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Abstract. We show that the sorting probability of the Catalan poset Pn satisfies δ(Pn) =

O
(
n−5/4

)
.

1. Introduction

The sorting probability of a poset P , see below, is an interesting measure of independence of
linear extensions of P . Originally introduced in connection with sorting under partial information
by Kislitsyn (1968) and Fredman (1975), it came to prominence as the subject of the celebrated
1
3 – 2

3 Conjecture, see [Tro]. The conjecture received further acclaim in 1980s after a remarkable
breakthrough by Kahn and Saks [KS], but remains open in full generality. We refer to [CPP, §1.3]
for a recent overview of the literature and further references.

In this paper we study the sorting probability δ(Pn) of a Catalan poset Pn on 2n elements,
which is defined as a product of a chain with 2 elements and with n elements: Pn := C2 × Cn.
The name comes from the fact that the number of linear extensions of Pn is the Catalan number :

e(Pn) = Cat(n) :=
1

n+ 1

(
2n

n

)
.

With over numerous combinatorial interpretations and countless literature, Catalan numbers are
extremely well studied, see e.g. [S1, S2]. It is thus remarkable that δ(Pn) has been out of reach
until now.

Formally, for a finite poset P = (X,≺), let LP denote the set of linear extensions of P , and let
e(P ) := |LP |. The sorting probability δ(P ) is defined as

δ(P ) := min
x,y∈X

∣∣P[L(x) ≤ L(y)] − P[L(y) ≤ L(x)]
∣∣ ,

where L ∈ LP is a uniform linear extension of P . The 1
3 – 2

3 Conjecture mentioned above, claims

that δ(P ) ≤ 1
3 for all finite posets P .

Theorem 1. For the Catalan poset Pn, we have δ(Pn) = O
(
n−5/4

)
.

Until recently, there were very few results in this direction. First, it was shown by Linial, that
δ(Pn) ≤ 1

3 , and in fact this holds for all posets of width two [Lin]. For indecomposable posets P of
width two, this general bound was slightly improved by Sah to δ(P ) < 0.3225 [Sah]. In an online
discussion about for Catalan posets, the second author improved this bound to δ(Pn) < 0.2995,
by comparing x = (1, 17), y = (2, 3) and taking n large enough [P2]. In a different direction,
Olson and Sagan showed in [OS], that δ(Pλ) ≤ 1

3 , for all Young diagrams λ ` n, s.t. λ 6= (n),
(1n).

In our recent paper [CPP], we showed that δ(Pn) = O
(
n−1/2

)
, giving the first bound that

δ(Pn) → 0 as n → ∞. Thus Theorem 1 is a substantial improvement over this result. More
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generally, we showed that δ(Pλ) = O
(
n−1/2

)
, for all partitions λ ` n with bounded length

` = `(λ), and such that λ` = Ω(n). The tools in [CPP] rely on technical results in Algebraic
Combinatorics. Here we present a more direct computation giving better bounds.
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Figure 1. Catalan poset P4, linear extension L ∈ LP4
, Young diagram λ = (4, 4), the

corresponding standard Young tableau A ∈ SYT(λ), and Dyck path γ : (0, 0)→ (8, 0).

We have several motivations for studying the Catalan posets. On the one hand, they are a
natural special case of general Young diagram posets Pλ, and Theorem 1 is perhaps an indication
how sharp the general bounds in [CPP] are. On the other hand, they are closely related to the
behavior of Brownian excursion, via the standard bijection from standard Young tableaux A of
shape (n, n) to Dyck paths γ : (0, 0)→ (2n, 0), see Figure 1.

Curiously, the sorting probability has a natural probabilistic interpretation in terms of Dyck
paths:

P
[
L(1, a) < L(2, b)

]
= P

[
γ passes above (a+ b− 1, a− b)

]
,

see Proposition 2. For example, for A ∈ SYT(4, 4) as in the figure, let a = 5 and b = 2. Then we
have A(1, 5) < A(2, 2), and the corresponding path γ is above point p = (5, 2). Unfortunately the
standard probabilistic tools for the Brownian excursion are too weak to establish Theorem 1, but
they do give the right heuristic idea of how to approach the problem (see §5.1). Thus we resort
to a direct asymptotic analysis of the sorting probabilities.

Notation. We write C1(ε), C2(ε), . . . to denote (effectively computable) positive constants that
depend on a fixed parameter ε > 0, but not on n. Similarly, we write C1, C2, . . . to denote
(effectively computable) absolute constants that do not depend on ε. In the paper, we identify Pn
with Young diagram (n, n), and linear extensions LPn with standard Young tableaux SYT(n, n),
see Figure 1. Here we use the matrix coordinates, so e.g. L(2, 3) = 7, for L as in the figure.

