LOWER BOUNDS FOR CONTINGENCY TABLES VIA LORENTZIAN
POLYNOMIALS

PETTER BRANDEN*, JONATHAN LEAKE*, AND IGOR PAK®

ABSTRACT. We present a new lower bound on the number of contingency tables, improving upon and
extending previous lower bounds by Barvinok | R | and Gurvits [ ]. As an application,
we obtain new lower bounds on the volumes of flow and transportation polytopes. Our proofs are based
on recent results on Lorentzian polynomials.

1. INTRODUCTION

Contingency tables are fundamental objects across the sciences. In statistics, they are employed to

study dependence structure between two or more variables, see e.g. | , , ]. They play
an important role in combinatorics and graph theory since they are in bijection with bipartite multi-
graphs with given degrees, see e.g. | , ]. In discrete geometry and combinatorial optimization,
they are frequently studied as integer points in transportation polytopes | ]. They also appear in a
variety of other contexts, from algebraic and enumerative combinatorics [ , ] to commutative
algebra [ ] and topology [ ].

Motivated by these connections and applications, a great deal of effort is made to approximate and to
estimate the number of contingency tables, both theoretically and computationally. For that, a variety of
tools have been developed in different areas, such as the traditional and probabilistic divide-and-conquer
[ , ], the asymptotic analysis | ) ) ], the MCMC algorithms | , 1,
approximation algorithms [ , ], and integer programming | , ].

In this paper we present a new lower bound (Theorem 2.1) on the number of contingency tables with
cell-bounded entries, a setting which includes a permanent. This bound improves upon previous lower
bounds, holds for all marginals, is fast to compute, and behaves well in many examples. We begin with
an important special case.

Let a = (a1,...,m) € N™ and 8= (f1,...,5,) € N be integer vectors. A contingency table with
marginals (o, 3) is an m X n matrix A = (a;;), such that a;; € N,

Zaijzﬂj forall 1<j<n, and Zaij:ai forall 1<i<m.
1

i= j=1

Denote by CT(a,3) the number of contingency tables with marginals («, 3).

Theorem 1.1 (= Corollary 2.2). For every a, 3 as above, we have:

1 1 oy 1
Capag > CT(a7ﬂ) 2 lem+n1 H o; +1 H Bj +1
=2 j=1

Cap, g

where

-1 m n
ey = g, ot [T 10| T =5

1<i<m 1§j<n =1 =1

Here the upper bound is elementary and follows from the definition of contingency tables. The
lower bound is a special case of our Main Theorem 2.1, which is an improvement over Barvinok’s lower
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bound | ] (Theorem 2.4). Note that Main Theorem 2.1 gives a stronger bound when «;, 8; are
bounded, and generalizes to the case of cell-bounded contingency tables, i.e. to all A = (a;;), such
that a;; < k;;. When all k;; € {0,1}, the corresponding contingency tables are in bijection with perfect
matchings in a bipartite graph with adjacency matrix K = (k;;), and our results recover Gurvits’s recent
lower bound in | ] (Theorem 2.9).

There are several ways to understand the theorem. First, it is a general theoretical result in line with
other results on contingency tables and graph counting, and can be used in both asymptotic enumeration
and analysis of graph algorithms (see e.g. | , ] and references therein). Second, the bound in
the theorem can be effectively computed, and thus gives a fast approximation algorithm for a problem
of computing CT (e, B), see §11.2.

Third, letting «;, 3; — oo at the same rate in Theorem 1.1, allows us to obtain new lower bounds for
the volumes of transportation polytopes. We explore this connection in Section 8. Finally, the theorem
can be used to obtain exact bounds in many special cases of interest in the statistics literature, and then
make explicit comparisons with other bounds; we report our numerical experiments in Section 10.

Paper structure. We begin with a lengthy Section 2 stating our new results on the number of contin-
gency tables and discussing prior work on the subject. We continue presenting new results in Section 3,
this time in probabilistic framework of contingency tables with random constraints. In Sections 4 and 5
we discuss some known results on Lorentzian and related classes of polynomials, and then derive new
capacity bounds for coefficients. In Section 6 we prove the main results of the paper.

In the second part of the paper, we give applications of our results and explore connections to earlier
work. First, in Section 7, we prove that our bounds are sharper than the two earlier bounds by Barvinok,
at least asymptotically. In the next two Sections 8 and 9, we apply our results to computing lower bounds
for the volume of flow and transportation polytopes, and to the special case of uniform marginals. We
conclude with numerical examples in Section 10, and final remarks in Section 11.

We should mention that the paper is very far from being self-contained, as we repeatedly use available
tools with very little preparation, but with the exact references to the literature. This is why we upfronted
the results in Sections 2 and 3, to ease access to our theorems. We repeat the pattern in Sections 8 and 9.

2. MAIN RESULTS AND PRIOR WORK

The main results in this paper are lower bounds on CTk (a,3) for general marginals (e, 3), and
cell-bounded entries given by matrix K. In this section we present the results and compare them with
similar lower bounds due to Barvinok and Gurvits. Along with the actual bounds, we also give asymptotic
bounds by naively applying Stirling’s approximation wherever possible. Since Stirling’s approximation is
off by at most a factor of \/%, the asymptotic values given are decent approximations for all asymptotic
regimes. For two multivariate functions F(a) and G(a), a = (a1,...,a,) € N, we write F' 2 G if
F(a) > C - G(a) for a universal constant C' > 0 and min{a;} — oco.

