time. Here P is described by a system Ax ≤ b, with
A ∈ Zm×d, b ∈ Zm.

For a set S ⊂ Rd, denote by E(S) := S ∩ Zd. The previous results say that |E(P)|
is computable in polynomial time. Given two polytopes P ⊂ Q ⊂ Rd, we clearly have
|E(Q\P)| = |E(Q)| − |E(P)|. So the number of integer points in a complement can also be
computed effectively.

Theorem 1.5 was later generalized by Barvinok and Woods to count projections of integer
points in polytopes:

Theorem 1.6 ([BW03]). Fix d1 and d2. Given a polytope P ⊂ Rd1 , and a linear trans-

formation T : Zd1 → Zd2, the number of integer points in T (P ∩ Zd1) can be computed in

polynomial time. Here P is described by a system Ax ≤ b and T is described by a matrix

M , where A ∈ Zm×d1 , b ∈ Zm and M ∈ Zd2×d1 .

For a set S ⊂ Rd, denote by E1(S) the projection of S ∩ Zd on the first coordinate, i.e.,

E1(S) := {x ∈ Z : ∃z ∈ Zd−1 (x, z) ∈ S}.

By Theorem 1.6, |E1(P)| can be computed in polynomial time for every polytope P ⊂ Rd.

Recall the class #P, which consists of counting problems where counted objects are
polynomial time verifiable. Solving a #P-complete problem naturally imply solving any NP
problems. We prove the following result:

Theorem 1.7. Given two polytopes P ⊂ Q ⊂ R3, computing |E1(Q\P)| is #P-complete.

In other words, it is #P-complete to compute the size of the set

(1.4) E1(Q\P) = {x ∈ Z : ∃z ∈ Z2 (x, z) ∈ Q\P}.

Note that the corresponding decision problem |E1(Q\P)| ≥ 1 is equivalent to |E(Q\P)| ≥ 1,
and thus can be decided in polynomial time by applying Theorem 1.5.

The contrast between Theorem 1.6 and our negative result can be explained as follows.
The proof of Theorem 1.6 depends on the polytopal structure of P and exploits convexity
in a crucial way. By taking the complement Q\P , we no longer have a convex set. In other
words, we show that projection of the complement Q\P is complicated enough to allow
encoding of hard counting problems, even in R3 (see also §8.5).

Remark 1.8. To illustrate the theorem, consider three examples of polygons P,Q ⊂ R2 as
in Figure 1. Note that the vertical projections of P and Q (as real sets) are the same in all
three cases, but the projections of (Q\P) ∩ Z2 are quite different.

4 DANNY NGUYEN AND IGOR PAK

P PP

Q QQ

Figure 1. Three examples of convex polygons P,Q ⊂ R2.

As an easy consequence of Theorem 1.7 we obtain:

Corollary 1.9. Given r simplices T1, . . . , Tr ⊂ R3, computing |E1(T1 ∪ · · · ∪ Tr)| is #P-
complete.

1.4. Outline of the paper. We begin with notations (Section 2) and a geometric construc-
tion of certain polytopes based on Fibonacci numbers (Section 3). In Section 4 we use this
construction to prove Theorem 1.2 via a reduction of the GOOD SIMULTANEOUS AP-
PROXIMATION (GSA) Problem in Number Theory, which is known to be NP-complete.
The proof of Theorem 1.4 is via a reduction of QSAT (Section 5). The proof of Theorem 1.7
follows a similar route via reduction of #GSA (Section 6). Then we show that a “hybrid”
version of (1.2) and (1.3) with only 2 quantifiers and 2 disjunctions is still NP-complete to
decide (Section 7). Finally, we conclude with final remarks and open problems (Section 8).

2. Notations

We use N = {0, 1, 2, . . .} and Z+ = {1, 2, . . .}.
All constant vectors are denoted a, b, x, y, t etc.
Matrices are denoted A,B,C, etc.
Variables are denoted x, y, z, etc.; vectors of variables are denoted x,y, z, etc.
We write x ≤ y if xj ≤ yj for all i.
A polyhedron is an intersection of finitely many closed half-spaces in Rn.
A polytope is a bounded polyhedron.
Polyhedra and polytopes are denoted by P,Q,R, etc.

3. Geometric constructions and properties

3.1. Fibonacci points. We consider the first 2d Fibonacci numbers:

F0 = 0, F1 = 1, F2 = 1, . . . , F2d−1.

From these, we construct d integer points:

(3.1) φ1 = (F1, F0), φ2 = (F3, F2), . . . , φd = (F2d−1, F2d−2).

Let

(3.2) Φ =
{

φ1, . . . , φd

}

⊂ Z2 and J = [1, F2d−1]× [0, F2d−2] ∩ Z2.

We have Φ ⊂ J . Denote by C the curve consisting of d− 1 segments connecting φi to φi+1

for i = 1, . . . , i− 1.

THE COMPUTATIONAL COMPLEXITY OF INTEGER PROGRAMMING WITH ALTERNATIONS† 5

We also define the following two polygons. Their properties will be mentioned later.

(3.3) R1 =

{

y = (y1, y2) ∈ R2 :

[

y1 ≥ 1
y2 ≤ F2d−2

y2F2d−1−y1F2d−2 ≥ 1

]

}

,

and

(3.4) R2 =

{

y ∈ R2 :
[

y1 ≤ F2d−1

y2 ≥ 0

]

and y2F2i − y1F2i−1 ≤ −2 for i = 1, . . . , d

}

.

The following properties are straightforward from the above definitions:

(F1) The points φ1, . . . , φd are in convex position. The curve C connecting them is convex
(upwards). See Figure 2.

(F2) Each segment (φi φi+1) and each triangle ∆i = (0φi φi+1) have no interior integer
points. This can be deduced from the facts that two consecutive Fibonacci numbers
are coprime, and also

FiFi+3 − Fi+1Fi+2 = (−1)i−1 for all i ≥ 0.

(F3) The set of integer points in J \Φ can be partitioned into 2 parts: those lying strictly
above the convex curve C, and those lying strictly below it.

(F4) The integer points in J \Φ that lie above C are exactly R1 ∩ Z2. This can be seen
as follows. The line ℓ connecting 0 and φd is defined by:

y2F2d−1 − y1F2d−2 = 0.

