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Abstract. For uniform random 4-colorings of graph edges with colors {a, b, c, d}, every
two colors form a 1

2
-percolation, and every two overlapping pairs of colors form independent

1
2
-percolations. We show joint positive dependence for pairs of colors ab, ac and ac,

and joint negative dependence for pairs of colors ab, ac and bc. The proof is based on
a generalization of the Harris–Kleitman inequalities. We apply the results to crossing
probabilities for the colored bond and site percolation, and to colored critical percolation
that we also define.

Introduction. The study of percolation goes back to the 1957 paper by Broadbent and
Hammersley [4] and has been incredibly popular in the last few decades across the sciences.
It remains one of the most applied statistical models, reaching far corners of statistical
physics and probability, and fields as disparate a materials science, network theory and
seismology, see e.g. [15, 33, 27].

Despite remarkable recent advances, many problems remain open and continued to be
actively pursued, see e.g. [2, 8, 16, 24]. Note that specific models of percolation wary greatly
depending on the scientific context and applications. Here we consider the colored bond
(site) percolation, where each graph edge (vertex) takes random color, see e.g. [22, 33, 36].

As one studies random events, one is naturally concerned about their correlations. The
Fortuin–Kasteleyn–Ginibre (FKG) inequality [12] is a basic tool to establish positive de-
pendence for percolation and related models, see e.g. [9, 25, 35]. This inequality shows
that every two increasing (or two decreasing) random events are positively correlated (see
below).

The FKG inequality is itself an advance generalization of the Harris–Kleitman inequality
[18, 21] discovered independently in probability and graph theory. Outside of its funda-
mental applications to statistical physics and probability, it has numerous applications in
graph theory [6, 19], order theory [10, 29] and algebraic combinatorics [5].

We are interested in generalizations of the Harris–Kleitman inequality to multiple func-
tions, which has also been intensely studied but remains largely mysterious [13, 23, 26].
More precisely, we establish positive dependence for three pairwise independent percolations
and generalize it further to k percolations such that every (k − 1) of them are mutually
independent.

Positive correlation in percolation. We first illustrate the power of the Harris–Kleitman
inequality. Let G = (V,E) be a simple graph, which can be finite or infinite. Consider a p-
percolation defined by independently at random deleting edges of G with probability (1−p).
We write Pp(x ↔ y) for the probability that vertices x, y ∈ V are connected.

In its basic application, the Harris–Kleitman inequality proves a positive correlation of
connectivity of two pairs of vertices:

(1) Pp(x ↔ y, u ↔ v) ≥ Pp(x ↔ y)Pp(u ↔ v),
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for all x, y, u, v ∈ V . Equivalently, this says that the probability that two vertices are
connected increases if some other two vertices are connected, even if these two vertices
are quite far in the graph: Pp(x ↔ y |u ↔ v) ≥ Pp(x ↔ y). This easily implies that
the critical probability pc = sup

{
p : Pp(x ↔ ∞) = 0

}
is independent on the vertex x

in every connected graph, see e.g. [3, 15]. For the case when G = Z2 is a square lattice,
Harris proved that pc ≥ 1

2 in the original paper [18]. Famously, Kesten [20] established the

equality pc =
1
2 twenty years later.

More generally, a subset A ⊆ 2E is called closed upward, if A + e ∈ A for every A ∈ A
and e ∈ E ∖ A. Similarly, A is closed downward, if A− e ∈ A for every A ∈ A and e ∈ A.
We think of A as graph property, and write Pp(A) for the probability that the property
holds for a p-percolation. In this notation, the Harris–Kleitman inequality states that

(2) Pp(A ∩ B) ≥ Pp(A)Pp(B),

for every two closed upward A,B. For A = {H : x ↔ y} and B = {H : u ↔ v} we
obtain (1). Note that (2) holds also for every two closed downward A,B.

Positive dependence in colored percolation. Let f : E → {a, b, c, d} be a uniform
random coloring of the edges of G, where each edge is colored uniformly and independently.
This gives a random partition E = Ea ⊔ Eb ⊔ Ec ⊔ Ed, where Es = f−1(s) for a color
s ∈ {a, b, c, d}.

For every two distinct colors s, t ∈ {a, b, c, d}, denote Est := Es ∪ Et . One can think
of Est as either a 1

2 -percolation or a random uniform spanning subgraph of G. Note that
Eab, Eac and Ebc are pairwise independent, but not mutually independent. Our main result
establishes their negative dependence:

Theorem 1. Let U ,V,W be closed upward graph properties. Denote by Uab, Vac and Wbc

the corresponding properties of Eab, Eac and Ebc, respectively. Then the events Uab, Vac

and Wbc are pairwise independent, but

(3) P(Uab ∩ Vac ∩Wbc) ≤ P(Uab)P(Vac)P(Wbc),

where the probability is over uniform random colorings f : E → {a, b, c, d}. Similarly,

(4) P(Uab ∩ Vac ∩Wad) ≥ P(Uab)P(Vac)P(Wad),

where Wad is the property of Ead .

