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nance of soda, sulphuric acid, and chlorine, which distinguishes
it from the Ottawa. It is an interesting geographical feature of
these two rivers, that they each pass through a series of great
lakes in which the waters are enabled to deposit their mechanical
impurities, and thus are rendered remarkably clear and trans-
parent.

The presence of large amounts of silica in river-waters is a
fact but rccently established. Until the late analyses by H.
St.-Claire Deville of the rivers of France*, the silica in water
had generally been overlooked wholly or in great part; and, as
he suggests, had, from the mode of analysis, been confounded
with gypsum. (The purity of the silica in all my determinations
was established by the blowpipe.) The importance in an agri-
cultural point of view of this large amount of dissolved silica,
where river-waters are employed for the irrigation of theland, is
very great : and geologically, the fact is not less significant, as
it marks a decomposition of the siliceous rocks by the action of
waters holding in solution carbonic acid, and the organic acids
arising from the decay of vegetable matters, which, dissolving the
alkalies, the lime and magnesia, from the native silicates, libcrate
the silicic acid in a soluble form. Silica is never wanting in
natural waters, whether neutral or alkaline, although proportion-
ally less abundant in neutral waters which contain large amounts
of earthy ingredients. The alumina, whose presence is not less
constant, although in much smaller quantity, appears equally to
belong to the soluble constituents of the waters. The amount
of dissolved silica annually carried to the sea by the rivers must
be very great; yet sea-watcr, according to Forchammer, does
not contain any considerable quantity in solution ; it doubtless
goes to form the shields of Infusoria, and may play an important
part in the consolidation of the ocean sédiments and the silifica-
tion of organic remains.

Montreal, March 1, 1857.

XXXVII. On a Problem in the Partition of Numbers.
By A. CaviEey, Esq.t

IT is required to find the number of partitions into a given
number of parts, such that the first part is unity, and that
no part is greater than twice the preceding part.
Commencing to form the partitions in question, these are

11111111111 &e.;
l12 112222
121234

* Annales de Chimie et de Physique, 1848, vol. xxiii. p. 32.
+ Communicated by the Author.
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and if we were to proceed to the 4-partitions, each 3-partition
ending in 1 would give rise to two such partitions ; each 3-par-
tition ending in 2 to four such partitions; each 3-partition end-
ing in 3 to six such partitions; and each 38-partition ending in
4 to ejght such partitions. We form in this manner the Table—

Ending in

Number of 1‘2'3'4,5'6]7'8,9'10|11|12|13|14115l16 Totals.
1-partitions.| 1 1
2-partitions.| 1| 1 2
8-partitions.| 2| 2{ 1/ 1 6
4-partitions.| 6/ 6| 4/ 4 2/ 2| 1: 1 26
5-partitions. '26/26/20]20(14/14]1010/6 |64 |41212{111| 166
&e.
And we are thus led to the series

1

1, 2

1,2 4,6

1, 2, 4, 6, 10, 14, 20, 26

&e. ;

where, considering O as the first term of each series, the first
differences of any series are the terms twice repeated of the next
preceding series: thus the differences of the fourth series are
1,1,2,2, 4,4, 6,6. It is moreover clear that the first half
of each series is precisely the series which immediately precedes
it. We need, in fact, only consider a single infinite series, 1, 2,
4, 6, &c. It is to be remarked, moreover, that in the column of
totals, the total of any line is precisely the first number in the
next succeeding line.

Consider in general a series A, B, C, D, E, &c., and a series
A, B, C, D', B, &c. derived from it as follows :—

Al=1A

B'=2A

C'=2A+B

D'=2A+2B

E'=2A + 2B+ C

F=2A+2B+2C

&ec.;
viz. the first differences of the series 0, A/, B!, C', D/, E/, &c. are
A, A, B, B,C,C, &. Then multiplying by 1, 2, 2%, &c. and
adding, we have '
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Al + B2+ C'2® 4 &c. = (1 422+ 22%+...)(A + B2® 4+ Cz* + &e.)
=12 (44 Bat+ Cot  8c).