2.1. Definitions. Let a = (a1,..., ) € N™ and 8 = (B1,...,58,) € N™ be integer vectors of

marginals, such that
n

Z Q; = Z 5]' = N.

i=1 j=1
Let K = (k;;) be an m x n matrix with entries in NU {4+o00}. We use K = 0o to denote an all co matrix,
and K =1 to denote the all-one matrix.

Matrix A = (a;;) is called a K-contingency table with marginals (o, 8), if A is a contingency table
with cell-bounded entries 0 < a;; < k;;. When K = oo we obtain the usual (unrestricted) contingency
tables. When K = 1, matrix A is called a binary contingency table.

As in the introduction, let CT(«x,3) denote the number of contingency tables with marginals («, 3),
and let CTk(a,3) denote the number of K-contingency tables with the same marginals. When all
ki; € {0,1}, we call such matrix K = (k;;) graphical, and write BCT g (¢, 8) for the number of binary
contingency tables. In particular, when all k;; = 1, we may further write BCT(c, 8) for the number of
such tables. Finally, when all k;; € {0,400}, we call such K multigraphical.
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Consider the generating polynomial Pk (x y) € N[z, y] for all contingency tables w.r.t. their marginals:

where z%yP = " ... 2om yfl e ygn In a special case, for (usual) and binary contingency tables the

generating polynomials are given by

HHl—x and Pi(x,y) HH 1+xlyj

i=1 j=1 iYj i=1j
Let F € Ri[z,y] be a polynomial in (m + n) variables. Define the capacity of F' as
o —a, B
Capg g(F) : a:};t?iO Yy PF(x,y).

We consider capacity of polynomials Px and other polynomials throughout the paper.

2.2. Main theorem. We are now ready to state the main result of the paper.

Theorem 2.1 (Main theorem). Let o € N™, 8 € N", such that 37, ; = >, B;. Let K = (ki;) be an
m X n matriz with all entries k;j € NU {4o00}. Then:
n bbj
Cap, g(Pk) = CTk(a H +1 aitl H (b Jrl)b ) Capg, 5(Pr),

where a; = min{a;, A\; — a5}, bj :==min{f;,v; — B;}, \i = Zj kij and ~v; =, kij, forall 1 <i<m,
1<5<n.

Note that the first product starting with ¢ = 2 is not a typo, but a feature of the bound. Given a
choice, the lower bound is the largest when a; is chosen to be maximal. Let us mention that the capacity
constant in the theorem can be computed in polynomial time (see §11.2).

Before moving on, let us emphasize the unrestricted nature of the matrix K. In previously known
bounds, entries in K were either restricted, or certain values of K were allowed by weighting variables
in certain ways. For us though, the value of K is inconsequential to our proof method, and so it shows
up as a parameter in our bounds in a straightforward way.

2.3. Two special cases. First, in the unrestricted case K = oo, we obtain the following result:

Corollary 2.2 (= Theorem 1.1). Let o € N™, B8 € N", such that ), a; = Zj Bj = N. Then:

1 ML I |
Capap > CT(a, B) > | oy HO&.le 1T T Capy g -
=2 " j=1

In particular, we have
Cap, g > CT(a, B) > e*4N~Capa,3 .

Second, in the case that «;, 8; are bounded for 7, j > 2, the approximation ratio we obtain is indepen-
dent of the dominant marginal values, ai; and ;. Note that the number of terms in the polynomial Py
in the following result does depend on the dominant marginal values, even though the approximation
ratio does not.

Theorem 2.3. Let a« € N, B € N*, such that ), o; = Ej Bj, and oy, B < ¢ for alli,j > 2. Then:
1
(m+n—1)(e(c+1))mtn-t

where K = (ki;), and k;; = min(oy, B;) for all i,j. Note that this is the entrywise minimal value of K
such that CT(a, 8) = CTk(ax, B).

Capaﬁ(PK) > CT(e, B) > . Capaﬁ(PK)
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2.4. Barvinok’s first bound. For the case of general contingency tables with a multigraphical matrix
K = (k;j), Barvinok gives the following bounds:

Theorem 2.4 (Barvinok | , Thm 1.3]). Let o € N, B € N, such that N =3, o; = 3 . ;.
Let K = (k;j) be an m x n multigraphical matriz, i.e. k;i; € {0,400}, for all 1 <i<m and 1 < j <n.
Then, for m +n > 10, we have:

Capa,@(PK) Z CTK(aa/G) Z CBaTV(Kaaa/@) Capa,@(PK)v

where
Carv Kvavﬁ = mtn— 2
Bare ) 25 mn(N+mn) (mn)*(N + 1)(N + mn)
m a; N B
N! i
" (N + mn)!( H o H 57
NN(N+mn)N+m” | ;! ﬂ

=

=1 j=

We also give a simplified version of Barvinok’s bound in the following.

Theorem 2.5. The value of Cary (K, ax, B) in the previous theorem is such that asymptotically we have
R"™™m18 > Cparv (K, a, 8) = R*T™S,

where min{ay, B;} — oo, min{m,n} — oo,

N

(m+n)?

R = T , and S = H
wez (mn)2(N + 1) (N +mn) bl

Q‘;_u

f[ ”
=1 Pi
In particular, we have

Capaﬁ(PK) >CTk(a,8) 2 N™ 7(m+n) Capaﬁ(PK)

Note that the asymptotics of the bound ratios N~7("+") in Theorem 2.5 and e~ *V in Theorem 2.5
are not directly comparable. In §7.1 we compare the lower bounds directly and show that our bound in
Theorem 2.1 is sharper. See also Section 10 for numerical examples.