So every integer point y = (y1, y2) lying above ℓ satisfies:

y2F2d−1 − y1F2d−2 ≥ 1.

By property (F2), there are no integer points y between C and ℓ. The other two
edges of R1 come from J . See Figure 2.

(F5) The integer points in J \Φ that lie below C are exactly R2 ∩ Z2. This can be seen
as follows. The line connecting φi and φi+1 is defined by

y2F2i − y1F2i−1 = −1.

So all integer points below that line satisfy:

y2F2i − y1F2i−1 ≤ −2.

This gives d − 1 edges for R2, one for each 1 ≤ i ≤ d − 1. The other two edges of
R2 come from J . See Figure 2.

3.2. The polytopes. Given α = (α1, . . . , αd) ∈ Qd and ǫ ∈ (0, 12) ∩Q, for each 1 ≤ i ≤ d,
we define a polygon:

(3.5) Pi =
{

(x,w) ∈ R2 : 1 ≤ x ≤ N, αix− ǫ ≤ w ≤ αix+ ǫ
}

.

Next, for each 1 ≤ i ≤ d, we define a new polygon

(3.6) P ′
i =

{

(x, φi, w) : (x,w) ∈ Pi

}

⊂ R4.

Finally, we define the convex hull:

(3.7) P = conv(P ′
1, . . . , P

′
d) ⊂ R4.

The following properties are straightforward from the above definitions:

6 DANNY NGUYEN AND IGOR PAK

R1

R2

0

y2

y1

φd

φ1

. .
.

Figure 2. The points φ1, . . . , φd ∈ Φ form a convex curve C (blue).

(P1) Each Pi is a parallelogram with vertices
{

(1, αi ± ǫ), (N,αiN ± ǫ)
}

.

(P2) Each P ′
i is a parallelogram in R4 (i.e., a Minkowski sum of two intervals), with

vertices
{

(1, φi, αi ± ǫ), (N,φi, αiN ± ǫ)
}

.

(P3) All the vertices of P ′
1, . . . , P

′
d are in convex position. Each P ′

i forms a 2-dimensional
face of P . This follows from (3.6) and (F1).

(P4) The polytope P has 4d vertices, which are all the vertices of P ′
1, . . . , P

′
d.

(P5) For every vertex (x,y, w) of P , we have y = φi ∈ Φ for some 1 ≤ i ≤ d. Conversely,
for every φi ∈ Φ, we have:

{

(x,w) ∈ R2 : (x, φi, w) ∈ P
}

= Pi.

We will be using these properties in the latter sections.

4. Proof of Theorem 1.2

4.1. By a box in Zd, we mean the set of integer points of the form [α1, β1]×· · ·×[αd, βd]∩Z
d.

We will prove the following stronger version of Theorem 1.2.

Theorem 4.1. Given a polytope U ⊂ R6 and two finite boxes I ⊂ Z, J ⊂ Z2, deciding the

sentence

(4.1) ∃x ∈ I ∀y ∈ J ∃z ∈ Z3 : (x,y, z) ∈ U

is an NP-complete problem. Here U is described by a system A (x,y, z) ≤ b, where A ∈ Zm×6

and b ∈ Zm.

Since low dimensional boxes can be easily embedded into higher dimensions, the above
result implies Theorem 1.2 for every d1 ≥ 1, d2 ≥ 3 and d3 ≥ 3. Compared to Theorem 1.2,
all parameters in the above theorem are fixed, except for m. So from now on, the symbols n
and d will be reused for other purposes. For a vector α = (α1, . . . , αd) ∈ Qd and an integer
x ∈ Z, we define

(4.2) {{xα}} = max
1≤i≤d

{{xαi}},

THE COMPUTATIONAL COMPLEXITY OF INTEGER PROGRAMMING WITH ALTERNATIONS† 7

where for each rational β ∈ Q, the quantity {{β}} is defined as:

{{β}} := min
n∈Z

|β − n| = min
{

β − ⌊β⌋, ⌈β⌉ − β
}

.

GOOD SIMULTANEOUS APPROXIMATION (GSA)
Input: A rational vector α = (α1, . . . , αd) ∈ Qd and N ∈ N, ǫ ∈ Q.
Decide: Is there an integer x ∈ [1, N] such that {{xα}} ≤ ǫ?

Note that GSA is only non-trivial for ǫ < 1/2. Also we can assume all αi ≥ 0 in GSA,
simply because {{·}} is an even function. We need the following result by Lagarias:

Theorem 4.2 ([Lag85]). GSA is NP-complete.

Let us emphasize that in GSA, the number d is part of the input. If d is fixed instead,
then the problem can be decided in polynomial time (see [Lag85] and [GLS89, Ch. 5]).
What follows is a reduction of GSA to a sentence of the form (4.1). GSA can be expressed
as an integer programming problem:

(4.3) ∃ x,w1, . . . , wd ∈ Z : 1 ≤ x ≤ N, −ǫ ≤ αix−wi ≤ ǫ.

The inequalities on wi can be expressed as (x,wi) ∈ Pi, where Pi was defined in (3.5).
Letting I = [1, N] ∩ Z, we see that GSA is equivalent to deciding:

(4.4) ∃x ∈ I :

d
∧

i=1

[

∃w ∈ Z : (x,w) ∈ Pi

]

.

Lemma 4.3. Let Φ = {φ1, . . . , φd} be as in (3.2) and P be as in (3.7). We have:

(4.5) {{xα}} ≤ ǫ ⇐⇒ ∀y ∈ Φ ∃w ∈ Z : (x,y, w) ∈ P.

Proof. Indeed, assume {{xα}} ≤ ǫ, i.e., x satisfies GSA. By (4.4), for every i = 1, . . . , d,
there exists wi ∈ Z with (x,wi) ∈ Pi. Now (P5) implies that (x, φi, wi) ∈ P . Since this
holds for every φi ∈ Φ, the RHS in (4.5) is satisfied. For the other direction, assume the
RHS in (4.5) holds. Then for every φi ∈ Φ, there exists wi ∈ Z with (x, φi, wi) ∈ P . By
(P5), we have (x,wi) ∈ Pi. By (4.4), x satisfies GSA, i.e., {{xα}} ≤ ǫ. �

By the above lemma, GSA is equivalent to:

(4.6) ∃x ∈ I ∀y ∈ Φ ∃w ∈ Z : (x,y, w) ∈ P.

