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Abstract. We introduce several new constructions of finite posets with the number of linear
extensions given by generalized continued fractions. We apply our results to the problem of the
minimum number of elements needed for a poset with a given number of linear extensions.

1. Introduction

1.1. Foreword. Continued fractions go back to antiquity [Bre91] and are surprisingly versatile.
They appear across mathematics, from number theory [BPSZ14, RS92] to analysis [JT80, Khi97],
from cluster algebras [ÇS18] to discrete geometry [Kar13] to signal processing [Sau21]. In combi-
natorics, they famously enumerate partitions [AB05], lattice paths [Fla80] (see also [FS09, GJ83,
PSZ23]), permutations [Eli17, SZ22], and perfect matchings [Vie85] (see also [Sch19, Spi21]).

Curiously, the applications go in both directions: the asymptotics of combinatorial sequences
can be derived from analytic properties of continued functions, while combinatorial interpretations
imply positivity properties. This paper explores connections between linear extensions of finite
posets and continued fractions, and their asymptotic applications to counting.

1.2. Linear extensions. Let P = (X,≺) be a poset with |X| = n elements. Denote [n] :=
{1, . . . , n}. A linear extension of P is a bijection f : X → [n], such that f(x) < f(y) for all x ≺ y.
Let E(P ) be the set of linear extensions of P , and denote e(P ) := | E(P )|. Clearly, 1 ≤ e(P ) ≤ n!
See [CP23c] for a detailed recent survey.

Denote by µ(n) the minimum number of elements in a poset with n linear extensions. See
[OEIS, A160371] for the numerical data (see also [OEIS, A281723]). For example, µ(5) = 4 since
e(Z4) = 5, where Z4 is a zigzag poset on 4 elements (with an N -shaped comparability graph).

The asymptotics of {µ(n)} remains an important open problem. Clearly, µ(n) ≤ n since
for the parallel sum or chains we have: e(Cn−1 + C1) = n. In a different direction, µ(n) =
Ω(log n/ log logn) since e(P ) ≤ n! The first nontrivial upper bound µ(n) = O(

√
n) was found by

Tenner [Ten09]. Most recently, this bound was greatly improved:

Theorem 1.1 (Kravitz–Sah [KS21, Thm 1.1]). We have: µ(n) = O(log n log log n).

The authors use a simple but surprising connection to continued fractions, the starting point
of this paper (see below). They state the following:

Conjecture 1.2 ([KS21, Conj. 7.3]). We have: µ(n) = O(log n).

In this paper, we are mostly interested in the combinatorial aspects of the connection between
linear extensions and continued fractions, suggesting new technical tools towards the conjecture.

1.3. Simple continued fractions. Let N := {0, 1, 2, . . .} and P := {1, 2, . . .}. A simple contin-
ued fraction (CF) is defined as follows:

(1.1) [b0, b1, b2, . . . , bm] := b0 +
1

b1 +
1

b2 +
1

. . . + 1
bm

,
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where integers b0 ≥ 0, b1, . . . , bm−1 ≥ 1, and bm ≥ 2 for m ≥ 1. Integers bi are called quotients.
The sum of these quotients S(b0, . . . , bm) := b0 + . . . + bm is called the weight of [b0, . . . , bm].
Recall that for every α ∈ Q≥0 there is a unique simple continued fraction [b0, b1, b2, . . . , bm] = α,
and we write s(α) := S(b0, b1, b2, . . . , bm) in this case. Note that s(α) = s

(
α−1

)
.

In the terminology of [YK75] (see also [Knu98, §4.5.3]), the weight s
(
c
d

)
is the number of steps

of the subtraction algorithm, the original (classical) version of the Euclidean algorithm for finding
the greatest common divisor that uses only subtractions instead of divisions. The following result
is the key to the proof of Theorem 1.1.

Theorem 1.3 (Larcher [Lar86], see also [KS21, Thm 1.2]). For every integer d ≥ 1, there exists
an integer 1 ≤ c < d, gcd(c, d) = 1, such that

(1.2) s
(
c
d

)
≤ C

d

ϕ(d)
log d log log d,

where ϕ(n) is Euler’s totient function, and C > 0 is a universal constant.

See §5.3 for more on the theorem. Now, Kravitz and Sah observed that Conjecture 1.2 follows
from the following conjectural extension of Theorem 1.3.

Conjecture 1.4 ([KS21, Conj. 7.2]). For every prime d, there is an integer 1 ≤ c < d, such that

(1.3) s
(
c
d

)
≤ C log d,

where C > 0 is a universal constant.

Note that in a CF (1.1) for c
d , the number of quotients is m = O(log d). Thus, Conjecture 1.4

follows from the celebrated Zaremba’s conjecture (see also §5.5):
Conjecture 1.5 (Zaremba [Zar72, p. 76]). For every integer d ≥ 1, there is an integer 1 ≤ c < d,
such that c/d = [0, b1, . . . , bm] and b1, . . . , bm ≤ A, where A > 0 is a universal constant.