Remark 2.6 (Shapiro’s upper bound). In | ] (see also | 1), the Shapiro improves upon Barvi-
nok’s first upper bound by adding a capacity-based correction term. It is best presented in the dual form
of the proof of Lemma 9.2, and states:

CT(e,8) < | min ]
(i,9)eT

1+ 2

where Z = (z;;) is the typical matrix defining capacity in the proof of the lemma, the minimum is over
spanning trees 7 in the complete bipartite graph K,,,, and the product is over all edges in 7. Since
we concentrate on the lower bounds, we omit the general K = (k;;) case. We only use this bound in
Section 10 for numerical comparisons.

2.5. Binary contingency tables. In an important special case of binary contingency tables, Barvinok
gives the following bounds.

Theorem 2.7 (Barvinok | , Thm 5]). Let o € N™, B € N", such that } ,a; = 32, 8. Let
K = (kij) be an m x n graphical matriz, i.e. ki € {0,1} for all i,j. Then:
e (n— o)
— 1
Cap, g(Px) > BCTk (e, B) > — 111 = ay)! H Capg g(Pk ).

For the usual (unrestricted) binary contingency tables, this gives:
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Corollary 2.8. Let a € N, B8 € N", such that ), a; = Zj Bj. Let K =1 be an m x n all-ones
matriz. Then:

1

3

mn i 1 L
Ca‘paﬁ(PK) Z BCT(a7 IB) Z (27.‘_)/rn+n—1 n— o, H 67] Ca’paﬁ(PK)v
i=1 vj=1

where min{a;, §;} — 0.

Gurvits | ] was able to improve upon Barvinok’s bound in the following result by proving a better
constant for all graphical m x n matrices K. For the sake of simplicity, he only explicitly provides a
bound in the case of a = (3 are uniform. He also gives other bounds for non-uniform « and 3, in the
form that are similar to Theorem 2.7.

Theorem 2.9 (Gurvits | , Thm 5.1]). Let o € N™, B € N", such that >, a; = >, B;. Let
K = (k;j) be an m X n graphical matriz, i.e. k;; € {0,1} for all i,j. Then:
m i n B] i—B;
A\ af (N —ay)hime B (vj — Bj) ™
Cap, g(Px) > BCTk(a, B) > [H <a> i H (%> 77/ Capg g(Pk ),
i=2 N j=1 J

where \; = Zj kij and v; =, kij, for all i and j.

See §11.3 for a combinatorial interpretation. In the usual (unrestricted) binary contingency tables,
Gurvits’s theorem gives:

Corollary 2.10. Let o € N, 3 € N, such that ), a; = Zj Bj. Let K =1 be an m x n all-ones
matriz. Then:

1
n 2

1 " n m
Capap(Px) 2 BCT(e ) 2 | oy | G ]1;[1 Ton | CoPasl(Pi):

where min{a;, 5;} — oco.

In §6.4, we give a more straightforward proof of Theorem 2.9 using the same technique as in the
proof of our Main Theorem 2.1. Note that Gurvits’s technique in | ] cannot be applied to general
contingency tables.

2.6. Barvinok’s second bound. In | ], Barvinok gives another upper and lower bound for CT i (v, ),
similar to the form of Theorem 2.4, except the polynomial Py is replaced by

HN(xvy) = hN(wy) = hN("'7xiij"')a

where hy(...) is the complete homogeneous polynomial in mn variables. Barvinok observes that the
coefficients of Hy(z,y) are precisely CT(c, 8) for all >, a; = >, 8; = N. Using this, he obtains:

Theorem 2.11 (Barvinok | , Thm 8.4.2]). Let o € N™ and B € N", such that 3, c; =335 =
N. Then:

Cap, g(Hy) > CT(,B) > Cu(e, B) - Capy g(Hn),

—1 -1 m
e = (V1) (VI e I

Note that Barvinok gives bounds for general K with entries in {0, +oo}, but we suppress this gen-
eralization here for the sake of simplicity. In §7.2, we compare our bound with this second Barvinok’s
bound. Namely, we prove that the lower bound in Theorem 2.1 is sharper than that in Theorem 2.7.
See also Section 10 for numerical examples, and §11.4 for the independence heuristic partly motivating
this bound.

where
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3. RANDOM CONTINGENCY TABLES

3.1. The setup. In this section, we give new lower bounds on the probability that a random contingency
table has certain marginals when the entries are drawn from various random variables. These results
parallel similar results given in | ]; e.g., Theorem 6.3 (2). In what follows, we let piq g denote the
probability that a random contingency table has marginals a, 3.

We will also consider the capacity of a different family of polynomials in what follows. Specifically
given choices of o, 3, a choice of K = (k;;) with finite entries, and a choice of s € [0,1], we consider

Cap, g(Qk,s), where

::13

QKé(m y

n .
H sziy; + (L—s))"".

We now state our bounds on o g for two specific cases: when entries are binomial-distributed, and when
entries are Poisson-distributed.

=17

3.2. Binomial-distributed entries. Our first result regarding random contingency tables gives bounds
in the case that the entries of the table are binomial random variables with parameter s € [0,1]. Specif-
ically given a K with finite entries, a random contingency table A is sampled by sampling a;; from the
set {0,1,...,k;;} with probability given by

ks
Pr[aij = é] — < 23> 85(1 _ s)kijfe.
We now bound jiq g in this case as follows.