2. Sorting probability via lattice paths

Throughout the paper, let I =
[
n
10 ,

9n
10

]
and J =

[√n
10 , 10

√
n
]
. Our approach to proving

Theorem 1 is to carefully analyze the sorting probability function Rn(h, z) : I×J → [0, 1], defined
as follows:

(2.1) Rn(h, z) := P
[
L(2, h− z) < L(1, h)

]
, where h ∈ I, z ∈ J .

Consider the lattice paths γ in N2 from (0, 0) to (n, n), which move up and to the right and
do not go below (Southeast) of the main diagonal (0, 0)–(n, n). Denote by Cat(n) the set of such
paths. Our intuition comes from the following combinatorial interpretation already mentioned in
the introduction.

Proposition 2. The sorting probability function Rn(h, z) is equal to the probability of a lattice
path γ ∈ Cat(n) to pass Southeast (SE) of the point (h− z − 1

2 , h−
1
2).

Proof. This follows from the bijection between lattice paths γ ∈ Cat(n) and linear extensions
L ∈ LPn via standard Young tableaux A ∈ SYT(n, n), as shown in Figure 1. Formally, let up-
steps correspond to a square in the first row, and right-steps to squares in the second row. The
details are straightforward. �
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The next two lemmas describe the local behavior of the sorting probability function Rn(h, z),
in essence estimating discrete partial derivatives in both directions. These lemmas are key to the
proof of Theorem 1. We prove the theorem in Section 3 and the lemmas in Section 4.

To simplify the notation, we extend this function to all real numbers: Rn(h, z) := Rn
(
bhc, bzc

)
.

Lemma 3. For all h ∈ I and z ∈ J , the sorting probability function satisfies:

(2.2) Rn
(
h,
√
n/10

)
≤ 1

4
and Rn(h, 10

√
n) ≥ 3

4
,

and

(2.3)
C1√
n
≤ Rn(h, z + 1)−Rn(h, z) ≤ C2√

n
,

where C1, C2 > 0 are universal constants, and n is large enough.

In other words, the function Rn(h, ·) is increasing and passing over 1/2 at some point in the
interval J .

Lemma 4. For all h ∈
[
n
10 ,

n+z+1
2

]
⊂ I and z ∈ J , the sorting probability function satisfies:

(2.4) Rn(h, z) = Rn(n+ z − h, z) ,

and

(2.5) C3
n− 2h+ z

n2
≤ Rn(h, z) − Rn(h+ 1, z) ≤ C4

n− 2h+ z

n2
,

where C3, C4 > 0 are universal constants, and n is large enough.

In other words, the function Rn(·, z) is symmetric, bimodal, and attains its minimum value at
h = bn+z2 c. See Figure 2 and 5 for an illustration.

Figure 2. Left: Graph of the function S(r, t) defined in §5.1, which coincides with the
limit surface of the sorting probability Rn(h, z) when n→∞. We also draw the red plane
at height 1

2 to indicate positions of the best sorting pairs x = (1, h) and y = (1, h − z).
Right: The intersection between the plane and the surface on the left picture when n =

1000. The plot is the function z = f(h) that minimizes
∣∣Rn(h, z)− 1

2

∣∣ for h ∈ [0, n].

In fact, the symmetry follows from the central symmetry of the Catalan poset Pn:

P
[
L(2, b) < L(1, a)

]
= P

[
L(2, n− a) < L(1, n− b)

]
,

which proves (2.4).
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3. Proof of Theorem 1

By Lemma 3, there exists z ∈ J , so that

(3.1)
1

2
− C2√

n
≤ Rn

(
n/2, z

)
≤ 1

2
.

Let h0 := n/2−Kn3/4, where the constant K > 0 will be determined later. We have:

Rn(h0, z) = Rn
(
n/2, z

)
+

bKn3/4c∑
k=0

Rn(h0 + k, z) − Rn(h0 + k + 1, z)

≥(2.5) Rn
(
n/2, z

)
+ C3

bKn3/4c∑
k=0

|k − z|
n2

≥ Rn
(
n/2, z

)
+ C3

(
K n3/4

)2
4n2

≥(3.1)
1

2
− C2√

n
+
C3K

2

4
√
n
.

Taking K := 2
√

C2
C3

, we get

(3.2) Rn(h0, z) ≥
1

2
.