1.4. From continued fractions to linear extensions. In poset P = (X,≺), an antichain
is a subset of pairwise independent elements. The width of a poset is the size of the maximal
antichain. An element x ∈ X is minimal, if for every y ∈ X we have either x ≼ y or x ∥ y. Denote
by min(P ) the set of all minimal elements in P .

Theorem 1.6 (see [KS21, Prop. 4.1]). For all integers 1 ≤ c < d with gcd(c, d) = 1, there is
a poset P = (X,≺) of width two, such that |X| = s

(
c
d

)
, e(P ) = d and e(P − x) = c for some

minimal element x ∈ min(P ).

The proof of the theorem uses two simple transformations of posets (P, x) → (P ′, x′) and
(P ′′, x′′), such that for e(P ) = d, e(P − x) = c the new posets satisfy e(P ′) = e(P ′′) = c + d,
e(P ′ − x′) = c, e(P ′′ − x′′) = d− c. In Section 3 we modify and generalize this construction.

Before we proceed to generalizations, consider

T (k) :=
{
e(P ) : P = (X,≺), |X| ≤ k

}
,

so that µ(n) = min{k : n ∈ T (k)}. Open Problems 7.5 and 7.6 in [KS21] ask about the
asymptotics of |T (k)|, and of the largest L = Lc(k) such that

∣∣T (k) ∩ {1, . . . , L}∣∣ > cL. We
have the following direct application of Theorem 1.6 (not noticed in [KS21]), which gives partial
answers to both open problems:

Corollary 1.7. We have: |T (k)| = expΩ(k). Moreover, there is a constant c > 1, such that

(1.4)
1

ck
∣∣T (k) ∩ {

1, 2, . . . , ⌊ck⌋
}∣∣ → 1 as k →∞.

Proof. Recall the following remarkable result of Bourgain and Kontorovich [BK14] (see also §5.5),
giving an asymptotic version of Zaremba’s Conjecture 1.5: γ(n) → 1 as n → ∞, where γ(n)
denotes the proportion of d ∈ {1, . . . , n}, such that c/d has all quotients ≤ 50 for some 1 ≤ c < d,
gcd(c, d) = 1. Since s

(
c
d

)
= O(log n) for such fractions, by Theorem 1.6 we obtain the result. □
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1.5. Relative version. Let P = (X,≺) and let x ∈ X. Following [CP23b], consider the relative
number of linear extensions:

ρ(P, x) :=
e(P )

e(P − x)
.

It follows from Theorem 1.6, that every rational number α ≥ 1 is equal to ρ(P, x) for some
poset P and element x ∈ X.

For n ≥ m ≥ 1, let ν(m,n) denote the minimal number of elements in a poset P = (X,≺),
such that ρ(P, x) = n

m for some x ∈ X. The following upper bound can be viewed as a relative
version of Theorem 1.1.

Theorem 1.8. For all n ≥ 3m, we have:

(1.5) ν(m,n) ≤ n

m
+ O(log n log log n).

In [CP23b, Prop. 8.8], we showed an asymptotically matching lower bound:

(1.6) ν(m,n) ≥ n

m
.

The key part of the proof is the following tail estimate for the weight of random continued fractions:

Theorem 1.9 (Rukavishnikova [Ruk11]). There is a universal constant C > 0, such that

(1.7)
1

n
#
{∣∣s(mn ) − 12

π2 log n log logn
∣∣ > (log n)(log log n)2/3

}
<

C

(log log n)1/3

Here we are stating a special case of the main theorem in [Ruk11] which suffices for our purposes.

1.6. Generalized continued fractions. Let m ≥ 0, a1, . . . , am ∈ P, b0, . . . , bm ∈ P. A general-
ized continued fraction (GCF) is defined as

(1.8) [a1, . . . , am; b0, . . . , bm] := b0 +
a1

b1 +
a2

b2 +
a3

. . . + am
bm

.

Note that when a1 = . . . = am = 1 we get a simple continued fraction. We define the weight of
GCFs as follows:

G(a1, . . . , am ; b0, . . . , bm) := (b0 + . . .+ bm) − (a1 + . . .+ am) + m,

and note that G(1, . . . , 1; b0, . . . , bm) = S(b0, . . . , bm). Observe that a rational number can have
many presentations as a GCF, some of which can have weight smaller than the weight of the
corresponding CFs. For example,

20

7
= 2 +

1

1 + 1
6

= 2 +
2

2 + 1
3

,

so s
(
20
7

)
= S(2, 1, 6) = 9 and G(2, 1; 2, 2, 3) = 6.