Theorem 3.1. Let o € N, 3 € N, and let K = (k;;) be an m x n matric with finite entries k;j € N.
Let A = (a;5) be an m x n random matriz where each entry a;; is an independent binomial random
variable on {0,1,...,k;;} with parameter s € [0,1]. The probability jio,g that A has marginals (o, B) is
bounded by

Capy s(QK.,s) > pap > lﬁ <)\’> (/\ 7% - f[( > : '_@j)w_ﬂj] Capa g(Qx.s),

Vi
a !
i=2 v 75

where \; = Zj kij and vj =", kij.

Note that this is the same constant as is given in the case of counting binary contingency tables in
Theorem 2.9.

3.3. Capacity via typical matrices. In Theorem 3.1, we can replace the expression for Capaﬁ(QKﬁ)
by a more ostensibly combinatorial optimization problem. This is very similar to the idea of maximizing
an entropy-like function found in | ], and in particular in Lemma 5.3 (2) of | ]. In those papers,
the optimal input is referred to as the “typical matrix” with row sums a and column sums 3. In the
binomial entries case, we have the following result.

Theorem 3.2. In notation of Theorem 3.1, we have:

11 m” (1 _ S)klj—m”

Capg g(QK.s) = sup HH mu

0SM<K, M€Tas ;24 ;27 Mij

kij — mj) ko —mi 7

where the sup is over all real matrices M = (m;;) for which 0 < M < K entrywise, and M is in the
transportation polytope T g of nonnegative real matrices with row sums o and colums sums (3, see §8.1.

Note that, as above, we are able to incorporate the matrix K into this alternate expression.
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3.4. Poisson-distributed entries. Our next result gives bounds in the case that the entries of the
table are Poisson random variables with rate parameter s > 0. Specifically, a random contingency table
A is sampled by sampling a,; from the set {0,1,2,3,...} with probability given by

sftes

14
For this case, we obtain explicit bounds on the probabilities.

Pr[aij = E] =

Theorem 3.3. Let a € N, B8 € N", such that ), o; = Ej Bj = N. Let A be an m xn random matriz
where each entry a;; is an independent Poisson random variable on {0,1,2,3,...} with rate parameter
s> 0. The probability ,uaﬁ that A has marginals (e, B) is bounded by

NN 1 1
smn— N H 041 [3 = o, Z (ssrnnZLN - 7] :
e a; 1 B e Pl ;! e ﬂj.

The proof is based on the fact that the value of Cap, g can be explicitly calculated in this case,
see §6.6.

n

4. REAL STABLE AND DENORMALIZED LORENTZIAN POLYNOMIALS

4.1. Notation. We use C and R to denote the complex and real numbers, R, = {z > 0}, Ryg = { > 0},
and N={0,1,...}. We also use [n] = {1,...,n}. We denote by 9; the partial derivative ai

We use some standard vector shorthand For vectors e and 3, we let most standard operations be
entrywise; e.g. a < B and a &+ 8. We also define a! := []; a4/, (g) =1L (2‘:), and af = IL aiﬁl.
Finally, we let 1 denote the all-ones vector with length determined by context.

An sequence {a,0 < k < n} of nonnegative real numbers is called log-concave if ai > Ap—10k41
for all 1 < k < n — 1. Moreover, it is wultra-log-concave if {ak/(Z),O <k< n} is log-concave and has
no internal zeros, i.e., there are no indices ¢ < j < k for which a;ar # 0 and a; = 0. See | ] and
references therein, for the context behind these properties.

Throughout, we will use Stirling’s approximation for factorial:

which holds asymptotically as n — oo. We also have the following bounds which hold for all n € N:

|
[e*" 27m] <t C

" T 27

4.2. Real stable and Lorentzian polynomials. A polynomial p € C[xy,...,xz,] is said to be stable
if it is nonvanishing whenever (z;) > 0 for all j. If further p has real coefficients, then p is said to be
real stable. Recall that the Hessian of a polynomial p € Clzy,...,x,] at & € C", is defined as

Hy(@) = (9:0;p(2)); ;-

A real symmetric matrix has Lorentzian signature if it is nonsingular and has exactly one positive
eigenvalue, i.e., its signature is (+,—,—,...,—).

Definition 4.1 (Brandén—Huh | ). A homogeneous polynomial p € Ry [zq, ...
is strictly Lorentzian if

, &) of degree d > 2

(1) all coefficients of p are positive, and
(2) for each sequence 1 < iy,ia,...,ig—2 < n and © € RZ,, the Hessian of 0;, ---0;, ,p has
Lorentzian signature at @.
If p is the limit (in the Euclidean space of real polynomials of degree at most d in n variables) of strictly
Lorentzian polynomials, we say that p is Lorentzian.

Proposition 4.2 (| , Ex. 5.2]). A bivariate homogeneous polynomial is Lorentzian if and only if its
coefficients form an ultra-log-concave sequence.
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Remark 4.3. The class of Lorentzian polynomials contains homogenous stable polynomials with non-
negative coefficients | ], which gives an easy sufficient condition for a polynomial to be Lorentzian.

Note that by definition, d;p is Lorentzian whenever p is, for any i. This gives the following lemma
which will be useful for induction.