It then follows from (3.1) and (3.2), that

Rn
(
n/2, z

)
≤ 1

2
≤ Rn

(
h0, z

)
.

Hence, there exists an integer h1 ∈ [h0, n/2], such that Rn(h1 + 1, z) ≤ 1
2 ≤ Rn(h1, z). We

conclude:

1

2
− Rn(h1 + 1, z) ≤ Rn(h1, z) − Rn(h1 + 1, z) ≤(2.5) C4

2Kn3/4 + 10
√
n

n2
= O

(
n−5/4

)
.

This completes the proof of the theorem. �

Example 5. The construction in the proof is quite delicate, as it is fundamentally discrete rather
than continuous. In Figure 3, we show the graph of Rn(h, z) with n = 1000 and two values:
z = 33 and z = 34. In the former case, the function intersects 1

2 , and h1 = 439 as in the proof.

In the latter case, the function is always above 1
2 .

Figure 3. Functions R1000(h, 33) and R1000(h, 34).
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4. Proof of lemmas

4.1. Preliminaries. For 0 ≤ a ≤ b, denote by f(a, b) the number of paths γ : (0, 0) → (a, b)
above diagonal y = x.

Lemma 6 (The ballot theorem, see e.g. [Fel, §III.1]). For 0 ≤ a ≤ b,

f(a, b) =

(
a+ b

a

)
−
(
a+ b

a− 1

)
=

(
a+ b

a

)
b− a+ 1

b+ 1
.

Let pn(a, b) be the probability that the lattice path γ ∈ Cat(n) passes through the point (a, b).
By definition,

pn(a, b) =
f(a, b) · f(n− b, n− a)

Cat(n)
.

Lemma 7 ([MP2, Thm 3.3]). Fix ε,K > 0. We have:

(4.1) pn(h− z, h) ≤ C1(ε) · (z + 1)2

n3/2
e−z

2/n ,

for εn ≤ h ≤ (1− ε)n, and 0 ≤ z < h, and C1(ε) a constant independent of n. Furthermore,

(4.2) C2(ε,K)
(z + 1)2

n3/2
≤ pn(h− z, h) ≤ C3(ε,K)

(z + 1)2

n3/2
for 1 ≤ z ≤ K

√
n ,

where h, z as above, and C2(ε,K), C3(ε,K) > 0 are constants independent of n.

In fact, when n→∞, the constants in the theorem are computed explicitly in [MP2], but only
the upper and lower bounds are needed in the proof of Lemmas 3 and 4.

Let qn(a, b) denote the probability that the lattice path γ ∈ Cat(n) passes through both
(a, b− 1) and (a, b). Similarly, let rn(a, b) denote the probability that the lattice path γ ∈ Cat(n)
passes through points (a, b− 1), (a, b) and (a, b+ 1). From Lemma 7, we immediately have:

(4.3) rn(h− z, h) ≤ qn(h− z, h) ≤ pn(h− z, h) ≤ C1(ε) · (z + 1)2

n3/2
e−z

2/n

This immediately gives the upper bound in

(4.4) C4(ε,K)
(z + 1)2

n3/2
≤ rn(h−z, h) ≤ qn(h−z, h) ≤ C3(ε,K)

(z + 1)2

n3/2
for 1 ≤ z ≤ K

√
n ,

The lower bound in (4.4) follows from

rn(a, b) =
f(a, b− 1) · f(n− b− 1, n− a)

Cat(n)
= pn(a, b)

(n− b)(b− a)(b− a+ 2)(b+ 1)

(2n− a− b)(b− a+ 1)2(a+ b)
.

Indeed, for b = h and a = h− z = b− o(b), one can take C4(ε,K) = C2(ε,K)/5 for h > εn large
enough.

4.2. Proof of Lemma 3. By Proposition 2, the sorting probability function Rn(h, z) is the
probability that the vertical step at height h of a random lattice path γ ∈ Cat(n) happens at
x ≥ h− z. This gives:

(4.5) Rn(h, z) =

z∑
k=1

qn(h− k, h).

Since qn(h− k, h) ≥ 0, it then follows that Rn(h, ·) is an increasing function for every h.
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Now set ε = 1
10 , K = 10, and let εn ≤ h ≤ (1− ε)n. We have:

Rn
(
h,
√
n/10

)
=

√
n/10∑
k=1

qn(h− k, h) ≤(4.4)

√
n/10∑
k=1

C3(ε,K)
(k + 1)2

n3/2

≤ C3(ε,K)

(√
n/10

)3
n3/2

=
C3(ε,K)

1000
.