A generalized continued fraction (1.8) is called balanced if

(1.9) bi ≥ ai + ai+1 − 1 for all 0 ≤ i ≤ m,

where by convention we assume that a0 = am+1 = 1. Clearly, every simple continued fraction of
α ∈ Q≥1 is balanced. The following is the GCF analogue of Theorem 1.6.
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Theorem 1.10. Let m ≥ 0, a1, . . . , am ∈ P, b0, . . . , bm ∈ P be integers satisfying (1.9). Then
there exists a poset P = (X,≺) of width at most three, and a minimal element x ∈ min(P ), such
that |X| = G(a1, . . . , am ; b0, . . . , bm), and

[a1, . . . , am ; b0, . . . , bm] = ρ(P, x),

where [a1, . . . , am ; b0, . . . , bm] is a balanced GCF defined in (1.8).

For α ∈ Q≥1 , define

g(α) := min
{
S(a1, . . . , am ; b0, . . . , bm) : [a1, . . . , am ; b0, . . . , bm] = α

}
,

where the minimum is over all balanced GCF (1.9) such that all partial fractions Ci
Di

are reduced,

i.e. gcd(Ci, Di) = 1 for all 1 ≤ i ≤ m (see the definition in §2.2). For example, if a1 = . . . = am = r

for some integer r ≥ 1, and integers b1, . . . , bm are coprime to r, then all partial fractions Ci
Di

are
reduced. In particular, this condition automatically holds for all simple CFs. From above, we
have g(α) ≤ s(α). Thus, the following conjecture is a natural weakening of Conjecture 1.4.

Conjecture 1.11. For every prime d, there is an integer 1 ≤ c < d, such that

(1.10) g
(
d
c

)
≤ C log d,

where C > 0 is a universal constant.

From Theorem 1.10, we have:

Proposition 1.12. Conjecture 1.11 implies Conjecture 1.2.

1.7. Rational GCFs. We call a continued fraction of the form (1.8) rational if ai ∈ Q≥1. A
rational generalized continued fraction (RGCF) is called balanced if it is of the form

(1.11) b0 + α1 +
α1

s(α1)− 1 + b1 + α2 +
α2

s(α2)− 1 + b2 + α3 +
α3

. . . + αm
s(αm)−1+bm

,

where α1, . . . , αm ∈ Q≥1 and b0, . . . , bm ∈ N s.t. bm ≥ 1. We use [α1, . . . , αm ; b0, . . . , bm] to
denote this RGCF.

Note that for α1, . . . , αm ∈ P, this is a balanced GCF, since the inequalities (1.9) are automat-
ically satisfied. Denote by

R(α1, . . . , αm ; b0, . . . , bm) := b0 + . . .+ bm + s(α1) + . . .+ s(αm)

the weight of (1.11). For example, take m = 1, α1 =
3
2 , b0 = 1, b1 = 3. Then

s
(
3
2

)
= 3,

[
3
2 ; 1, 3

]
= 1 + 3

2 +
3
2

s
(
3
2

)
− 1 + 3

= 14
5 and R

(
3
2 ; 1, 3

)
= 1 + 3 + s

(
3
2

)
= 7.

The following result is a variation of Theorem 1.10 to RGCF:

Theorem 1.13. Let m ≥ 0, α1, . . . , αm ∈ Q≥1 and b0, . . . , bm ∈ P. Then there exists a poset
P = (X,≺) of width at most three, and a minimal element x ∈ min(P ), such that |X| =
R(α1, . . . , αm ; b0, . . . , bm), and

[α1, . . . , αm ; b0, . . . , bm] = ρ(P, x),

where [α1, . . . , αm ; b0, . . . , bm] is a balanced RGCF defined in (1.11).
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For β ∈ Q≥1 , define

r(β) := min
{
R(α1, . . . , am ; b0, . . . , bm) : [α1, . . . , αm ; b0, . . . , bm] = β

}
,

where the minimum is over all RGCF (1.11) such that all partial fractions Ci
Di

are reduced (see

the definition in §2.2). From above, r(α) ≤ s(α). Thus, the following conjecture is a natural
weakening of both Conjecture 1.4 and Conjecture 1.11.

Conjecture 1.14. For every prime d, there is an integer 1 ≤ c < d, such that

(1.12) r
(
d
c

)
≤ C log d,

where C > 0 is a universal constant.

To motivate the conjecture, note that r(β) can be much smaller than s(β). Take, for example,
m = 1, α1 =

13
7 and β = 173

56 . We have:

α1 = 1 +
1

1 + 1
6

, s(α1) = 8 , β = 3 +
1

11 + 1
5

= 1 + α1 +
α1

s(α1)− 1 + 1
= [α1 ; 1, 1] .

Thus, s(β) = 19 while r(β) ≤ R(α1 ; 1, 1) = 10 in this case. Again, by Theorem 1.13 we have:

Proposition 1.15. Conjecture 1.14 implies Conjecture 1.2.

1.8. Paper structure. We recall poset theoretic definitions and notation in Section 2. Recursive
constructions of posets are studied in Section 3. We present the proofs in Section 4. We conclude
with final remarks and open problems in Section 5.