Since all Est are 1
2 -percolations, we can rewrite the RHS of both (3) and (4) as a more

symmetric product:

(5) P 1
2
(U)P 1

2
(V)P 1

2
(W).

For example, let E = {e}, so that G is a graph with one edge, and let U = V = W be
properties of containing e. The LHS of (3) is zero since we always have Eab∩Eac∩Ebc = ∅.
Similarly, the LHS of (4) is 1

4 since Eab∩Eac∩Ead = Ea. On the other hand, the product (5)

is 1
8 since P 1

2
(U) = P 1

2
(V) = P 1

2
(W) = 1

2 .

Proof of Theorem 1. Since Eab and Eac are independent 1
2 -percolations, this implies

that events Uab and Vac are also independent. This proves the pairwise independence part.
We prove (3) by induction on the number of edges in E. For E = ∅, the inequality is

trivial. Fix an edge e ∈ E. Consider the probability space of colorings of E − e. For an
event Xab ⊆ 2E , denote by X+

ab the subset of Xab such that f(e) ∈ {a, b}. Similarly, denote

by X−
ab the subset of Xab such that f(e) ∈ {c, d}.
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By the symmetry, we have:

P
(
Xab : f(e) = a

)
= P(Xab : f(e) = b) = 2P 1

2
(X+),

P
(
Xab : f(e) = c

)
= P(Xab : f(e) = d) = 2P 1

2
(X−).

Clearly, P 1
2
(X ) = P 1

2
(X−) + P 1

2
(X+). When X is closed upward, we also have P 1

2
(X−) ≤

P 1
2
(X+). We use this notation for X ∈ {U ,V,W} and all pairs of colors.

Considering all possible colors of e and using the induction hypothesis, we have:

P(Uab ∩ Vac ∩Wbc) = P
(
U+
ab ∩ V+

ac ∩W−
bc

)
+ P

(
U+
ab ∩ V−

ac ∩W+
bc

)
+ P

(
U−
ab ∩ V+

ac ∩W+
bc

)
+ P

(
U−
ab ∩ V−

ac ∩W−
bc

)
≤ 2

(
P
(
U+
ab

)
P
(
V+
ac

)
P
(
W−

bc

)
+ P

(
U+
ab

)
P
(
V−
ac

)
P
(
W+

bc

)
+ P

(
U−
ab

)
P
(
V+
ac

)
P
(
W+

bc

)
+ P

(
U−
ab

)
P
(
V−
ac

)
P
(
W−

bc

))
.

Simplifying the notation as above, the RHS is equal to:

2
(
P 1

2
(U+)P 1

2
(V+)P 1

2
(W−) + P 1

2
(U+)P 1

2
(V−)P 1

2
(W+)

+ P 1
2
(U−)P 1

2
(V+)P 1

2
(W+) + P 1

2
(U−)P 1

2
(V−)P 1

2
(W−)

)
=

(
P 1

2
(U+) + P 1

2
(U−)

)(
P 1

2
(V+) + P 1

2
(V−)

)(
P 1

2
(W+) + P 1

2
(W−)

)
−
(
P 1

2
(U+)− P 1

2
(U−)

)(
P 1

2
(V+)− P 1

2
(V−)

)(
P 1

2
(W+)− P 1

2
(W−)

)
≤ P 1

2
(U)P 1

2
(V)P 1

2
(W),

as desired. The proof of (4) goes along the same lines. □

Variations and generalizations. First, note that we never use the graph structure, and
the theorem can be viewed as a result about abstract set systems, cf. [1, 21]. In particular,
it applies to the site percolation (see below). Note also that the theorem can be extended to
the p-percolation for all 0 ≤ p ≤ 1, but the resulting coupling of percolations then require
seven colors and have somewhat inelegant probabilities [14].

Curiously, for closed downward properties, the inequalities in the theorem hold reverse:

(6) P(Uab ∩ Vac ∩Wbc) ≥ P(Uab)P(Vac)P(Wbc)

and

(7) P(Uab ∩ Vac ∩Wad) ≤ P(Uab)P(Vac)P(Wad).

The proofs follow verbatim the proofs in the theorem.

