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i__~. Many beautiful and important results of the theory of invariants admit odd and 
super analogs. 

The principal object of attention in this theory is the structure of the graded G-module 
S(V) for a given G-module V. The odd analog of the symmetric algebra S(V) is the exterior 
algebra A(V), and its superanalog is the algebra E(V) = S(V) ® A(V). The important role of 
the latter in many algebraic and homological constructions was clarified by A. Weyl. We 
therefore call E(V) the Weyl algebra, It is bigraded: EP,q(v) = SP(V) ® Aq(v), and the 
structure of its isotypical components relative to the group action is conveniently described 
by the Poincare series: 

P~ (t, s) ~-- ~. rn~,q (~) tvsq.~ ( 1 ) 
~o,q 

where ~ is an irreducible representation of G, and m~ ~(~) the multiplicity of the occurrence 
of this • representation in the decomposition of EP,q(~. ~ For a compact group G we have the 
formula 

P~ (t, s ) =  1%~ (g) det 11 ÷- STtT (g)(g) dg, ( 2 ) 
G 

where x~(g) is the character of ~, T the action of G in the space V and dg normalized Haar 
measure on G. 

Unfortunately, this formula is rarely convenient for practical calculations, since it 
requires a knowledge of the character of the representation ~ and summation of a large number 
of terms. At the same time it is well known (see [i] or [2], Sec. V.5, Exercises) that, if 
G is the finite group generated by reflections in the space V, then the algebra of invariants 
E(¥) G is itself isomorphic to an algebra of type S(V 0) ® A(V I) and its Poincare series has 
the form 

i=I t - - t  ~i ' (3) 

where dl .... , d n are the degrees of the basis invariants of G in S(V). It was further ob- 
served in [3-5] that when V =R n, and G is either the symmetric group S(n) acting by permuting 
coordinates; or the group C(n) = S(n) x z2n, acting by permuting coordinates and changing 
their signs; or, finally the unique proper subgroup D(n) = S(n) x Z2 n-l of C(n) containing 
S(n) as a proper subgroup - the expression P~G(t, 0) for all ~ can be given by a simple multi- 
plicative formula. Formally speaking, this formula looks as if the isotypical component in 
question were a free module of rank 1 over some free commutative graded algebra. 

In this paper we shall prove a superanalog of this assertion for the groups S(n) and 
C(n) (below, Sec. 2, Theorem i), and also give a combinatorial interpretation of the multi- 
plicities. The statement of the problem and the formulation of the results are due to the 
first author, the proof and the combinatorial interpretation to the second. 

The authors are indebted to S. M. Arkhipov and A. V. Zelevinskii for fruitful discussions. 

2. We present the standard definitions necessary for the sequel (see [6, 7]). 

A partition is a nonincreasing sequence h = (ll, X 2 ..... 7~ n) of nonnegative integers 

such that I XI = EX k < ~. 

The diagram of a partition I is the set of pairs (i, j) e Z 2, satisfying the inequali- 
ties 1 <- j ~ lj. 
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We let l' = (I~', .... An', ...) denote the partition dual to ~, whose diagram is ob- 

tained from that of I by transposition: (i, j) + (j, i). 

The hook length of an element (i, j) of the diagram of I is the number h(i, j) = h i + 

ij' -- i -- j + i. 

We recall, in addition, that the equivalence classes of the irreducible representations 
of S(n) are enumerated by the partitions I with IXl = n, and those of the irreducible repre- 
sentations of C(n) by the ordered pairs of partitions (I, D) with Ill + I~I = n. 

We shall write PX (resp., PI,D) for P~ if w is a representation of class I (resp., of 
class (~, ~)). 

THEOREM i. The following formulas are valid: 

pC(n) k , ~ t :  

pS(•) (4) "~ = H ti "~ stj for G = S (n), 
( i , k ) ~  t - - t  ~(~' j) 

H t2 i -~ st23q -1 t2k+l ..+_ st 2t 
l__t,h(~,j)  H l__t2h(k,l) for G = C (n). (5) 

Remark I. Formulas (4) and (5) show that the isotypica! components, as graded spaces, 
are isomorphic to the free module of rank 1 over some graded free supercommutative algebra. 