2. Basic definitions and notation

2.1. Posets. For a poset P = (X,≺) and a subset Y ⊂ X, denote by PY = (Y,≺) a subposet
of P . We use (P − z) to denote a subposet PX−z , where z ∈ X. Element x ∈ X is minimal
in P , if there exists no element y ∈ X−x such that y ≺ x. Denote by min(P ) the set of minimal
elements in P .

In a poset P = (X,≺), elements x, y ∈ X are called incomparable if x ̸≺ y and y ̸≺ x. We
write x ∥ y in this case. An antichain is a subset A ⊂ X of pairwise incomparable elements.
The width of poset P = (X,≺), denoted width(P ), is the size of a maximal antichain. A chain is
a subset C ⊂ X of pairwise comparable elements. Denote by An and Cn the antichain and the
chain with n elements, respectively.

A dual poset is a poset P ∗ = (X,≺∗), where x ≺∗ y if and only if y ≺ x. A parallel sum P ⊕Q
of posets P = (X,≺) and Q = (Y,≺′) is a poset (X ∪ Y,≺⋄ ), where the relation ≺⋄ coincides
with ≺ and ≺′ on X and Y , and x ∥ y for all x ∈ X, y ∈ Y . A linear sum P ⃝< Q of posets
P = (X,≺) and Q = (Y,≺′) is a poset (X ∪ Y,≺⋄ ), where the relation ≺⋄ coincides with ≺ and
≺′ on X and Y , and x ≺⋄ y for all x ∈ X, y ∈ Y .

Note that e(P ∗) = e(P ), e(P ⃝< Q) = e(P ) e(Q) and e(P ⊕ Q) =
(
m+n
m

)
e(P ) e(Q), where

|X| = m and |Y | = n. We refer to [Sta12, Ch. 3] for an accessible introduction, and to surveys
[BW00, CP23c, Tro95] for further definitions and standard results.

2.2. Continued fractions. Consider a GCF [a1, . . . , am ; b0, . . . , bm] given by (1.8). Recursively
define Ci := Ci(a1, . . . , am ; b0, . . . , bm) and Di := Di(a1, . . . , am ; b0, . . . , bm), 0 ≤ i ≤ m, as
follows:

Cm := bm , Dm := 1,

Di := Ci+1 , Ci := biDi + ai+1Di+1.

It is well known and easy to see by induction that

[ai+1, ai+2, . . . , am ; bi, bi+1, . . . , bm] =
Ci

Di
.
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These are called partial fractions. Note that for simple CFs we have gcd(Ci, Di) = 1, but this
does not always hold for GCFs.

Similarly, consider a RGCF [α1, . . . , αm ; b0, . . . , bm] given by (1.11). Let αi = ci/di where
gcd(ci, di) = 1, 1 ≤ i ≤ m. Recursively define Ci := Ci(α1, . . . , αm ; b0, . . . , bm) and Di :=
Di(α1, . . . , αm ; b0, . . . , bm) as follows:

Cm := bm , Dm := 1,

Di := di+1

(
Ci+1 + (s(αi+1)− 1)Di+1

)
,

Ci := biDi + ci+1

(
Ci+1 + s(αi+1)Di+1

)
.

The ratios Ci
Di

are called partial fractions in this case.

3. Recursive constructions

3.1. Hybrid sums. Let P = (X,≺) and Q = (Y,≺′) be posets on |X| = m and |Y | = n
elements. Fix x ∈ min(P ). The hybrid sum Q ⃝< x P is the poset R = (X ∪ Y,≺⋄ ) given by the
relations

u ≺⋄ u′ for every u ≺ u′, u, u′ ∈ X,

v ≺⋄ v′ for every v ≺′ v′, v, v′ ∈ Y,

v ≺⋄ u for every u ∈ X − x, v ∈ Y.

Note that x is incomparable to Y in R, and thus x ∈ min(R).
We have:

e(Q ⃝< x P ) = e(Q) e(P ) + e(Q⊕ x) e(P − x) − e(Q) e(P − x).

Indeed, the term e(Q) e(P ) counts linear extensions f ∈ E(R) for which f(x) ≥ n+1. Similarly,
the term e(Q⊕x) e(P−x) counts f ∈ E(R) for which f(x) ≤ n+1. Finally, the term e(Q) e(P−x)
counts f ∈ E(R) for which f(x) = n+ 1. Because e(Q⊕ x) = (n+ 1) · e(Q), we then have

(3.1) e(Q ⃝< x P ) = e(Q) e(P ) + n · e(Q) e(P − x).

It then follows that for all y ∈ min(Q), we have

e(R− y) = e
(
(Q− y) ⃝< x P

)
= e(Q− y) e(P ) + (n− 1) · e(Q− y) e(P − x).(3.2)

Since (Q ⃝< x P )− x = Q ⃝< (P − x), we also have:

(3.3) e
(
(Q ⃝< x P )− x

)
= e(Q) e(P − x).