Consider J from (3.2), which contains Φ. We can rewrite the above sentence as:

(4.7) ∃x ∈ I ∀y ∈ J
[

(y ∈ J \Φ) ∨ ∃w ∈ Z : (x,y, w) ∈ P
]

.

Recall the polygons R1 and R2 defined in (3.3) and (3.4). By properties (F3), (F4) and
(F5), we can rewrite y ∈ J \Φ as (y ∈ R1) ∨ (y ∈ R2). Now, we can rewrite (4.7) as:

(4.8) ∃x ∈ I ∀y ∈ J
[

(y ∈ R1) ∨ (y ∈ R2) ∨ ∃w ∈ Z : (x,y, w) ∈ P
]

.

Next, define two polytopes R′
1 and R′

2 as follows:

(4.9) R′
i :=

{

(x,y, 0) ∈ R4 : 0 ≤ x ≤ N, y ∈ Ri

}

⊂ R4 for i = 1, 2.

8 DANNY NGUYEN AND IGOR PAK

Polytopes R′
1 and R′

2 are defined in such a way so that for every x ∈ I and y ∈ J , we have
y ∈ Ri if and only if there exists w ∈ Z such that (x,y, w) ∈ R′

i.
1 Now, it is clear that (4.8)

is equivalent to:

∃x ∈ I ∀y ∈ J

[(

2
∨

i=1

∃w ∈ Z : (x,y, w) ∈ R′
i

)

∨

(

∃w ∈ Z : (x,y, w) ∈ P

)]

,

which is equivalent to:

(4.10) ∃x ∈ I ∀y ∈ J ∃w ∈ Z : (x,y, w) ∈ R′
1 ∪R′

2 ∪ P.

The difference between (4.10) and (4.1) is that we have 3 polytopes instead of just one.

4.2. The final step is to combine three polytopes R′
1, R

′
2 and P into one polytope. Recall

from (P4) that P has 4d vertices, which correspond to the vertices of all Pi for 1 ≤ i ≤ d.
The vertices of R1 and R2 can be computed in polynomial time from systems (3.3) and (3.4).
From there we easily get the vertices of R′

1 and R′
2. Since P,R′

1 and R′
2 are in the fixed

dimension 4, we can write down all their facets in polynomial time using their vertices. So
we can represent:

(4.11)

P =
{

(x,y, w) ∈ R4 : A1 (x,y, w) ≤ b1
}

,

R′
1 =

{

(x,y, w) ∈ R4 : A2 (x,y, w) ≤ b2
}

,

R′
2 =

{

(x,y, w) ∈ R4 : A3 (x,y, w) ≤ b3
}

.

The above three systems all have lengths polynomial in the input α, N and ǫ. Next, we
need the following lemma:

Lemma 4.4. Fix n and r. Given r polytopes R1, . . . , Rr ⊂ Rn described by r systems

Ri = {x ∈ Rn : Ai x ≤ bi},

there is a polytope U ∈ Rn+ℓ, where ℓ = ⌈log2 r⌉, such that

(4.12) x ∈
r
⋃

i=1

Ri ∩ Zn ⇐⇒ ∃t ∈ Zℓ : (x, t) ∈ U ∩ Zn+ℓ.

Furthermore, the system A (x, t) ≤ b that describes U can be found in polynomial time,

given Ai’s and bi’s as input.

Proof. Let ℓ = ⌈log2 r⌉, we have 2ℓ ≥ r. Pick t1, . . . , tr ∈ {0, 1}ℓ as r distinct vertices of the
ℓ-dimensional unit cube. Define

Uj = {(x, tj) ∈ Rn+ℓ : x ∈ Rj} for j = 1, . . . , r ,

and
U = conv(U1, . . . , Ur).

In other words, we form Uj by augmenting each Rj with ℓ coordinates of tj. Since t1, . . . , tr
are in convex position, so are the new polytopes U1, . . . , Uj . So the vertices of U are all the

vertices of all Uj . Note that for every t ∈ conv(t1, . . . , tr), we have t ∈ Zℓ if and only if
t = tj for some j. This implies that the only integer points in U are those in Uj’s. In other
words:

(x, t) ∈ U ∩ Zn+ℓ ⇐⇒ x ∈ Rj ∩ Zn and t = tj for some j = 1, . . . , r.

1Such a w must automatically be 0 by the definition of R′
i.

THE COMPUTATIONAL COMPLEXITY OF INTEGER PROGRAMMING WITH ALTERNATIONS† 9

So we have (4.12).
For each Rj , its vertices can be computed in polynomial time from the system Ai x ≤ bi.

From these, we easily get the vertices for each Uj . Thus, we can find all vertices of U
in polynomial time. Note that U is in a fixed dimension n + ℓ, since n and r are fixed.
Therefore, we can find in polynomial time all the facets of U using those vertices. This
gives us a system A (x, t) ≤ b of polynomial length that describes U . �

Applying the above lemma for three polytopes R′
1, R

′
2 and P with n = 4 and r = 3, we

find a polytope U ⊂ R4+ℓ such that:

(4.13) (x,y, w) ∈ (R′
1 ∪R′

2 ∪ P) ∩ Z4 ⇐⇒ ∃t ∈ Zℓ : (x,y, w, t) ∈ U ∩ Z4+ℓ.

Here we have ℓ = ⌈log2 3⌉ = 2, which means t ∈ Z2 and U ⊂ R6. The lemma also allows
us to find a system A (x,y, w, t) ≤ b that describes U , which has size polynomial in the
systems in (4.11). Now, we can rewrite (4.10) as:

∃x ∈ I ∀y ∈ J ∃w ∈ Z : ∃t ∈ Z2 (x,y, w, t) ∈ U,

which is equivalent to

∃x ∈ I ∀y ∈ J ∃z ∈ Z3 : A (x,y, z) ≤ b.

Here z = (w, t) ∈ Z3. The final system A (x,y, z) ≤ b still has size polynomial in the
original input α, N and ǫ. Therefore, the original GSA problem is equivalent to (4.1). This
implies that (4.1) is NP-hard.