Remark 2. The irreducible representations of the group D(n) are obtained by restric- 
tion of the irreducible representations ~i i, of C(n) with I = D, with the exception of the 
special representations z%-, which are obtained by restriction of ~I,I" 

This means that there are generally no formulas of type (4) and (5) for the irreducible 
representations of D(n). 

3. We shall show that the first assertion of Theorem i follows from the second. 

LEMMA i. The following equality is valid: 

P[y~) (t, s) = pfc,o (t~, ,~0 t'~lP~ ('~ (t~, ~t-~). ( 6 )  

To prove the lemma we shall need an explicit description of the representation ~ of type 
(I, D). As is known, this is given by 

.C(n)  
~,,  ~ = tnaco~l)xc(l~l) ( ~  × ~'~), ( 7 )  

where ~I' denotes the representation of ~h~ group C([I]) which coincides on S([A[) with ~I 
and is trivial on the normal subgroup Z2| |; v~ denotes the representation of C(l~ I) which 
coincides on S(IDI) with ~ and on the normal subgroup Z2~ with the sign representation. 

It follows from (7), (2) and Frobenius' formula for the character of the induced repre- 
sentation (see, e.g., [8]) that equality (6) need be proved only in the "extreme" cases, 
when either D = ~ or I = ~. In the first case this follows from the fact that the invariants 
of the Weyl algebra E (R n) relative to the group Z2 n, acting by reflections in the coordinate 

2 2 hyperplanes, themselves form a Weyl algebra with even generators x I , ..., x n and odd gen- 
erators xldxl, .... xndx n. In the second case we are interested in the elements of E (R n) 
which are antisymmetric relative to Z2 n. It is easy to see that they form a free module of 
rank I with generator xlx2...x n over the algebra of symmetric elements generated by the even 
generators xl 2, ..., Xn 2 and theodd generators x~-Idxi, .... Xn-ldxn . This completes the 
proof of the lemma 

4__~. We now proceed to the combinatorial interpretation of the coefficients mp,q(~). 
We recall two more standard definitions. 

A table of type I is a function f on a diagram I, taking nonnegative integer values, 
such that the sets 1 ~ = {(i, j) e llf(i , j) ~ k} are also diagrams of partitions. 

It is convenient to represent the elements of a diagram not by points (i, j) but by 
square cells with centers at these points; the table is obtained by entering the values of 
f in the cells. 

The weight of a sequence k = (kl, k 2 .... ) of nonnegative integers is the sequence 
~(k) = (~0(k), D1(k) .... ), where ~i(k) = #{jlkj = i}. Weights remain unchanged when the 
terms of the original sequence are permuted. 
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We now define the corresponding superanalogs. 

A supertable of type I is a function f = (f0, fl) on a diagram l, taking values in 
Z+xZS and such that f0, f0 + fl are ordinary tables. It is convenient to represent a super- 
table by inserting in each cell (i, j) the number f0 (i, j) and calling it white if fz (i, j)= 
0 and black if fl (i, j) = i. 

A supertable f of type ~ is said to be regular if the set Ak, e = {(i, j) e Iif o (i, j) = 
k, fl (i, j) = e} contains at most one cell in each column when e = 0 and at most one cell 
in each row when e = i. 

The superweight of a sequence k = (kl, k2, ...) of black and white numbers is the pair 
of sequences ~(k) = (D' (k), B" (k)), where ~' (k) is the weight of the subsequence of white 
numbers and u"(k) that of the subsequence of black numbers. 

To each superweight ~ = (~', D") there corresponds an S(IDl)-module M ~ which is con- 
structed by the following rule: 

Inds0~.Dxs0~,,p(IQsgn). (8) 

Now, in  t h e  Weyl a l g e b r a  E (Rn),  we c o n s i d e r  a monomial of  t h e  form x l k z . . . x n k d x z  e l  h 

... h dxnen. The superweight of this monomial is defined as the superweight of the sequence 
(k I .... , kn), where kj is considered white or black according as ej = 0 or i. 