Finally, note that

width(Q ⃝< x P ) ≤ max
{
width(P )− 1, width(Q)

}
+ 1.(3.4)

Remark 3.1. Hybrid sum is a special case of the quasi-series composition defined similarly in
[HJ85] for general subsets of minimal elements. Also, when Y = {y}, we have R = {y} ⊕y,x P ,
where ⊕y,x is the direct sum operation defined in [KS21, §2].

3.2. Properties of hybrid sums. We now use hybrid sums to construct posets for which the
numbers of linear extensions satisfy recurrence relations emulating continued fractions.

Lemma 3.2. Let P = (X,≺) and Q = (Y,≺′) be posets on m = |X| and n = |Y | elements, and
let x ∈ min(P ), y ∈ min(Q). Then there exists a poset R = (Z,≺⋄ ) and z ∈ min(R), such that

e(R) = e(Q)
(
e(P ) + n · e(P − x)

)
,

e(R− z) = e(Q− y)
(
e(P ) + (n− 1) · e(P − x)

)
,

|Z| = m + n,

width(R) ≤ max
{
width(P ), width(Q) + 1

}
.
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Additionally, we have:

ρ(R, z) = ρ(Q, y)

(
1 +

1

n− 1 + ρ(P, x)

)
.

Proof. Let R := Q ⃝< x P , and let z := y. The first four conclusions follows from (3.1), (3.2),
(3.4). We conclude that

ρ(R, z) =
e(Q)

e(Q− y)
· e(P ) + n · e(P − x)

e(P ) + (n− 1) · e(P − x)

= ρ(Q, y)

(
1 +

e(P − x)

e(P ) + (n− 1) · e(P − x)

)
= ρ(Q, y)

(
1 +

1

ρ(P, x) + (n− 1)

)
,

as desired. □

Lemma 3.3. Let P = (X,≺) be a poset on |X| = m elements, let x ∈ min(P ), and let b ≥ 0.
Then there exists a poset R = (Z,≺⋄ ) and z ∈ min(R), such that

e(R) = e(P ) + b · e(P − x),

e(R− z) = e(P − x),

|Z| = m + b,

width(R) ≤ max
{
width(P ), 2

}
.

Additionally, we have:

ρ(R, z) = b + ρ(P, x).

Proof. Let Q := Cb be a chain of b elements, so e(Q) = 1. Let R := Q ⃝< x P , and let z := x.
Then the first four conclusions follows from (3.1), (3.3), and (3.4). We conclude that

ρ(R, z) =
e(P ) + b · e(P − x)

e(P − x)
= ρ(P, x) + b,

as desired. □

By combining the two lemmas above, we get the following:

Lemma 3.4. Let P = (X,≺) and Q = (Y,≺′) be posets on m = |X| and n = |Y | elements, and
let x ∈ min(P ), y ∈ min(Q). Fix b ≥ 0. Then there exists a poset R = (Z,≺⋄ ) and z ∈ min(R),
such that

e(R− z) = e(Q− y)
(
e(P ) + (n− 1) e(P − x)

)
,

e(R) = b · e(R− z) + e(Q)
[
e(P ) + n · e(P − x)

]
,

|Z| = m + n + b,

width(R) ≤ max
{
width(P ), width(Q) + 1, 2

}
.

Additionally, we have:

ρ(R, z) = b + ρ(Q, y)

(
1 +

1

n− 1 + ρ(P, x)

)
.

Proof. This follows from first applying Lemma 3.2 then applying Lemma 3.3. □
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Lemma 3.5. Let P = (X,≺) be a poset on |X| = m elements, let x ∈ min(P ), and let b ≥ a ≥ 0.
Then there exists a poset R = (Z,≺⋄ ) and z ∈ min(R), such that

e(R− z) = e(P ) + (a− 1) · e(P − x),

e(R) = (b− a) · e(R− z) + a ·
[
e(P ) + a · e(P − x)

]
= b · e(R− z) + a · e(P − x),

|Z| = m + b,

width(R) ≤ max
{
width(P ), 3

}
.

Additionally, we have:

ρ(R, z) = b +
a

a− 1 + ρ(P, x)
.

Proof. Let Q = (Y,≺′) := y ⊕ Ca−1 be the parallel sum of an element y with a chain of a − 1
elements. Note that

e(Q) = a, e(Q− y) = 1, |Y | = a, and width(Q) = 2.

The lemma now follow from by substituting b← (b− a) into Lemma 3.4. □

3.3. A flip-flop construction. We will need the following variation on the hybrid sum construc-
tion to prove Theorem 1.8.

Lemma 3.6. Let P = (X,≺) and Q = (Y,≺′) be posets on m = |X| and n = |Y | elements, and
let x ∈ min(P ), y ∈ min(Q). Then there exists a poset R = (Z,≺⋄ ) and z ∈ Z, such that

e(R) = e(P ) e(Q− y) + e(P − x) e(Q),

e(R− y) = e(P − x) e(Q− y),

|Z| = m + n,

width(R) ≤ width(P ) + width(Q).