Next, we generalize the theorem to larger number of events. Start by taking k in-
dependent 1

2 -percolations E1, . . . , Ek on the same graph. Define a new 1
2 -percolation

Ek+1 :=
⊕

Ei mod 2, where the edge e is present if and only if it is present in an odd
number of Ei’s. Observe that every k of E1, . . . , Ek+1 are mutually independent.

Then, for every closed downward properties X1, . . . ,Xk+1 we have:

(8) P
(
X1 ∩ · · · ∩ Xk+1

)
≥ P(X1) · · · P(Xk+1).

Once again, the proof follows verbatim the proof of the theorem.
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Note that for k = 1, we have E1 = E2 and (8) is the Harris–Kleitman inequality (2).
For k = 2, let

f(e) :=


a if e ∈ E1 ∩ E2

b if e ∈ E1, e /∈ E2

c if e ∈ E2, e /∈ E1

d if e /∈ E1, e /∈ E2

Taking U := X1 , V := X2 and W := X3 , we have (8) coincides with (6).
Finally, one can easily obtain a colored version with m = 2k colors. E.g., for k = 3,

take a uniform random coloring f : E → {1, . . . , 8}. Consider four pairwise independent
1
2 -percolations E1234, E1256, E1357 and E1467 with natural labeling. Note that every three
of these are mutually independent. Then, for closed downward properties U ,V,W and X ,
the inequality (8) gives:

P(U1234 ∩ V1256 ∩W1357 ∩ X1467) ≥ P(U1234)P(V1256)P(W1357)P(X1467).

Probability of the majority. The simplest nontrivial example in the theorem is when
U = V = W is the property of having > m edges, where |E| = 2m+1. The graph structure
is irrelevant in this case, and we have P 1

2
(Uab) =

1
2 . A direct calculation in this case gives:

P(Uab ∩ Vac ∩Wbc), P(Uab ∩ Vac ∩Wad) → P 1
2
(U)3 = 1

8

as m → ∞. This shows that both (3) and (4) are asymptotically tight in this case.

Crossing probabilities in a rectangle. Let G = (V,E) be a n× (n+1) rectangle as in
Figure 1. Consider a uniform random coloring f : E → {a, b, c, d}. Note that Eab, Eac and
Ead are pairwise independent bond 1

2 -percolations with free boundary conditions (BC). Let
U = {12 ↔ 34} be the connectivity property of the opposite sides of G, and recall that
P 1

2
(Uab) =

1
2 , see e.g. [3]. Then (4) gives:

(9) P
(
Uab ∩ Uac ∩ Uad

)
≥ P 1

2
(U)3 = 1

8 ,

for all n ≥ 1. On the other hand, by the pairwise independence we have:

P
(
Uab ∩ Uac ∩ Uad

)
≤ P

(
Uab ∩ Uac

)
= P 1

2
(U)2 = 1

4 .

Note that as a function of p the crossing probability in a rhombus under p-percolation has
a sharp threshold [3], so the trivial lower bound is unhelpful:

P
(
Uab ∩ Uac ∩ Uad

)
≥ P(Ua) = P 1

4
(U) → 0 as n → ∞.

For n = 30, the sampling of N = 4 · 107 trials gives an approximation P
(
Uab ∩Uac ∩Uad

)
=

0.125098± 0.000052. We conjecture that this probability is 1
8 in the limit n → ∞.

2 3
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1

2 3

4

56

x

1

2 3

41

2 3

4

n

n+1

m

m

1

2 3

4

ab

ac

bc
5

6

Figure 1. Crossing probabilities in a rectangle, rhombus and a hexagon.
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Crossing probabilities in a rhombus. Let G = (V,E) be am-rhombus on the triangular
lattice, see Figure 1. Consider a uniform random coloring f : V → {a, b, c, d}. Note that Vab,
Vac and Vad are pairwise independent site 1

2 -percolations with free BC. Let U = {12 ↔ 34}
and U ′ = {14 ↔ 23} be connectivity properties of the opposite sides of G. Recall that
P 1

2
(Uab)+P 1

2
(U ′

cd) = 1 by a topological argument, so P 1
2
(U) = P 1

2
(U ′) = 1

2 by the symmetry.

Then (3) and (4) give:

(10)
P
(
Uab ∩ Uac ∩ Ubc

)
≤ P 1

2
(U)3 = 1

8 ,

P
(
Uab ∩ Uac ∩ Uad

)
≥ P 1

2
(U)3 = 1

8 ,

for all m ≥ 1. We conjecture that

P
(
Uab ∩ Uac ∩ Ubc

)
→ 1

8 and P
(
Uab ∩ Uac ∩ Uad

)
→ 1

8 as m → ∞.

If this holds, we also have other similar limits, e.g.