A direct computer calculation shows that

C3

(
1
10 , 10

)
1000

<
1

4
.

This proves the first inequality in (2.2).

On the other hand, we have:

Rn
(
h,K
√
n
)

=

K
√
n∑

k=1

qn(h− k, h) = 1 −
∑

k>K
√
n

qn(h− k, h)

≥(4.3) 1 − C1(ε)
∑

k>K
√
n

(z + 1)2

n3/2
e−z

2/n

& 1 − C1(ε)

∫ ∞
K

x2e−x
2
dx.

A direct computer calculation shows that for ε = 1
10 and K = 10, we have:

C1

(
0.1
) ∫ ∞

10
x2e−x

2
dx <

1

4
.

This proves the second inequality in (2.2).

For (2.3), let h ∈ I, z ∈ J be as in the lemma. We have:

Rn(h, z + 1) − Rn(h, z) =(4.5) qn(h− (z + 1), h)

and the bounds now follow from (4.2). This completes the proof of the Lemma 3. �

4.3. Bimodality. The following lemma is used in the proof of Lemma 4 in the next section.

Lemma 8. Let h ∈ [1, n − 1]and z ∈ [1, h − 1]. Then Rn(h, z) > Rn(h + 1, z) if and only if
h ≤ 1

2(n+ z).

Proof. Let A = (h− z+ 1/2, h+ 1/2) and B = (h− z− 1/2, h− 1/2) be two points in the plane.
By Proposition 2, the sorting probabilities Rn(h + 1, z) and Rn(h, z) are probabilities that the
lattice path γ ∈ Cat(n) passes to SE of the points A and B, respectively. Denote by N1 and N2,
respectively, the numbers of these paths. Then we have:

Rn(h, z) − Rn(h+ 1, z) =
1

Cat(n)

(
N2 − N1

)
.

Let x := h + 1 − z. Denote by M1 and M2 the number of paths γ ∈ Cat(n) which contain
segments (x− 2, h)→ (x, h) and (x− 1, h− 1)→ (x− 1, h+ 1) , respectively. Note that N2−N1

is exactly the difference between the numbers of paths passing below point A but above B, and
the paths passing left of A but right of B. Thus, N2 −N1 = M2 −M1.
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x-1

h
A

B

(0,0)

(     )n,n

Figure 4. The two types of paths in the proof of Lemma 8, with M1 counting
blue paths and M2 red paths.

We have:

M1 = f(x− 2, h) f(n− h, n− x) =

(
x+ h− 2

x− 2

)(
2n− x− h
n− h

)
(h− x+ 3)(h− x+ 1)

(h+ 1)(n− x+ 1)
,

M2 = f(x− 1, h− 1) f(n− h− 1, n− x+ 1) =

(
x+ h− 2

x− 1

)(
2n− x− h
n− h− 1

)
(h− x+ 3)(h− x+ 1)

h(n− x+ 2)

and therefore:

M2 − M1 =

(
x+ h− 2

x− 1

)(
2n− x− h
n− h− 1

)
(h− x+ 1)(h− x+ 2)(h− x+ 3)(n− x− h+ 1)

h(h+ 1)(n− h)(n− x+ 2)
.

The last expression is ≥ 0 if and only if h+ x ≤ n+ 1, and the result follows. �

4.4. Proof of Lemma 4. Equation (2.4) is proved earlier. For (2.5), from the proof of Lemma 8
we have:

Rn(h, z) − Rn(h+ 1, z) =
M2

Cat(n)

(z + 1)(n− 2h+ z)

(h+ 1)(n− h)
= rn(h− z, z) (z + 1)(n− 2h+ z)

(h+ 1)(n− h)
.

Since z ∈ J , we have:

rn(h− z, z) =(4.2) Θ

(
1√
n

)
.

On the other hand, since h ∈ I and z ∈ J , we have:

(z + 1)(n− 2h+ z)

(h+ 1)(n− h)
= Θ

(√
n

n2
(
n− 2h+ z

))
.

Combining these two asymptotics, we conclude:

Rn(h, z) − Rn(h+ 1, z) = Θ

(
n− 2h+ z

n2

)
.