And if we form in a similar manner A", B", C" D", &c. from
A, B, C', D, &c. and so on, we have

AT Bz 4+ O+ e, = 152 (A4 Bla® 4 Ol 1 &e)
142142
T1—-z1-2°
and so on. Write A=1, and suppose that the process is repeated
an indefinite number of times, we have

1+2.1+2%. 1+2%. &e.
148z +€x%+ B2 + &e. = {7 =2 = o
And the coefficients 1, 38, €, B, &c. are precisely those of the
infinite series 1, 2, 4, 6, &. We have more simply
1

14+82+C€2%+ B>+ &e. = T = =P (=2 &e.
which gives rise to the following very simple algorithm for the
calculation of the coefficients :—

, 8,4, 5 6, 7, 8 9, 10,11, 12, 13, 14, 15, 16
, 4, 6, 9,12, 16, 20, 25, 30, 36, 42, 49, 56

(A+Bat+ CaB+ &e.),

Lo
W | oM

-

™

1, 8, 4, 6, 9,12, 16,20, 25, 30, 36, 42, 49, 56, 64, 72
0,0,00; 1, 8 4 610, 14, 20, 26, 85, 44, 56, 68
1, 2, 4, 6,10, 14, 20, 26, 35, 44, 56, 68, 84, 100, 120, 140
0,000 0 0 0, 0;1, 2, 4 6, 10, 14, 20, 26
1]2]4, 610,14, 20, 26| 36, 46, 60, 74, 94, 114, 140, 166|
&e. .

The last line is marked off into ieriods of (reckoning from the
beginning) 1, 2, 4, 8, &c.; and by what has preceded, the series
which gives the number of 1-partitions, 2-partitions, 3-partitions,
&c. is found by summing to the end of each period and doubling
the results; we thus, in fact, obtain (1), 2, 6, 26, 166, 1626,
&c.: and the same series is also given by means of the last terms
of the several periods.

The preceding expression for 1+ B+ €2% 4 &c. shows that
B, €, &c. are the number of partitions of 1, 2, 8, 4, 5, 6, &c.
respectively into the parts 1, 1/, 2, 4, 8, &c.: and we are thus
led to—

Theorem. The number of 2-partitions (first part unity, no part
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greater than twice the preceding one) is equal to the number of
partitions of 2°~'—1 into the parts 1, 1/, 2, 4,...2°"%. Or,
again, it is equal to twice the sum of the number of partitions of
0,1, 2,...2°7?—1 respectively into the parts 1,1/, 2, 4, ...2*~°
(where the number of partitions of O counts for 1).

For example, the partitions of 0, 1, 2, 3, &c. with the parts
1,1,2,,.are

()

1, v

141, 141, 1'4+1, 2

14141, 14141, 14141, V4+1'+1, 2+1, 241,
the numbers of which are 1, 2, 4, 6. Hence, by the first part
of the theorem, the number of 8-partitions is 6, and by the
second part of the theorem, the number of 4-partitions is

2(1+2+4+6)=26.

2 Stone Buildings,
March 17, 1527.

XXXVIII. On the Connezion of Catalytic Phenomena with
Allotropy. By C. 8. SCHONBEIN*,

THE number of the pheenomena hitherto made known which

have been named catalytic, or actions by contact, has
already become tolerably large, and will daily increase. Both
Berzelius, who was the first to direct attention to these enigma-
tical phenomena, and Mitscherlich, who has also devoted much
time to their investigation, have carefully abstained from ex-
Ppressing even an opinion as to their ultimate cause. For if the
one used the word ‘ Cafalysis,” and the other the expression
“ Action by contact,” neither, if I have rightly understood them,
considered these terms to imply any explanation. A peculiar
class of facts was to be briefly distinguished ; and if these names
have been misused in science, these illustrious inquirers are cer-
tainly not to blame.

I am of opinion that the time is now come when many of the
catalytic phenomena may be better understood than hitherto;
that 1s, may be referred to another series of facts which have
been made known within the last few years. I allude to the
remarkable capacity which many simple bodies possess of under-
going, under the influence of imponderable and ponderable
agents, essential changes in the complex whole of their proper-
ties. This kind of material change ﬁerzelius has distinguished

* Translated by Dr. E. Atkinson from Poggendorff’s Annales, vol. c. p. 1.