The following result is obvious: 

LEMMA 2. The set of monomials of superweight ~ in the Weyl algebra generates a submodule 

isomorphic to M~. 

The proof follows directly from the definition of induced module (see [8]). 

Let Kl, ~ denote the multiplicity with which the irreducible representation I occurs in 

the module M~. If ~" = 0, this is the classical Kostka number, for which several combina- 
torial interpretations have been known for some time. The quantity in which we are inter- 
ested may be expressed in terms of a superanalog of the Kostka number, as follows: 

P~ (t, s) - ~  K~,~,~)tl~'(~,a)lsl~"(~,e)l,: (9) 

as is directly evident from the decomposition of the Weyl algebra into submodules generated 
by monomials of the given superweight. 

5__~. The problem is thus reduced to looking for a generating function for superanalogs 
of the Kostka numbers. To that end we must first understand the combinatorial interpreta- 
tion of the numbers Kl,~(k,e). 

Let us define the superweight of a supertable as the superweight of the sequence 
IAk,elke0,ee{0,z}. Then Kl,~(k,e) is equal to the number of regular supertables of super- 

weight ~ and type I (see [i0]). We shall give a new combinatorial interpretation of the 
superanalogs of the Kostka number, equivalent to the classical one but for which the gener- 
ating function is easily calculated. 

A colored table of type ~ is a function f = (f0, fl) on a diagram ~, taking values in 
Z+ x Z 2 and such that g (i, j): = f0 + fl (i - j) - i is an ordinary table. As before, we 
shall call the number entered in a cell (i, j) e I white or black according as fl (i, j) = 0 
or fl (i, j) = i. 

The superweight of a colored table is defined like that of a supertable. 

In our new terms, the number Kl,~(k,s) is equal to the number of colored tables of 

superweight u and type I. To prove this assertion we need the following combinatorial 

LEMMA 3. The number of supertables of type ~ and superweight ~ is equal to the number 
of colored tables of type ~ and superweight ~. 

The idea of the proof consists in the explicit construction of a bijection between the 
two sets: given a supertable, we shall construct a colored table. To that end we succes- 
sively fill up the sets (i, j) e A(k,e ) with numbers, increasing k, e until the whole 

174 



diagram I has been filled. With this done, we obtain at each step a colored table of type 
Ak, s and super weight ~(~.~),obtained by restricting the length of the sequence p' and ~" to (k) 
and (k - I+E), respectively. Thus, we must demonstrate the passage from a colored table of 

type Ak,0 to Ak,1 or from a table of type Ak_1, l to Ak, 0. We shall discuss the first case 

in detail. 

Let us fill Ak,:\Ak, 0 with black numbers just as if we were filling up a standard table. 
By the definition of a supertable and the set Ak,s, all these numbers equal k and in each row 
there is at most one cell filled with a black number k. We now "advance" these cells along 
the rows as much as possible, i.e., exchange the values of a cell x containing a black number 
k and of the neighboring cell y (i, j), which contains a white one, if 

10 (y) - i >  k - ] - t ( , )  
It is easy to see that if condition (*) is fulfilled only the increment to f changes 

within a row, while the order in the columns is preserved, i.e., after (*) has been satisfied 
in succession for all the rows containing black k's, we obtain a colored table of type Ak, I 
with the same superweight as the corresponding supertable of type Ak, I. For the second case 
the procedure is analogous: rows are replaced with columns by "advancing" white cells con- 
taining k whenever 

/ (y)  + ] > k -- i -- i. (**) 

Thus, it remains to prove that the correspondence thus constructed is bijective° This 
is obvious if one proceeds as follows. The inverse correspondence can be constructed induc- 
tively, by singling out horizontal and vertical strips, operating in the reverse order. It 
is then obvious that the correspondence is invertible, hence also bijective. 