Finally, from [Grä88, Th. 3.8], we know that deciding (4.1) is in NP. This concludes the
proof of Theorem 4.1. �

5. Proof of Theorem 1.4

Recall the definition of boxes from Section 4. In this section, we prove:

Theorem 5.1. Fix k ≥ 1. Given a polytope U ⊂ Rk+7 and finite boxes I1, . . . , Ik ⊂ Z,

J ⊂ Z2, K ⊂ Z5, then the problem of deciding:

(5.1) Q1 x1 ∈ I1 . . . Qk xk ∈ Ik ∀y ∈ J ∃z ∈ K : (x,y, z) ∈ U

is ΣP

k complete if Q1 = ∃, and ΠP

k complete if Q1 = ∀. Here Q1, . . . , Qk ∈ {∃,∀} are k

alternating quantifiers with Qk = ∃. The polytope U is described by a system A (x,y, z) ≤ b,

where A ∈ Zm×(k+7) and b ∈ Zm.

Remark 5.2. At this point, it is worth noting that in all of (1.1), (1.2) and (5.1), the
innermost quantifier is always ∃, which is naturally compatible with a system of inequalities.
If the quantifiers are switched and the inner part is still a system, the problem would not
make much sense. Indeed, consider a sentence of the form ∀x∃y ∀zA (x,y, z) ≤ b. Then
if some coefficients of z in A are non-zero, surely some z ∈ Zd3 must violate the system.
So the statement degenerates to the form ∀x∃yA (x,y) ≤ b. So when the quantifiers are
switched, we should also naturally replace the system by a disjunction of inequalities.

Proof. We reduce the canonical Q3SAT problem to (5.1). Let Ψ be a Boolean expression
of the form:

(5.2) Ψ(u1, . . . ,uk) =
N
∧

i=1

(ai ∨ bi ∨ ci).

10 DANNY NGUYEN AND IGOR PAK

Here each uj = (uj1, . . . , ujℓ) ∈ {0, 1}ℓ is a tuple of ℓ Boolean variables, and each ai, bi, ci is
a literal in the set {ujs, ¬ujs : 1 ≤ j ≤ k, 1 ≤ s ≤ ℓ}. From Ψ, we construct a sentence:

(5.3) Q1 u1 ∈ {0, 1}ℓ Q2 u2 ∈ {0, 1}ℓ . . . Qk uk ∈ {0, 1}ℓ : Ψ(u1, . . . ,uk).

Here Q1, Q2, . . . , Qk ∈ {∀,∃} are k alternating quantifiers with Qk = ∃. The numbers ℓ
and N are part of the input.

QUANTIFIED 3-SATISFIABILITY (Q3SAT)
Input: A Boolean expression Ψ of the form (5.2).
Decide: The truth of the sentence (5.3).

For clarity, we use the notation Q3SATk to emphasize problem (5.3) for a fixed k. It

is well-known that Q3SATk is ΣP

k -complete if Q1 = ∃ and ΠP

k -complete if Q1 = ∀ (see
e.g. [Pap94, MM11, AB09]). We proceed to reduce (5.3) to (5.1). In fact, by representing
each Boolean string uj ∈ {0, 1}ℓ as an integer xj ∈ [0, 2ℓ), we will only need to use I1 =

I2 = · · · = Ik = [0, 2ℓ) ∩ Z.

For every string uj = (uj1, . . . , ujℓ) ∈ {0, 1}ℓ , let xj ∈ [0, 2ℓ) be the corresponding
integer in binary. Then ujs is true or false respectively when the s-th binary digit of xj is 1
or 0. In other words, ujs is true or false respectively when ⌊xj/2

s−1⌋ is odd or even. Now,
each term ujs or ¬ujs can be expressed in xj as follows:

(5.4)
ujs ⇐⇒ ∃w ∈ Z : 2sw + 2s−1 ≤ xj ≤ 2sw + 2s − 1,

¬ujs ⇐⇒ ∃w ∈ Z : 2sw ≤ xj ≤ 2sw + 2s−1 − 1.

Let x = (x1, . . . , xk) ∈ [0, 2ℓ)k. Recall that each term ai, bi, ci in (5.2) is ujs or ¬ujs for
some j and s. So each clause ai ∨ bi ∨ ci can be expressed in x as:

(5.5) ai ∨ bi ∨ ci ⇐⇒ ∃w ∈ Z :
[

Di (x, w) ≤ di
]

∨
[

Ei(x, w) ≤ ei
]

∨
[

Fi (x, w) ≤ f i

]

,

where three systems Di (x, w) ≤ di, Ei(x, w) ≤ ei, Fi (x, w) ≤ f i are of the form (5.4)
(with different j and s for each). We define the polytopes:

Ki =
{

(x, w) ∈ Rk+1 : x1, . . . , xk, w ∈ [0, 2ℓ − 1], Di (x, w) ≤ di
}

,

Li =
{

(x, w) ∈ Rk+1 : x1, . . . , xk, w ∈ [0, 2ℓ − 1], Ei (x, w) ≤ ei
}

,

Mi =
{

(x, w) ∈ Rk+1 : x1, . . . , xk, w ∈ [0, 2ℓ − 1], Fi (x, w) ≤ f i

}

.

So the RHS in (5.5) can be rewritten as:

∃w ∈ Z : (x, w) ∈ Ki ∪ Li ∪Mi.

Let I1 = I2 = · · · = Ik = [0, 2ℓ) ∩ Z, we see that (5.3) is equivalent to:

(5.6) Q1 x1 ∈ I1 . . . Qk xk ∈ Ik :

N
∧

i=1

[

∃w ∈ Z : (x, w) ∈ Ki ∪ Li ∪Mi

]

.

For each i, we apply Lemma 4.4 (with n = k+1, r = 3) to the polytopes Ki, Li,Mi ⊂ Rk+1.
This gives us another polytope Gi ⊂ Rk+3 that satisfies:

(x, w) ∈ Ki ∪ Li ∪Mi ⇐⇒ ∃v ∈ Z2 : (x, w,v) ∈ Gi.

THE COMPUTATIONAL COMPLEXITY OF INTEGER PROGRAMMING WITH ALTERNATIONS† 11

Substituting this into (5.6), we have an equivalent sentence:

(5.7) Q1 x1 ∈ I1 . . . Qk xk ∈ Ik :
N
∧

i=1

[

∃w ∈ Z3 : (x,w) ∈ Gi

]

,

where w = (w,v) ∈ Z3, and each Gi ⊂ Rk+3.