Lemma 4.4. Let p € Ry[zy,...,2,] be a Lorentzian (resp. real stable) polynomial of degree d, and let
us write

d
p(T1, ... xn) = Z 23K pp (@, . 2n).
k=0

Then pi is a Lorentzian (resp. real stable) polynomial of degree k, for all k € [d].

Proof. Apply the partial derivative 9,, exactly (d — k) times to the polynomial p, to obtain ¢, which
is Lorentzian by definition. Plugging in x, = 0 to ¢ then yields p; up to constant. To see that
plugging in 0 preserves the class of Lorentzian polynomials, note that this operation preserves the class

of stable polynomials with non-negative coefficients, see e.g. | , Lemma 2.4], and it also preserves
homogeneity. Theorem 6.4 of | ] then implies that this operation also preserves the class of Lorentzian
polynomials. 0O

And finally, we have the following by a similar argument.

Lemma 4.5. If p € Ry[xy,za,...,2,] is a Lorentzian (resp. real stable) polynomial and A, pn > 0, then
p(Ax1, px1, T3, ..., x,) s also Lorentzian (resp. real stable).

Proof. Since p — p(Axy, pxy, T3, ..., x,) preserves the class of real stable polynomials with non-negative
coefficients and also preserves homogeneity, it also preserves the class of Lorentzian polynomials by
Theorem 6.4 of | ] O

4.3. Denormalized Lorentzian polynomials. Given a polynomial p(z) = >, pua*, we define its
normalization as

wl’l'
Nlp] = Zp“ﬁ'
"
We say a homogeneous polynomial p € Ry [z1,...,2,] is denormalized Lorentzian if N|p] is Lorentzian.

Proposition 4.6 ([ , Cor. 6.8]). Let p1,...,pm € Rylxy,...,2,] be denormalized Lorentzian poly-
nomaials. Then so is p1-- Pm-

Recall the function Pk from Section 2, where K is an m X n matrix with entries in N U {+o00}:

~ ks . - m n ot

That is, Py is a product of polynomials of the form ¢(x,y) = 2?4+ 2% 'y + ... + 39, all of which are de-
normalized Lorentzian by Proposition 4.2. Therefore, Pk is denormalized Lorentzian by Proposition 4.6.
In the next section, we will obtain bounds on the coefficients of denormalized Lorentzian polynomials,

which will translate into bounds on the number of contingency tables with given marginals.

Before moving on, we give versions of Lemma 4.4 and Lemma 4.5 for denormalized Lorentzian poly-
nomials.
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Lemma 4.7. Let p € Ry[xy,...,x,] be a denormalized Lorentzian polynomial of degree d, and let us
write

d
Py yan) = S @l F p(wr, . ).
k=0

Then py is a denormalized Lorentzian polynomial of degree k, for all k € [d].

Proof. The map p — pi commutes with IV up to scalar for all k. The result then follows from Lemma 4.4.
|

Lemma 4.8. Let p € Ry[xy,x9,...,2,] be a denormalized Lorentzian polynomial, and let A, > 0.
Then p(Ax1, px1,xs,...,x,) is also denormalized Lorentzian.

Proof. Since the class of Lorentzian polynomials is closed under scaling of variables with positive numbers,
so is the class of denormalized Lorentzian polynomials (since N commutes with scaling). Thus we can
assume that u = A = 1. Let T be the linear operator defined by

Tpl(z1,- .., xn) = p(x1,21,T3,...,Tp).
We need to prove that the operator S = N oT o N~! preserves the class of Lorentzian polynomials. The
symbol of S (see | , §6]), is

k+t d—k

z d—~
Sl + )"+ @+ )] = (@bt 3 ey e

Up to scalar this is the generating polynomial of an M-convex set, and so it is a Lorentzian polynomial
(see | , Thm 7.1]). Therefore, by [ , Thm 6.2], the operator S preserves the class of Lorentzian
polynomials. O

5. CAPACITY BOUNDS ON COEFFICIENTS

5.1. Preliminaries. Applications of polynomial capacity bounds on stable and Lorentzian polynomials
to combinatorics was pioneered by Gurvits in the mid 2000s. This began with bounds for the permanent

and mixed discriminant in | ], and also includes applications to the mixed volume and to discrete
and computational geometry more generally in | ].
In | ], Gurvits used optimal improvements of bounds from | ] to prove Theorem 2.9. The

main idea is that one can bound the coefficients of stable and Lorentzian (i.e. strongly log-concave or
completely log-concave) polynomials. Specifically, he applies these bounds to the polynomial

n  Kij

m
= ks ckin — kij—~
Pr(z,y) =y g™ Pr(a,y ™) = ITIID>. «iwi ™,

where K is a matrix with 0-1 entries. The coefficients of Pk are precisely the number of binary con-
tingency tables with given marginals and entrywise bound matrix K. (Note that similar bounds can be
obtained from the inner product capacity bounds of | ] and | 1)

The problem with this approach is that it does not extend to general contingency tables, since no
simple operation applied to Pk yields a stable/Lorentzian polynomial in that case. To circumvent this,
we instead turn to a new approach to deriving capacity bounds on coefficients of denormalized Lorentzian
polynomials. We can then apply these bounds to Pk.

Before moving on, we recall the definition of capacity and give a few basic properties that we will use
throughout.