Additionally, we have:

ρ(R) = ρ(P ) + ρ(Q).

We warn the reader that the element z is not necessarily a minimal element of R, so this
construction cannot be easily iterated.

Proof. Let R = (Z,≺⋄ ) be a poset defined as follows. Let

Z := (X − x) ∪ (Y − y) ∪ {u, v},
where u, v are new elements. Let the partial order ≺⋄ be defined by

p ≺⋄ p′ for every p, p′ ∈ X − x s.t. p ≻ p′,

q ≺⋄ q′ for every q, q′ ∈ Y − y s.t. q ≺′ q′,

p ≺⋄ u for every p ∈ X − x s.t. x ≺ p,

u ≺⋄ q for every q ∈ Y − y s.t. y ≺′ q ,

p ≺⋄ v ≺⋄ q for every p ∈ X − x, q ∈ Y − y,

and u ||≺⋄ v.

We have then:

e(R) = e(P ) · e(Q− y) + e(P − x) · e(Q).

Indeed, the factor e(P ) · e(Q−y) counts linear extensions f ∈ E(R) for which f(u) < f(v), while
the factor e(P − x) e(Q) counts linear extensions f ∈ E(R) for which f(u) > f(v). Also note
that

e(R− u) = e(P − x) · e(Q− y),
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because (R− u) is isomorphic to the linear sum (P − x) ⃝< {v} ⃝< (Q− y). Finally, note that

width(R) ≤ width(P ) + width(Q),

|Z| = |X| + |Y |,

by construction. This completes the proof. □

4. Proofs

4.1. Proof of Theorem 1.10. We prove the claim by induction on m. First, let m = 0. Recall
the notation in §2.2. Note that condition (1.9) becomes b0 ≥ 1, which holds by the assumption.
Let P = (X,≺) := {x} ⊕ Cb0−1. Then we have:

e(P ) = b0 = C0(b0) and e(P − x) = 1 = D0(b0).

We also have |X| = b0 and width(P ) = 2, as desired.
Suppose now that the claim holds for m− 1. Let b′1 := b1− a1 +1. The balanced assumptions

(1.9) gives b′1 ≥ a2. Thus, by the inductive assumption, there exist P ′ = (X ′,≺′) and x′ ∈
min(P )′, such that

e(P ′ − x′) = D0(a2, . . . , am ; b′1, b2, . . . , bm) = D1(a1, . . . , am ; b0, b1, . . . , bm),

e(P ′) = C0(a2, . . . , am ; b′1, b2, . . . , bm)

= C0(a2, . . . , am ; b1, b2, . . . , bm) − (a1 − 1) ·D0(a2, . . . , am ; b1, b2, . . . , bm)

= C1(a1, . . . , am ; b0, . . . , bm) − (a1 − 1) ·D1(a1, . . . , am ; b0, . . . , bm).

Now, apply Lemma 3.5 to P ′ with b ← b0 and a ← a1 . We obtain a poset P = (X,≺) on
|X| = n elements, and x ∈ min(P ), such that

e(P − x) = e(P ′) + (a1 − 1) · e(P ′ − x′) = C1(a1, . . . , am ; b0, . . . , bm)

= D0(a1, . . . , am ; b0, . . . , bm),

e(P ) = b0 · e(P − x) + a1 · e(P ′ − x′)

= b0 ·D0(a1, . . . , am ; b0, . . . , bm) + a1 ·D1(a1, . . . , am ; b0, . . . , bm)

= C0(a1, . . . , am ; b0, . . . , bm).

We also have

n = b0 + |X ′| = b0 + b′1 +
m∑
i=2

bi −
m∑
i=2

ai + m− 1

=

m∑
i=0

bi −
m∑
i=1

ai + m = G(a1, . . . , am ; b0, . . . , bm),

and width(P ) ≤ max
{
width(P ′), 3

}
≤ 3. Finally, we have:

ρ(P, x) = b0 +
a1

a1 − 1 + ρ(P ′, x′)
= [a1, . . . , am ; b0, . . . , bm].

This completes the proof. □

4.2. Proof of Theorem 1.13. We prove the claim by induction on m. For m = 0, let P =
(X,≺) := x⊕ Cb0−1 . We have:

e(P ) = b0 = C0(b0) and e(P − x) = 1 = D0(b0).

We also have |X| = b0 and width(P ) = 2, which proves the case m = 0.
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We now suppose the claim is already proved for (m− 1). By the induction assumption, there
exists a poset P ′ = (X ′,≺′) and element x′ ∈ min(P ′), such that

e(P ′ − x′) = D0(α2, . . . , αm ; b1, b2, . . . , bm) = D1(α1, . . . , αm ; b0, b1, . . . , bm),

e(P ′) = C0(α2, . . . , αm ; b1, b2, . . . , bm) = C1(α1, . . . , αm ; b0, . . . , bm).

Applying Theorem 1.6 to α1, there exists a poset Q = (Y,≺′) and y ∈ min(Q) such that

e(Q) = c1, e(Q− y) = d1 , |Y | = s(α1) and width(Q) ≤ 2.