Notice that apart from the outer quantifiers, (5.7) is a direct analogue of (4.4), with Gi

playing the role of Pi and (x,w) in place of (x,w). The proof now proceeds similarly to
the rest of Section 4 after (4.4). Along the proof, we need to define G′

i and G in similar
manners to (3.6) and (3.7). The variable y ∈ Z2 is again needed to define G′

i. Φ and J
from (3.2) are reused without change. This gives us G′

i, G ⊂ Rk+5. At the end of the proof,
we also need to apply Lemma 4.4 one more time to produce a single polytope U , just like
in (4.13). The dimension 4 in (4.13) is now k + 5. As a result, the final polytope U has
dimension k + 7. In the final form (5.1), we will have x ∈ Zk,y ∈ Z2 and z = (w, t) ∈ Z5.

We have converted (5.3) to an equivalent sentence (5.1) with polynomial size. This shows
that (5.1) is ΣP

k/Π
P

k -hard when Q1 = ∃/∀. For each tuple x = (x1, . . . , xk), we can check

in polynomial time whether ∀y ∈ J ∃z ∈ K : A (x,y, z) ≤ b by applying Theorem 1.1.

This shows the membership of (5.1) in ΣP

k/Π
P

k . We conclude that (5.1) is ΣP

k/Π
P

k -complete
when Q1 = ∃/∀. �

6. Proof of Theorem 1.7

6.1. Now we prove Theorem 1.7. We use the same construction as in the proof of Theo-
rem 1.2. Recall the definitions of {{xα}} and GSA from Section 4. We reduce the following
counting problem to (1.4):

#GOOD SIMULTANEOUS APPROXIMATIONS (#GSA)
Input: A rational vector α = (α1, . . . , αd) ∈ Qd and N ∈ N, ǫ ∈ Q.
Output: The number of integers x ∈ [1, N] that satisfy {{xα}} ≤ ǫ.

The argument in [Lag85] is based on a parsimonious reduction. Namely, it gives a bijec-
tion between solutions for #GSA and the following problem:

#WEAK PARTITIONS
Input: An integer vector a = (a1, . . . , ad) ∈ Zd.
Output: The number of y ∈ {−1, 0, 1}d for which a · y = 0.

It is well known and easy to see that #WEAK PARTITIONS is #P-complete. The
decision version WEAK PARTITION was earlier shown by [vEB81] to be NP-complete
with a parsimonious reduction from KNAPSACK. Together with Lagarias’s reduction, we
conclude:

Theorem 6.1. #GSA is #P-complete.

12 DANNY NGUYEN AND IGOR PAK

6.2. Now we proceed with the reduction of #GSA to (1.4). WLOG, we can assume αi ≥ 0,
simply because the function {{·}} is even. And just like the decision version, #GSA is only
non-trivial for ǫ < 1/2. Define:

(6.1) Qi =
{

(x,w) ∈ R2 : 1 ≤ x ≤ N, αix+ ǫ < w < αix− ǫ+ 1
}

.

Let I = [1, N] ∩ Z. We have:

Observation 1. An x ∈ I satisfies {{xα}} ≤ ǫ if and only if for every 1 ≤ i ≤ d, there is
no w ∈ Z such that (x,w) ∈ Qi.

Indeed, consider x ∈ I. By (4.3), we have {{xα}} ≤ ǫ if and only if for each i, there
exists wi ∈ Z with wi ∈ [αix − ǫ, αix + ǫ]. This interval of length 2ǫ is contained in
[αix− ǫ, αix− ǫ+1). The latter is a half-open unit interval, which always contains a unique
integer wi. So wi ∈ [αix − ǫ, αix + ǫ] if and only if wi /∈ (αix + ǫ, αix − ǫ + 1). In other
words, for each 1 ≤ i ≤ d, there should be no w ∈ Z with (x,w) ∈ Qi. The converse is also
straightforward.

Remark 6.2. Consider the open right edge w < αix − ǫ + 1 of Qi. We can rewrite it as
ciw < dix+ ei with some ci, di, ei ∈ Z. Now this can be sharpened to ciw ≤ dix+ ei − 1/2
without losing any integer points in Qi. Thus, from now on, we consider Qi a parallelogram
with one open left edge and 3 other closed edges.

By the above observation, #GSA asks for:

(6.2) N − #
{

x ∈ I : ∃1 ≤ i ≤ d ∃w ∈ Z (x,w) ∈ Qi

}

.

We convert the union of Qi into a complement V \U of two polytopes U, V ⊂ R3.

6.3. Let T = 1 +N maxi αi. Pick d integers 0 < m1 < m2 < · · · < md so that

(6.3)
mi−1 +mi+1

2
+ 2T < mi for 2 ≤ i ≤ d− 1.2

We embed each parallelogram Qi into R3 as

(6.4) Ri =
{

(x, y, w) ∈ R3 : (x,w −mi) ∈ Qi, y = i
}

.

In other words, we translate Qi by mi in the direction w, and embed it into the plane y = i
inside R3 (see Figure 3). Each Ri also has an open left edge (see Remark 6.2). The following
is obvious:

Observation 2. For each x ∈ I and 1 ≤ i ≤ d, there exists some w′ ∈ Z with (x,w′) ∈ Qi

if and only if there exists some (y,w) ∈ Z2 with (x, y, w) ∈ Ri.

Denote by Ai, Bi, Ci and Di the vertices of Ri (see Figure 3). Let Ki = (N, i, 0) and
Li = (1, i, 0) for each 1 ≤ i ≤ d. Define:

(6.5)
U = conv

{

Ai, Bi, Ki, Li : 1 ≤ i ≤ d
}

⊂ R3,

V = conv
{

Ci, Di, Ki, Li : 1 ≤ i ≤ d
}

⊂ R3.

Since conv(Ai, Bi,Ki, Li) ⊂ conv(Ci,Di,Ki, Li) for each 1 ≤ i ≤ d, we have U ⊂ V .
Since each Ri has an open left edge, we have:

(6.6) Ri = conv(Ci,Di,Ki, Li)\conv(Ai, Bi,Ki, Li).