Definition 5.1. For a polynomial p € Ry [z1,...,%,] and any non-negative vector o € R’}, define
. p(w) : p(xla"'vxn)
= inf —= = f —_
Capg,(p) ::1:20 porsy xl,__lir’lxn>0 a0

We also use this definition when p is an analytic function given by a power series with non-negative
coefficients. To handle rational functions which are not analytic, see below.
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Lemma 5.2 (| , Lemma 2.16]). For any ¢,oc € R} and m := > | ay, we have
“fme
Capg ((c11 + -+ cnwn)™) = 1_[1( a; ) '
Lemma 5.3 ([ , Prop. 2.14]). Let p € Ry[x1,...,z,] be a symmetric polynomial, and let o =

v-1€RY be a multiple of the all-ones vector. Then:

Cap,(p) = Cap,, (p(t,t,...,t)).

Lemma 5.4 (] , Cor. 5.8]). Let p € Ry[z1,...,2,], for k € N, be such that p, — p uniformly
on compact sets for some analytic function p. Then for any valid a € R}, we have

Capa(p) = lim Capg(pi)-

We make one last comment here about the case when some of the entries of K are 4+o00. In this case,
the function Pk that we care about has some rational factors of the form (1 —z;y;)~"!, and hence is not
analytic. So, we need to change notation slightly to account for this:

Sy (1 —y;)”!
Cap(a, ) (1= ziy;) ™) 1= @, ylvréfm 1) i, Bi
i Y3 ’ [Ei y_]

Note that if we think of (1—z;y;)~" as the power series 1+;y; + (z;y;)*+.. ., then this makes intuitive
sense because the infimum could only possibly be attained for z;y; € (0,1). We show that this is a good
definition by giving an analogue to Lemma 5.4 for this case.

Lemma 5.5. For every r € Ry, we have

Cap, (1-t)7") = kli_>n;o Cap,(1+t+12+--- 4+ t¥).

Proof. The result follows from a standard argument about exchanging lim and inf, since both ¢="(1—¢#)~!
and t~"(1 +t+ --- + t*) become large near the boundary and convergence is uniform elsewhere. ([l

5.2. Weighted log-concave coefficients. We first prove a capacity bound for bivariate homogeneous
polynomials with weighted log-concave coefficients. Before saying anything more than this, we define
what we mean.

Definition 5.6. Let w(z,y) = > ,_, wpz®y" ™% and p(z,y) = Yj_, pra"y" " be bivariate homo-
geneous polynomials with positive coefficients. Then we say that polynomial p is w-log-concave if
{pk/wk ,0< k< n} is a log-concave sequence.

In particular, recall that a bivariate homogeneous polynomial p is Lorentzian if and only if its coeffi-
cients form an ultra-log-concave sequence. That is, p is Lorentzian if and only if it is (z+y)™-log-concave.
Such weightings of log-concave coefficients have been studied in a similar context by Gurvits in | ]
under the name propagatable sequences.

We now prove the main lemma of this section, which is a capacity bound on the coefficients of
polynomials with weighted log-concave coefficients.

Lemma 5.7. Let w(z,y) = Y p_owiz®y" % and p(z,y) = Y}, pra®y" ™" be bivariate homogeneous

polynomials, such that p is w-log-concave. Then for all k € [n], we have
Pk > Wi
Cap(gn—i)(P) — Cap(gn_p)(w)

Furthermore, this bound is sharp for every fixed k and w.
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Proof. We need to compute

n

. 1 e
Cen—k = sup  inf ————— E wja;z’y" 7,
l.c.a>0 ©:y>0 apx™y o
where the sup is over all positive log-concave sequences a = (ao, .. .,a,). Since p is w-log-concave, the

result is then equivalent to
Crn—k = Cap(y y—p)(w).
To prove this, first note that
1 n n
Cin_r = su inf ———— wia;’y" 7 = su inf wia;zi k.
kn—k l.c.aI;O 2y>0 apzhyn—F JZ::O jA5TY p (;Z_(:) 74 )

lc.a>0 >0
ap=1

For positive log-concave sequence a = (ag, . .., a,) with ax = 1, we have the inequalities
ap—j < aj_, and apy; < ai_H
for every valid 7 > 0. This implies

k—1 "
Cin—k = sup inf [(Z wjal,z_{mjk> + wy + ( Z wjaij:mjk)].

ag—1apr1<1 >0 =0 j=k+1

We can further restrict to ag_105+1 =1 <= a1 = a,j_l in the sup, which implies

n n

— wun i Gk -k | _ —k

Crp—r = sup ;2%(5 wjay ! ) = ;I;f(’) (E wja? )
ap4+1>0 ) =0

Therefore Cn— = Cap(y ,_y)(w), which implies the result. Sharpness of the bound is then achieved
by setting p = w. |

Using this lemma, we derive corollaries for specific polynomials pertinent to the polynomial Py Note
that in this first result we make a simplification to obtain a nice expression for the bound, and therefore
the bound is not sharp.

Corollary 5.8. Let p(z,y) = ZZ:O praFy™ =k be such that po,...,pn is a positive log-concave sequence.

We have:
Dhe kk (n o k)nfk

_— >
Capg iy (p) — A { (k4 1)k (n — k4 1)n—k+1 } ’
for every k € [n]. Further, this bound is sharp up to a factor of 5 for every fived k € [n].