Now, apply Lemma 3.4 to posets P ′, Q, and element b0. We obtain a poset P = (X,≺) and
x ∈ min(P ), such that

e(P − x) = e(Q− y)
[
e(P ′) + (|Y | − 1) e(P ′ − x)

]
,

= d1 ·
[
C1(α1, . . . , αm ; b0, . . . , bm) +

(
s(α1)− 1

)
·D1(α1, . . . , αm ; b0, b1, . . . , bm)

]
= D0(α1, . . . , αm ; b0, . . . , bm).

We also have

e(P ) = b0 · e(P − x) + e(Q)
[
e(P ′) + |Y | · e(P ′ − x′)

]
= b0 ·D0(α1, . . . , αm ; b0, . . . , bm)

+ c1 ·
[
C1(α1, . . . , αm ; b0, . . . , bm) + s(α1) ·D1(α1, . . . , αm ; b0, b1, . . . , bm)

]
= C0(α1, . . . , αm ; b0, . . . , bm)

and

width(P ) ≤ max
{
width(P ′), width(Q) + 1, 2

}
≤ 3.

Finally, we have

|X| = |X ′| + |Y | + b0

= (b1 + . . .+ bm) + s(α2) + . . .+ s(αm)) + s(α1) + b0

= R(α1, . . . , αm ; b0, . . . , bm).

This completes the proof. □

4.3. Proof of Propositions 1.12 and 1.15. For Proposition 1.12, recall from the introduction
that the Conjecture 1.11 implies Conjecture 1.2 for prime d. Indeed, by Theorem 1.6 for a GCF
[a1, . . . , am ; b0, . . . , bm] = d

c , we obtain a poset P = (X,≺) and x ∈ X such that |X| = g
(
d
c

)
≤

C log d and e(P )
e(P−x) = d

c . By the reduced condition on the definition of g, it then follows that

e(P ) = d, as desired.
To show that the first part of Conjecture 1.11 suffices, let pm1

1 . . . pmℓ
ℓ be the prime factorizations

of d. For each prime pi, let Pi = (Xi,≺i) be the corresponding poset with e(Pi) = pi and
|Xi| ≤ C log pi. Define

P := P1 ⃝< · · · ⃝< P1︸ ︷︷ ︸
m1 times

⃝< · · · ⃝< Pℓ ⃝< · · · ⃝< Pℓ︸ ︷︷ ︸
mℓ times

be the linear sum of posets Pi. We have:

e(P ) =
ℓ∏

i=1

e(Pi)
mi = d,

and

|X| =
ℓ∑

i=1

mi |Xi| ≤ C
ℓ∑

i=1

mi log pi = C log d.

This completes the proof of Proposition 1.12. The proof of Proposition 1.15 follows verbatim. □
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4.4. Proof of Theorem 1.8. First, observe that there exists a constant C > 0, such that for all
coprime integers a, b ≤ n which satisfy C < b ≤ a ≤ 2b, there exists a positive integer ℓ := ℓ(a, b)
such that 1 ≤ ℓ < b, and

(4.1) s
(
ℓ
b

)
≤ 2 log b log log b and s

(
a−ℓ
b

)
≤ 2 log b log log b.

Indeed, by Theorem 1.9 and using 12
π2 < 2, for random ℓ ∈ {1, . . . , b}, the probability that each

inequality fails → 0 as b → ∞. Taking C large enough so that each probability is < 1
2 proves

the claim.
Let a, b be given by

a := m + n −
⌊ n

m

⌋
m, b := m,

so that b ≤ a ≤ 2b and b ≤ n . From above, there exists 1 ≤ ℓ ≤ b, such that (4.1) holds. Let

α := 1 +
ℓ

b
and β :=

⌊ n

m

⌋
− 2 +

a− ℓ

b
.

It follows from the construction that α+ β = n
m . Since n

m ≥ 3, we have α, β ≥ 1.
Applying Theorem 1.10 to simple continued fractions, we obtain a poset P = (X,≺) and

element x ∈ min(P ), such that

ρ(P, x) = α and |X| = 1 + s
(
ℓ
b

)
.

Similarly, we obtain a poset Q = (Y,≺′) and element y ∈ min(Q), such that

ρ(Q, y) = β and |Y | =
⌊
n
m

⌋
− 2 + s

(
a−ℓ
b

)
.

By Lemma 3.6, there exists a poset R = (Z,≺⋄ ) and element z ∈ Z, such that

ρ(R, z) = ρ(P, x) + ρ(Q, y) =
n

m
,

and

|Z| = |X| + |Y | =
⌊ n

m

⌋
− 1 + s

(
ℓ
b

)
+ s

(
a−ℓ
b

)
≤ n

m
+ O(log n log log n).