Denote by {y = i} the plane y = i.

2Note that we can rescale any strictly concave sequence 0 < µ1 < µ2 < · · · < µd to satisfy this.

THE COMPUTATIONAL COMPLEXITY OF INTEGER PROGRAMMING WITH ALTERNATIONS† 13

Ki

Li

Ai

Bi

Ci

Di

Ri

x
y

w
R1

R2

Rd

Figure 3. The parallelograms Ri.

Observation 3. We have U ∩ {y = i} = conv(Ai, Bi,Ki, Li). Similarly, V ∩ {y = i} =
conv(Ci,Di,Ki, Li).

Indeed, from (6.5), it is clear that conv(Ai, Bi,Ki, Li) lies in both U and the plane y = i.
On the other hand, if (x, i, w) ∈ U , it must be a convex combination of Aj, Bj ,Kj , Lj for
1 ≤ j ≤ d. First, assume that

(6.7) (x, i, w) ∈ conv
{

Aj, Bj ,Kj , Lj : j 6= i
}

.

From (6.1) and (6.4), the w-coordinates of Aj , Bj , Cj,Dj are within the range [mj,mj +T].
For Kj and Lj , their w-coordinates are 0. Therefore, by the convexity condition (6.3),
any point (x, y, w) as in (6.7) must have w < mi − T < mi. This implies that (x, i, w) ∈
conv

{

Ai, Bi,Ki, Li

}

, because the w-coordinates of Ai and Bj are at least mi. So we have

conv
{

Aj , Bj ,Kj , Lj : j 6= i
}

∩ {y = i} ⊂ conv
{

Ai, Bi,Ki, Li

}

.

Combining with Ai, Bi, Ci and Di, we have:

conv
{

Aj , Bj,Kj , Lj : 1 ≤ j ≤ d
}

∩ {y = i} = conv
{

Ai, Bi,Ki, Li

}

.

This proves the observation for U . The same argument works for V .

By Observation 3, for (x, y, w) ∈ Z3, we have (x, y, z) ∈ V \U if and only if

(x, y, w) ∈ conv(Ci,Di,Ki, Li)\conv(Ai, Bi,Ki, Li)

for some 1 ≤ i ≤ d. Combined with (6.6), for every x ∈ I, we have:

∃(y,w) ∈ Z2 (x, y, w) ∈ V \Q ⇐⇒ ∃1 ≤ i ≤ d ∃w ∈ Z (x,w) ∈ Qi.

From (6.2), we conclude that #GSA is exactly:

N − #
{

x ∈ I : ∃(y, z) ∈ Z2 (x, y, w) ∈ V \U
}

= N − |E1(V \U)|.

Letting P = U and Q = V , we have Theorem 1.7.

6.4. Proof of Corollary 1.9. By Theorem 1.7, counting |E1(Q\P)| is #P-complete for
P ⊂ Q ⊂ R3. Nevertheless, the complement Q\P can still be triangulated into polynomially
many simplices T1 ⊔ · · · ⊔ Tr. In fact, by an application of Proposition 5.2.2 in [Woo15],
the systems describing all such Ti can be found in polynomial time. Therefore, counting
|E1(T1 ⊔ · · · ⊔ Tr)| = |E1(Q\P)| is #P-complete. �

14 DANNY NGUYEN AND IGOR PAK

7. Another hard decision problem

Our construction with Fibonacci points also yields the following completeness result with
only 2 quantifiers:

Theorem 7.1. Given three polytopes U1, U2, U3 ⊂ R4 and two boxes I ⊂ Z,K ⊂ Z3,

deciding the sentence:

(7.1) ∃x ∈ I ∀z ∈ K : (x, z) ∈ U1 ∪ U2 ∪ U3

is NP-complete.

Here the condition (x, z) ∈ U1 ∪U2 ∪U3 is expressed as a disjunction of three systems in
four variables x, z1, z2, z3. Instead of many as in (1.3), we only need only 2 disjunctions to
express (x, z) ∈ U1 ∪ U2 ∪ U3. Also notice that the quantifiers are ∃∀ as opposed to ∀∃ in
Theorem 1.1.

Remark 7.2. One way to think of our main result (Theorem 1.2) compared to the Schöning
theorem, see (1.3), as a tradeoff: a long Boolean formula is replaced with a long system at
the cost of extra variables and one more alternating quantifier. In this context, Theorem 7.1
can be viewed as an intermediate result.

Proof of Theorem 7.1. We again find a reduction of GSA. Let T = 1 +N maxi αi. Recall
Pi from (3.5). For every 1 ≤ i ≤ d, define two new polygons:

Li = {(x,w) ∈ R2 : 1 ≤ x ≤ N, −1 ≤ w ≤ αix+ ǫ− 1},

Mi = {(x,w) ∈ R2 : 1 ≤ x ≤ N, αix− ǫ ≤ w ≤ T}.

Observation 4. For every x ∈ [1, N] and 1 ≤ i ≤ d, we have:

(7.2) ∃w ∈ Z : (x,w) ∈ Pi ⇐⇒ ∀w ∈ [−1, T] ∩ Z : (x,w) ∈ Li ∪Mi.

Indeed, by (3.5), we have ∃w ∈ Z : (x,w) ∈ Pi if and only if [αix − ǫ, αix + ǫ] contains
an integer point w. Also notice that [αix− ǫ, αix+ ǫ] ⊂ (αix+ ǫ− 1, αix+ ǫ] and

[−1, T] = [−1, αix+ ǫ− 1] ⊔ (αix+ ǫ− 1, αix+ ǫ] ⊔ (αix+ ǫ, T].

Since (αix+ ǫ− 1, αix+ ǫ] is a half-open unit interval, it contains a unique integer point w.
So w lies in [αix− ǫ, αix+ ǫ] if and only if

[−1, T] ∩ Z =
(

[−1, αix+ ǫ− 1] ⊔ [αix− ǫ, αix+ ǫ] ⊔ (αix+ ǫ, T]
)

∩ Z

=
(

[−1, αix+ ǫ− 1] ⊔ [αix− ǫ, T]
)

∩ Z.

This last condition is exactly the RHS in (7.2).