Proof. We compute

Comn (S50 ) = i 3o <t b7
§=0 §=0 ’

Basic calculus gives

kk
k k+17 _
sup |z" —x = ——.
2€(0,1) [ } (k4 1)k+1
Combined with the previous lemma this implies
Ca k
on > p(k,nfk)(p) S k

> > Cap 1) (D)
" S k+1 (k,n—k)
Cap(y,n—r) (Zj:o zy" J) (k+1)

We also have

n n
Cap (x.n—r) <Z xjy”J) = inf Z y(r==(=h) < [y R - y)]_l.
=0

=0 y>0 y€(0,1)

The same argument then implied the bound in the corollary and finishes the proof of the first part.
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For the second part, first note that for m := min(k,n — k) we have

n 2m
Cap (1) (Z xjy"_j> = Cap(n,m) (Zfﬂjy?m‘j> = 2m+1,

j=0 §=0
by symmetry and Lemma 5.3. Therefore,

-1
m" O 1
(m+ Dymit = [Capac,nk) (E:x]y J)} = dmr1

Jj=0

By a calculus argument, we further have
2 1 < m™
e 2m+1 — (m+1)m+i’

and this completes the proof. O

Corollary 5.9. Let p(z,y) = > 1_opr™y™ " be a bivariate Lorentzian polynomial. For each k € [n],

we have
Pk S (n) k¥ (n — k)" k
Cap n_py(p) — \Kk n" '
Further, this bound is sharp for every fized k € [n].
Proof. Recall that a bivariate homogeneous polynomial is Lorentzian if and only if it is (z + y)"-log-
concave. By Lemma 5.2, we have

n n

n . n n
Cap (i n—k) (Z (k>93ky k) = Cap(k,n—k)((erl/) ) = Fo(n — Rk
k=0

The k-th coefficient of (z + y)™ is (Z), and this completes the proof. O

5.3. Real stable and denormalized Lorentzian polynomials. In this section, we emulate Gurvits’s
proof of Theorem 5.1 of [ ] to obtain bounds for real stable and denormalized Lorentzian polyno-
mials. First, we prove our main bound on coefficients of denormalized Lorentzian polynomials.

Theorem 5.10. Let p € Ry[xy,...,x,] be a denormalized Lorentzian polynomial of degree d, given by
p(x1,. .., xn) = Z PpTt.
B+t pn=d

Let d; be the degree of x; in

Q41 Uy
ai+1 "'8n p

forall 1<i<n-—1,

Tiy1=...=xp=0 "’
and let d,, be the degree of x,, in p. Then, for all a € N™, such that oy + ---+ o, = d, we have:

(o2

P n d; -1 n « (d a )di—ai
e ko di—k i i Q)T
> |Jl:[2 Cap(di—amai) (];]Z‘ Yy >] > 11;[2 max { (ai T 1)ai+17 (dZ o+ 1)di7ai+1 } .

Cap, (p)

Proof. The proof is by induction over n > 2. The case n = 2 is Lemma 5.7 and Corollary 5.8. Let n > 2,
and write

d
p(xl,...,mn) = Z xfb_lpi(m,-n,xn_ﬁ-
=0

Then for positive y1,...,Yym—1, Lemma 4.8 implies that
d

p(ylta"'ayn—ltvs) = S
=0

diitipi(yla e Yn—1)
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is denormalized Lorentzian. Now for s, > 0, we have

dn i
Cap (p) < p(y1t7 .. ayn—lta 8) _ Zi:O Sdn ltlpi(yl’ .. 71/77,71)
o) S e (g )arstn T sy e

which implies
dn s
Cap(dnfan,an) (Zi:O gdn ltlpi(yh ... ,yn,1)>

Capg (p) < =

o yixl “e y’li.:fll
Clearly the polynomial q(t,s) := t%~% . p(yit,...,yn_1t,s) = Zjlo s =ipi(y1, ... yn_1) is also de-
normalized Lorentzian, with coefficients given by p;(y1,...,yn—1) for any chosen positive y1,...,Ym—1.

In particular the coefficients of ¢ form a log-concave sequence, and thus by Lemma 5.7 we obtain

dn o Gad dn _
Cap(dnfan,an) (Zi:o Sd” Ztlpi(ylv cee 7yn71)> < Cap(dnfan,ozn) (Zk:o xkydn k) *Pay, (yla N 7yn71)
Oy —1 — Qp—1 ’

Yy Yt Ynla

which implies

dn

Capa(p) < Ca‘p(dn—an,an) <Z xkydn_k> : Ca‘p(al,...,an,l)(pan) .
k=0

Therefore, by Corollary 5.8, we conclude

Cap, (p)
Ca‘p(al,...,an,l)(pan) e = d, P
Cap(dnfan,an) (Zk:ox Yo )
o (dl — Oéi)d'i_ai
> ¢ , C .
< max { (s + D)ot (d; — a; + 1)di—aitl } apq (p)
The result follows by induction. ]

Essentially the same proof also works for real stable polynomials, giving the same bound achieved by
Gurvits. The proof we give here is similar to Gurvits’s, but we have put it in our language for the sake
of clarity and easy comparison to the proof of Theorem 5.10.