This completes the proof. □

5. Final remarks and open problems

5.1. The nature of connections between counting combinatorial objects and continued fractions
described in §1.1 is clear and easy to explain: when objects are decomposed into smaller objects,
they often have simple recurrences of the type described in §2.2. Fundamentally, this is the
same reason why the generating functions are so powerful in combinatorial enumeration, see
e.g. [GJ83, Sta12]. And yet, every time such a connection is found it is an unexpected delight,
stemming both from the sheer elegance of continued fractions as well as the power of technical
tools developed for them. While we tend to be swayed by the latter arguments, we appreciate the
former sentiments.

5.2. The upper bound in Larcher’s Theorem 1.3 was sharpened by Rukavishnikova [Ruk11] to
O(log d log log d). Since d

ϕ(d) can be as large as C log log d, see e.g. [HW08, Thm 328], this is a

significant asymptotic improvement. This result was further sharpened by Aistleitner, Borda and
Hauke [ABH22, Cor. 2], who proved that for all d ≥ 3 there exist 1 ≤ c < d, such that

(5.1) s
(
c
d

)
≤ 12

π2 log d log log d + O
(
log d).

Note that we are using only prime d for our applications, which it why we postponed this recent
result. We note in passing that the authors of [KS21] stated Conjecture 1.4 in the generality of
all d; while plausible this remains out of reach with the existing technology. They were unaware
of the earlier work and rediscovered Theorem 1.3.1

1Personal communication.
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5.3. The asymptotics in the upper bound (5.1) cannot be easily improved by probabilistic argu-
ments. This follows from a version on the tail estimates (1.7) given in [Ruk06]. A stronger result
was proved in [ABH22, Thm 1], which implies that for all c < 0, n ≥ 3, and ε = ε(n) > (log n)c,
for the (1− ε) fraction of m ∈ {1, . . . , n} with gcd(m,n) = 1, we have:

(5.2)
∣∣ s(mn ) − 12

π2 log n log log n
∣∣ = O

( logn
ε

)
.

Of course, this does not preclude the outlying small values predicted by Zaremba’s conjecture.
In fact, as was pointed out in [ABH22], the distribution of s

(
m
n

)
is heavy-tailed and has a large

mean:

(5.3) 1
ϕ(n)

∑
m

s
(
m
n

)
= 6

π2 (log n)
2 + O

(
(log n)(log logn)2

)
,

where the summation is over all m ∈ {1, . . . , n} such that gcd(m,n) = 1. This was proved
independently in [Lie83, Pan82, YK75].

5.4. It was pointed out by Kravitz and Sah (see Remark 5.31 in [CP23a]), that the numerator c
in Theorem 1.6 can be found in probabilistic polynomial time poly(log d). Tail estimates (5.2) give
a simpler (and faster) probabilistic algorithm: pick a random c, check if gcd(c, d) = 1, compute a
simple CF (1.1), repeat if s

(
c
d

)
> 2 log d log log d. It is an interesting open problem if this can be

done deterministically. More broadly, is there a deterministic polynomial time construction of a
poset with exactly n linear extension? So far, the only deterministic construction we know if by
Tenner [Ten09], which is exponential in (log n).

5.5. Zaremba’s Conjecture 1.5 is often stated with A = 5 or even A = 4 for all sufficiently large
integers. It is known to hold for integers of the form 2m3n, for other families of powers of small
primes and sufficiently large powers of all primes, see [Shu23]. We refer to [BPSZ14, §6.2] for
an elegant presentation of the 2m case. Of course, the Kravitz–Sah Conjecture 1.2 is trivial in
this case. Note that the constant 50 in the Bourgain–Kontorovich theorem that was used in the
proof of Corollary 1.7, has been improved to 5 in [Hua15]. See [Kan21] for further extensions, and
[Shk21, §7] for an overview.

5.6. It would be interesting to find an elementary proof of the first part of Corollary 1.7. The
result is especially surprising given that the bound is obtained on a relatively small family of
posets of width two. On the other hand, we know of no nontrivial bound for the much larger
family of height two posets (cf. [Sou23]).

5.7. In [CP23a, Conj. 5.17], we conjecture that all but finitely many integers are the numbers
of linear extensions of posets of height two. We also observe (Prop. 5.18, ibid.), that this would

imply Conjecture 1.2 with a sharp Θ
( logn
log logn

)
asymptotics.

5.8. The idea of Theorem 1.8 comes from the approach in [CP23a], where we studied relative
versions of several counting functions (domino tilings, spanning trees, etc.) The proof of Theo-
rem 1.8 is based on the approach in [CP23b, §8.2]. It would be interesting to see if the condition
n ≥ 3m can be weakened to n ≥ (1 + ε)m or even dropped. Additionally, by analogy with the
Kravitz–Sah Conjecture 1.2, we conjecture that (1.5) can be improved to

(5.4) ν(m,n) ≤ n
m + O(log n).

In a different direction, one can ask about the smallest size poset with e(P ) = n and e(P−x) = m,
since the construction in the proof can result in an integer multiple of both.
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