We now go back to the quantity (9), for which we wish to obtain an explicit expression. 
If K~,~(k,e) is summed over all ~ in our new terms, we see that the coefficient of tPsq in 

(9) is exactly equal to the number of colored tables in which the sum of all numbers is p 
and the number of black numbers q. it is now not difficult to write down the generating 
function° Indeed, recall that every colored table of type I is a function ~ = (f0, fl) on 
the diagram % such that ~ = (fo e , 0) + (f0", fl), where f0' is an ordinary table and 

i , / :  (~, ]) = 0 ,  
f ° ' ( i '  J )  = , ] , / I ( L ] )  = t .  Hence i t  i s  c l e a r  t h a t  t h e  g e n e r a t i n g  f u n c t i o n  f o r  t h e  number o f  

colored tables is the product of the generating functions for ordinary tables and for the 
"coordinate" colored tables. But the first generating function is well known (see [6, 9]) 

and is equal to ~ l d.J)~ l--ti'(~'~) ' where the coefficient of tP' is the number of tables with 

p'. As to the second generating function, it is obviously equal to ~ (t i + stJ), where 

the coefficient of tP"sq is the number of "coordinate" colored tables in which the sum of 
all numbers is p" and the sum of black numbers q. 

We have thus proved 

THEOREM 2. The following formula is valid: 

l~  t ~ +sV (~)tPsq, (10) 
__ih(i,J) = Z mp,q 

(i, ~)~k p ,  q 

where  mp,q i s  t h e  number o f  c o l o r e d  t a b l e s  in  which  t h e  sum o f  a l l  numbers i s  p and t h e  number 
o f  b l a c k  numbers  i s  q.  

We t h u s  o b t a i n  f rom (9)  and ( 1 0 ) :  

t ~ + st j 
F~, (t ,  s)  = ]-[  i - t"( ~, J) " ( l  l )  

d ,  i) :-7~ 

which proves Theorem 1. 
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ONE-DIMENSIONAL SCHRODINGER OPERATOR WITH UNBOUNDED POTENTIAL: 

THE PURE POINT SPECTRUM 

W. Kirsch, S. A. Molchanov, and L. A. Pastur UDC 517.946 

i. INTRODUCTION 

In a recent article [i], Simon and Spencer established a simple general criterion for 
the absence of an absolutely continuous spectrum for the one-dimensional Schrodinger operator 
with unbounded potential. This criterion has definitive and especially simple form in the 
discrete case of an operator h acting on 12(Z ) defined by the operation 

(h¢)(x) = - ¢  (x + t) - ¢ (x - t) + q (x)¢ (x), z ~ z.  ( 1 . 1 )  

That  i s ,  a c c o r d i n g  t o  [1] t h e  o p e r a t o r  h does  n o t  have  an a b s o l u t e l y  c o n t i n u o u s  component  in  

its spectrum if lim[q(x)] = lim [q(x)[ = ~, i.e., if the potential is unbounded for x ÷ ±~. 

An analogous result is true for an operator h(O), defined on /~(Z+) by operation (i.i) 
and boundary conditions 

( - - i )  cos 0 - -  ~ (0) sin O = O, ( 1 . 2 )  

where  O e [0 ,  4)  i s  t h e  b o u n d a r y  p e r i o d .  The p e r i o d  can be a r b i t r a r y .  I t  i s  c l e a r  t h a t  t h e  
c o n d i t i o n  o f  u n b o u n d e d n e s s  o f  t h e  p o t e n t i a l  in  t h i s  c a s e  i s  i n t r o d u c e d  o n l y  f o r  x + + ~ .  

I d e a  o f  t h e  P r o o f .  Le t  t h e  s e q u e n c e  o f  p o i n t s  x j ,  j = O, ±1,  . . .  ( c o o r d i n a t e s  o f  t h e  

peaks )  be chosen  such t h a t  ~ [q ( x j ) [  -1 < ~ .  We c o n s i d e r  the  b l o c k  o p e r a t o r  K o b t a i n e d  by 
3 

by the impositio_n of conditions ~(xj) = 0 at the peak points. From the resolvent identity 
fir pair h and h, it is not difficult to see that for nonreal z, the difference (h - z) -I - 
(h - z) -I is the sum over j of rank 2 operators, the norm of each of which does not exceed 
const'lq(xj)[ -I. Therefore the nuclear norm of this difference is finite, and then the re- 
quired assertion follows from the point spectrum of h and the stability of the singular 
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