Recall the Fibonacci points Φ = {φ1, . . . , φd}. We construct L′
i,M

′
i similarly to (3.6) and

L,M similarly to (3.7) using the same Fibonacci points. As a direct analogy to (4.6), GSA
is equivalent to:

(7.3) ∃x ∈ I ∀y ∈ Φ ∀w ∈ [−1, T] ∩ Z : (x,y, w) ∈ L ∪M.

Recall J from (3.2). Let K = J×
(

[−1, T]∩Z
)

, which is a box in Z3. Let z = (y, w) ∈ K.
Also recall R1 and R2 from (3.3) and (3.4). Define

U1 = [1, N] ×R1 × [−1, T], U2 = conv
(

[1, N]×R2 × [−1, T], L
)

, U3 = M.

From properties (F3)–(F5), it is not hard to see that (7.3) is equivalent to:

∃x ∈ I ∀z ∈ K : (x, z) ∈ U1 ∪ U2 ∪ U3.

This completes the proof. �

THE COMPUTATIONAL COMPLEXITY OF INTEGER PROGRAMMING WITH ALTERNATIONS† 15

8. Final remarks and open problems

8.1. It is sufficient to prove Theorem 1.1 for the case when m,n are also bounded. In the
system A (x,y) ≤ b, we view x as the parameters and y as the variables to be solved for.
For a fixed d2 and m ≥ 2d2 , the Doignon–Bell–Scarf theorem [Sch86, §16.5] implies that the
system A (x,y) ≤ b is solvable in y ∈ Zd2 if and only if every subsystem A′ (x,y) ≤ b′ is
solvable. Here A′ is a submatrix with 2d2 rows from A with b′ the corresponding subvector
from b. In other words:

∃y ∈ Zd2 A (x,y) ≤ b ⇐⇒
∧

(A′, b′)

[

∃y ∈ Zd2 A′ (x,y) ≤ b′
]

.

The total number of pairs (A′, b′) is

(

m

2d2

)

, which is polynomial in m.

Note that the conjunction over all (A′, b′) commutes with the universal quantifier ∀x.
Therefore:

∀x ∈ P ∩ Zd1 ∃y ∈ Zd2 A (x,y) ≤ b ⇐⇒
∧

(A′, b′)

[

∀x ∈ P ∩ Zd1 ∃y ∈ Zd2 A′ (x,y) ≤ b′
]

.

Thus, it is equivalent to check each of the smaller subproblems, each of which has m = 2d2 .
Recall that the number of facets in P is n, which can still be large. However, given the
system C x ≤ γ describing P , we can triangulate P into a union of simplices P1 ⊔ · · · ⊔ Pk.
Since the dimension d1 is bounded, we can find such a triangulation in polynomial time (see
e.g. [DRS10]). Now for each pair (A′, b′), we have:

∀x ∈ P ∩ Zd1 ∃y ∈ Zd2 A′ (x,y) ≤ b′ ⇐⇒

k
∧

i=1

[

∀x ∈ Pi ∩ Zd1 ∃y ∈ Zd2 A′ (x,y) ≤ b′
]

.

Each simplex Pi ⊂ Rd1 has d1 + 1 facets. Each subsentence in the RHS now has m = 2d2

and n = d1+1. Note that the total number of subsentences is still polynomial, so it suffices
to check each of them individually.

For three quantifiers ∃x ∀y ∃z, this argument breaks down because the existential quan-
tifier ∃x no longer commutes with a long conjunction.

8.2. By taking finite Boolean combinations, we see that Theorem 1.5 also allows counting
integer points in a union of k polytopes, where k is bounded (see [Bar08, BP99]). In fact,
Woods proved in [Woo15, Prop. 5.3.1] that it is still possible to count all such points in
polynomial time when k is arbitrary. By Corollary 1.9, we see that this is not the case for
projection.

8.3. The GSA Problem plays an important role in both Number Theory and Integer Pro-
gramming especially in connection to lattice reduction algorithms (see e.g. [GLS89]). Let us
mention that via a chain of parsimonious reductions one can show that #GSA is also hard
to approximate (cf. [ER09]). Note also that GSA has been recently used in a somewhat
related geometric context in [EH12].

8.4. An easy consequence of Lemma 4.4 proves the first part of the following result:

Proposition 8.1. Every set S = {p1, . . . , pr} ⊂ Z2 is a projections of integer points of

some convex polytope P ⊂ R2+d, where d ≤ ⌈log2 r⌉. Moreover, the bound d ≤ ⌈log2 r⌉ is

tight.

16 DANNY NGUYEN AND IGOR PAK

We only use the proposition to reduce the dimension of variable z in Theorem 4.1 from
4 to 3, but it is perhaps of independent interest. Note that a weaker inequality d ≤ r is
trivial.

Proof of the second part of Proposition 8.1. Consider a set S = {p1, . . . , pr} of integer points
in convex position and with even coordinates. Assume there is a polytope P ⊂ R2+ℓ with
ℓ < ⌈log2 r⌉ so that S is exactly the projection of P ∩ Z2+ℓ on Z2. Then there are integer
points q1, . . . , qr ∈ Zℓ so that (pi, qi) ∈ P . Since r > 2ℓ, by the pigeonhole principle, we
have qi − qj ∈ 2Zℓ for some i 6= j. Then the midpoint of (pi, qi) and (pj, qj) is an integer

point in Z2+ℓ, which also lies in P by convexity. The projection of this midpoint on Z2 is
(pi + pj)/2, which must lie in S. However, the points in S are in convex position and thus
contain no midpoints, a contradiction. �

8.5. Let us give another motivation behind Theorem 1.7 and put it into context of our
other work. In this paper, we bypass the “short generating function” technology developed
for computing |E1(P)| for convex polytopes P ⊂ Rd. Note, however, that for X = Q\P as
in the theorem, the corresponding short GF fX(t) is simply the difference fQ(t) − fP (t),
which can still be computed in polynomial time (see [Bar93]). Thus, if one could efficiently
present the projection of fX(t) on Z as a short generating function of polynomial size, then
one would be able to compute |E1(Q\P)|, a contradiction. In other words, Theorem 1.7 is
an extension of a result by Woods [Woo04], which shows that projecting short generating
functions is NP-hard. It is also an effective but weaker version of the main result in [NP17b,
Th. 1.3], which deals with the size of short GFs of the projections rather than complexity
of their computation.