P
(
Uab ∩ Uac ∩ U ′

bc

)
= P 1

2
(U)2 − P

(
Uab ∩ Uac ∩ Uad

)
→ 1

8 .

This is in contrast with limits such as P
(
Uab∩Ubc∩Ucd

)
which can be computed by Watts’

formula [34] (see also [7, 28]). Finally, we note that P
(
Uab ∩ Uac ∩ Ubc

)
is bounded away

from zero. To see this, partition the rhombus into four parallelograms (see Figure 1), so
the desired probability is bounded by the crossing probabilities:

P
(
Uab ∩ Uac ∩ Ubc

)
≥ 2P 1

2

(
15 ↔ab 46, 15 ↔ac 46

)
P 1

2

(
52 ↔bc 63

)
≥ 2 1

42
1
22

= 1
32 .

This bound can be improved to 9
128 by a careful use of the inclusion-exclusion. In the

limit m → ∞, this bound can be further improved since these crossing probabilities can be
computed by Cardy’s formula [3, 15].

Crossing probabilities in a hexagon. Consider a regular hexagon G = (V,E) on the
triangular lattice with side lengths ℓ, see Figure 1. Consider a site 1

2 -percolations with free

BC as above. Let U :=
{
∃x ∈ V : x ↔ 12, x ↔ 34, x ↔ 56

}
be the joint connectivity

property of the percolation graph. It was computed by Simmons [30] (see also [11]), that
P 1

2
(U) = 0.2556897... in the limit ℓ → ∞. Consider a uniform random coloring f : V →

{a, b, c, d}. Then (4) gives:

P 1
2
(U)2 = 0.0653772... ≥ P

(
Uab ∩ Uac ∩ Uad

)
≥ P 1

2
(U)3 = 0.0167162...

in the limit ℓ → ∞. Similarly, the inequality (3) gives:

P
(
Uab ∩ Uac ∩ Ubc

)
≤ P 1

2
(U)3 = 0.0167162...

in the limit ℓ → ∞. For ℓ = 30, the sampling of N = 64000 trials gives P
(
Uab∩Uac∩Uad

)
=

0.0172 ± 0.0005 and P
(
Uab ∩ Uac ∩ Ubc

)
= 0.0166 ± 0.0005. We conjecture that both

probabilities are P 1
2
(U)3 = 0.0167162... in the limit ℓ → ∞.

New critical probability. Let G = (V,E) be an infinite connected graph. Consider a
uniform random coloring f : E → {a, b, c, d}. For a vertex x ∈ V , consider

(11) P (x) := P
(
x ↔ab ∞, x ↔ac ∞, x ↔ad ∞

)
,

where x ↔st ∞ means that x belongs to an infinite cluster of st-colored edges. Now (4)
gives:

(12) P 1
2

(
x ↔ ∞)2 ≥ P (x) ≥ P 1

2

(
x ↔ ∞)3.
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Suppose G = (V,E) is a lattice with critical probability pc <
1
2 . For α ∈ [0, 14 ], consider

a random 5-coloring f : E → {a, b, c, d, ⋄}, where the probabilities of colors a, b, c, d are α,
and the probability of ⋄ is (1 − 4α). Then Eab, Eac and Ead are pairwise independent
2α-percolations. Denote by Pα = Pα(x) the probability given by (11) in this deformation.
Define the following critical probability for the colored percolation:

αc := sup
{
α : Pα(x) = 0

}
.

Now (12) implies that αc ≤ 1
2 pc while the examples above suggest αc =

1
2 pc . The numerical

experiments also seem to confirm this. We tested the colored bond and site percolations on a
triangular lattice with pc = 2 sin π

18 = 0.3473... and pc =
1
2 , respectively [31]. Similarly, we

tested the colored bond and site percolations on a cubic lattice G = Z3 with pc = 0.2488...
and pc = 0.3116..., respectively (see e.g. [32]). The results are given in Figure 2.

Figure 2. Colored bond/site percolations in triangular and cubic lattices.

Conclusions. The subject of positive dependence for colored percolation is largely unex-
plored and can be viewed as a special case of algebraic inequalities for cumulants of positive
functions. The latter has been actively studied (see [13, 23] for recent references), but the
type of inequalities we consider are new.

In full generality, our results extend the Harris–Kleitman inequality (2) to multiple pair-
wise independent events. This allows us to give lower and upper bounds on the mutual
dependence of these events, and to define critical constants αc for a deformation of the
colored percolation. Our lower and upper bounds are asymptotically tight for the con-
jectured crossing probabilities of the colored percolation on lattices, exhibiting the same
phenomenon as the majority property.

Acknowledgements. We are grateful to Matija Bucić, Swee Hong Chan, Tom Hutchcroft,
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