This proves (2.5) and completes the proof of Lemma 4. �
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5. Final remarks and open problems

5.1. The sorting probability function Rn(h, z) is the discrete version of the continuous function

S(t, r) := P
[
B+

0 (t) ≥ r
]
,

where B+
0 is the Brownian excursion on [0, 1], defined as the standard Brownian motion condi-

tioned on the event B+
0 (0) = B+

0 (1) = 0 and B+
0 (t) > 0, for all t ∈ (0, 1). It has the following

explicit density formula (see e.g., [IM, Pit]):

S(t, r) =
2√

2πt3 (1− t3)

∫ r

0
x2 exp

(
−x2

2t(1− t)

)
dx,

see Figure 2. It is shown by Kaigh [Kai] that Rn(h, z) converges to S
(
h
n ,

z√
2n

)
as n → ∞.

Unfortunately, the error terms of this convergence are too weak to imply Theorem 1. See Figure 5
for a plot comparing functions S and R200 side by side, and note that these graphs appear nearly
identical on this scale.

Figure 5. Left: The plot of Rn(tn,
√
n/2), where t ∈ (0, 1) and n = 200. Right: The

plot of the probability 1− S(t, r), where t ∈ (0, 1) and r =
√

2/4.

5.2. Lemma 7 proved in [MP2] is one of many results in the context of the limit shape of pattern
avoiding permutations, see e.g. [Kit] for an extensive overview of pattern avoidance. Many strongly
related results are obtained in this direction, too many to list. Let us single out papers [AM, MP1]
which are independent of [MP2], but cover the same pattern avoidance problem which translates
into asymptotics of Dyck paths. Let us also mention two followup papers [HRS1, HRS2] which
rederives and extends results in [MP1, MP2] via Brownian excursions.

5.3. In answering the second author’s question [P2], Richard Stanley found the following curious
limit formulas:

(5.1) lim
n→∞

E
[
L(1, k − 1)

]
= 2k −

k
(
2k
k

)
4k−1

, lim
n→∞

E
[
L(2, k)

]
= 2k +

k
(
2k
k

)
4k−1

,

where the expectation is over random L ∈ L(Pn). The limits for probabilities P
[
L(1, a) < (2, b)

]
for fixed a > b ≥ 1 also exist, but much less elegant. Stanley asked whether there are elegant
expectation formulas similar to (5.1), for other partitions λ = nα.

In principle, using the technology in [KS, Saks], one can use (5.1) to show that δ(Pn) < 1
e + ε

for all ε > 0 and n large enough. Note that in [CPP] we already showed that δ(Pλ) = O(1/
√
n)

for the general TVK case λ = nα.
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5.4. It would be interesting to see how tight Theorem 1 is. Let

(5.2) α := lim inf
n→∞

log δ(Pn)

log n
and β := lim sup

n→∞

log δ(Pn)

log n
.

We conjecture that

(5.3) −∞ < α < β = −5

4
.

In other words, we believe that our upper bound is asymptotically tight. On the other hand, we
believe that the lower bound is substantially smaller, but still polynomial. This has to do with
the fact that lim inf depends on number theoretic properties of n governing the position of 1

2 in

the interval
[
R(h + 1, z), R(h, z)

]
. At the moment, we cannot even prove that δ(Pn) > 0 for all

n ≥ 3. Finally, most speculatively, we conjecture that

(5.4) δ(Pn) = o
(
n−5/4

)
.

We refer to [CPP, §12-13] for further discussions and conjectures on the sorting probability.

5.5. Our computer calculations show that the sorting probability δ(Pn) has an erratic behavior,
but seem to fit well Theorem 1 and the conjectures above. The first graph in Figure 6 shows that
δ(n)n5/4 is always less than 3, but frequently greater than 1, and greater than 1

3 at least half the
time. While this may seem to point against (5.4), we believe it holds since a simple regression
does indicate a very slow trend downwards.

Similarly, the second graph in Figure 6 shows that logn δ(n) is frequently smaller than −5
4 ,

but is never too small, suggesting that −3 < α < 3
2 , in the notation of (5.2). Perhaps, going far

beyond n = 1000 would give further evidence in support or against the conjectures above. See the
full sequences δ(Pn)Cat(n) and 1

2(1 − δ(Pn))Cat(n) at [OEIS, A335212] and [OEIS, A335213],
respectively.

Figure 6. Graphs of δ(Pn)n5/4 and logn δ(Pn), for 3 ≤ n ≤ 1000.

5.6. By the proof of Lemma 8, the integer N2−N1 ≥ 0 for h ≤ 1
2(n+z). This is a fundamentally

combinatorial statement about the difference in the number of certain lattice paths, somewhat
similar in nature to the super Catalan numbers, see e.g. [P1, §4.5] for the references. It would be
interesting to find an explicit combinatorial interpretation for (N2 −N1).
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for such discussions. The last two authors were partially supported by the NSF.
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