8.6. Corollary 1.9 says that computing |E1(T1∪· · ·∪Tk)| is #P-complete even for simplices
Ti ⊂ R3. By a stronger version of Theorem 1.6 (see [BW03]), for each polytope Ti, there
is a short generating function gi(t) representing E1(Ti). The union of all those generating
functions correspond to E1(T1∪· · ·∪Tk). As a corollary we conclude that the union operation
on short generating functions is #P-hard to compute. As in §8.5 above, one should compare
this to a stronger result [NP17b, Th. 1.1], which says that the union of short generating
functions can actually have super-polynomial lengths unless #P ⊆ FP/poly.

8.7. Dimension 3 in Theorem 1.7 is optimal. Indeed, assume P,Q ⊂ R2. Then one can
decompose Q\P = R1∪ · · · ∪Rr, where each Ri is a polygon, so that the projection E1(Ri)
onto the x-axis of each Ri intersects at most one other E1(Rj). This can easily be done by
drawing vertical lines through vertices of P , which together with ∂P will divide Q\P into
R1, . . . , Rr. By Theorem [BW03], we can find a generating function gi(t) for each E1(Ri)
in polynomial time. From Corollary 3.7 in [BW03], the union g(t) of all gi(t) can also be
found in polynomial time, because each of them intersects at most one other in the support.
Evaluating g(1), we get the count for |E1(Q\P)|.

8.8. Note that Theorem 4.1 was proved for dimensions d1 = 1, d2 = 2 and d3 = 3. One can
ask if the problem still remains NP-complete when some of these dimensions are lowered.
Specifically, it would be interesting to see if the following problem is still NP-complete:

∃x ∈ P ∩ Z ∀y ∈ Q ∩ Z2 ∃z ∈ Z2 : (x,y, z) ∈ U,

where P ⊂ R, Q ⊂ R2 and U ⊂ R5 are convex polytopes.

THE COMPUTATIONAL COMPLEXITY OF INTEGER PROGRAMMING WITH ALTERNATIONS† 17

Acknowledgements. We are grateful to Iskander Aliev, Matthias Aschenbrenner, Sasha
Barvinok, Matt Beck, Artëm Chernikov, Jesús De Loera, Matthias Köppe, Sinai Robins
and Kevin Woods for interesting conversations and helpful remarks. The second author
was partially supported by the NSF.

18 DANNY NGUYEN AND IGOR PAK

References

[AB09] S. Arora and B. Barak, Computational complexity: a modern approach, Cambridge Univ. Press,
Cambridge, 2009.

[Bar93] A. Barvinok, A polynomial time algorithm for counting integral points in polyhedra when the
fimension is fixed, in Proc. 34th FOCS, IEEE, Los Alamitos, CA, 1993, 566–572.

[Bar08] A. Barvinok, Integer points in polyhedra, EMS, Zürich, 2008.
[BP99] A. Barvinok and J. E. Pommersheim, An algorithmic theory of lattice points in polyhedra, in

New Perspectives in Algebraic Combinatorics, Cambridge Univ. Press, Cambridge, 1999, 91–147.
[BW03] A. Barvinok and K. Woods, Short rational generating functions for lattice point problems, Jour.

AMS 16 (2003), 957–979.
[DRS10] J. A. De Loera, J. Rambau and F. Santos, Triangulations, Springer, Berlin, 2010.
[Eis10] F. Eisenbrand, Integer programming and algorithmic geometry of numbers, in 50 years of Integer

Programming, Springer, Berlin, 2010, 505–560.
[EH12] F. Eisenbrand and N. Hähnle, Minimizing the number of lattice points in a translated polygon,

in Proc. 24th SODA, SIAM, Philadelphia, PA, 2012, 1123–1130.
[ER09] F. Eisenbrand and T. Rothvoß, New hardness results for Diophantine approximation, in Lecture

Notes Comput. Sci. 5687, Springer, Berlin, 2009, 98–110.
[Grä87] E. Grädel, The complexity of subclasses of logical theories, Dissertation, Universität Basel, 1987.
[Grä88] E. Grädel, Subclasses of Presburger arithmetic and the polynomial-time hierarchy, Theoret. Com-

put. Sci. 56 (1988), no. 3, 289–301.
[GLS89] M. Grötschel, L. Lovász and A. Schrijver, Geometric algorithms and combinatorial optimization,

Springer, Berlin, 1988.
[Kan90] R. Kannan, Test sets for integer programs, ∀∃ sentences, in Polyhedral Combinatorics, AMS,

Providence, RI, 1990, 39–47
[Kan92] R. Kannan, Lattice translates of a polytope and the Frobenius problem, Combinatorica 12

(1992), 161–177.
[Lag85] J. Lagarias, The computational complexity of simultaneous Diophantine approximation prob-

lems, SIAM J. Comput. 14 (1985), 196–209.
[Len83] H. Lenstra, Integer programming with a fixed number of variables, Math. Oper. Res. 8 (1983),

538–548.
[MM11] C. Moore and S. Mertens, The nature of computation, Oxford Univ. Press, Oxford, 2011.
[NP17a] D. Nguyen and I. Pak, Complexity of short Presburger arithmetic, in Proc. STOC 2017, to

appear.
[NP17b] D. Nguyen and I. Pak, Complexity of short generating functions, preprint; arXiv:1702.08660.
[Pap94] C. H. Papadimitriou, Computational complexity, Addison-Wesley, Reading, MA, 1994.
[Sch86] A. Schrijver, Theory of linear and integer programming, John Wiley, Chichester, 1986.
[Sch97] U. Schöning, Complexity of Presburger arithmetic with fixed quantifier dimension, Theory Com-

put. Syst. 30 (1997), 423–428.
[vEB81] P. van Emde Boas, Another NP-complete partition problem and the complexity of computing

short vectors in a lattice, Math. Dept. Report 81–04, Univ. Amsterdam, April 1981, 10 pp.
[Woo04] K. Woods, Rational Generating Functions and Lattice Point Sets, Ph.D. thesis, University of

Michigan, 2004, 112 pp.
[Woo15] K. Woods, Presburger arithmetic, rational generating functions, and quasi-polynomials, J. Symb.

Logic 80 (2015), 433–449.