Theorem 5.11 (] , Thm 5.1]). Let p € Ry[x1,...,2,] be a real stable polynomial of degree d, given
by
p(z1,...,z,) = Z puxt.
jir ot pin=d
Let d; be the degree of x; in
Oy 0 ply oy gy i=l.m—1,

and dy,, the degree of x, in p. For any a € N such that oy + ...+ oy, = d, we have

Da (N afi(di — ay
> 3
Capa(p) — Z:HQ (04) d

K2

)di_ai

Proof. The proof is by induction over n > 2. The case of n = 2 is Corollary 5.9. Now, every step of
the induction of the proof of Theorem 5.10 then holds for real stable polynomials, with Z?;O aiydn—t

replaced by (z + y)%. The main difference is that in the second to last step we apply Corollary 5.9 to

get
-1
Cap (p) < (dn) d;iln . pan(yl?"'7y7z—1)
W= \an) A (dy — )ty yg

' Capa (p) )

for all y1,...,yn—1 > 0. This implies
dn> a®n (d, — o)t

Ca‘p(alyuwanfl)(pan) 2 (an d’IC’an

which proves the step of induction. O
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6. PROOFS OF THE RESULTS

In this section we prove the results in Sections 2 and 3. We obtain bounds on CT g (e, 3) for various
K, and on probabilities that a random contingency table will have marginals (e, 3) when the entries are
chosen from binomial and Poisson distributions. The proofs of these facts all have the same form:

(1) determine a polynomial whose coefficients hold the information that we want to bound,

(2) transform that polynomial until it is real stable or denormalized Lorentzian, and then

(3) apply the capacity bounds of the previous section.

6.1. Proof of Theorem 2.1 and Corollary 2.2. Recall that CTg(c,3) is the coefficient of z*y?
in the polynomial
m  n ki
:HH 73]
i=1 j=1 £=0
of K

for every a, 3, and every K = (k;;). When the entrle are finite, we invert the y variables to get

D k1 kzn N = : kz_l
Pg(a,y) =y "oy Py = T T DS ol

The polynomial ﬁK is a product of denormalized Lorentzian polynomials. By Proposition 4.6, this
implies Py is also denormalized Lorentzian. Therefore, we can apply Theorem 5.10 to Py Since Pk is
of degree A; := 3, k;j in x; for all 4, and of degree v; := 7, k;; in y; for all j, we obtain the following
for any valid a, 3:

m

[Pr)a(v-8) > ]

Capg (v—p)(Px) =3

n B;
B;
a+1a+1H 6+15]+1

Here [ﬁK]a 3 denotes the coefficient of 131( corresponding to the monomial ®y®. Finally, it is straight-
forward to see that

CTk(e.8) _  [Pxlap _  [Pxlav-p)
Capaﬂ(PK) Capa,@(PK) Capa (’Y—B)(PK)
We now simplify this bound. Note first that for any k& € N, we have:

A | ENL 1
(E+1D 1 E+1\k+1) ~ ek+1)"
Combining this with the above bound gives

n ﬁB]
a+1a+ 1;[ (B; + 1)Bat1

CTK(Q,[)') "
o) = LL T

1
> emAn—1 gai+1j1;[15j+l'

Finally if K has some entries which are +oo, then we can choose large finite numbers for the those
entries, apply the previous argument, and limit to 400 (see Lemma 5.4). O

Remark 6.1. Note that we did not use the full strength of Theorem 5.10 here, which allows us to make
the following replacements:

Qg

a; ag (N — )i
— — — max
(a; + 1)l (g + 1)+l (N, — ay + 1)Ai—itd

and

8y By (05 = B
G max{(ﬁﬁrl)ﬁﬂ“’ (g — By + D2 [

Via the above simplification, we then obtain the stronger bound

CTg(a, B) 1 11 1 ﬁ 1
Capg g(Prx) — emtn=t L1 min{a;, A —a;} +1 i min{3;,v; — B;} + 1’
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where \; := Zj kij for all i, and ~; := >, k;; for all j.

6.2. Proof of Theorem 2.3. In this section, we obtain a simply exponential approximation factor for
CT(a,B) in the case that a;, 8; < ¢ for 4,j > 2. Letting N := 331" a; = Y7 B; (which is dominated
by the value of ay and 1), we will compute CTk (ax, ), where we may assume K to be the matrix with
each entry defined by k;; := min(«;, 3;). By Remark 6.1, we obtain the bound

m n

Capg g(Pr) — emtn=t 14 minfay, A —ai} +1 e min{j;,v; — B} +1

1 1 m n
> .
- emtn—l '71—61+1Hc+11;[c+1

S 1 1 1
“emtn-l (m—1)c+1 (c+1)mtn—2
1
> )
“(m+n—-1) - (e(c+1))mtn-1
where \; := Zj k;j for all 4, and v; := Y. k;; for all j. Since CTg(a,3) = CT(ax, 3) in this case, we
obtain

1

Capaﬁ(PK) > CT(e,B) > (m+n—1) - (elct 1))mtn-1

. Capaﬁ(PK).

This finishes the proof. [J

6.3. Proof of Theorem 3.1. We now prove the probability bound in the case where the (4, j)-th entry of
the table is sampled according to a binomial distribution on {0, 1, ..., k;; } with parameter s € [0, 1]. The
probability of selecting a contingency table with marginals (e, 3) in this case is given by the coefficient
of £%yP in the polynomial

m n
Qrs(zy) = [] H sziy; + (1—s))"

=17

for all o, B, and K = (k;;) with finite entries. Note that Qx s(1,1) = 1. We can invert the y variables
to get

m n

~ ki i Kin i
Qrs(@,y) =y "y " Qi@ y™h) = HH szi+ (1 - s)y;)™.

This polynomial is real stable, and we can apply Theorem 5.11. Since Q K,s 1s of degree A\; := " j ki; in
x; for all 7, and of degree 7; := ), k;; in y; for all j, we obtain the following for all valid «, 3:

(@i sl v-p) - H ( > Ao ﬁ ( > —V,f’j)V_jfﬁj.

Capa, (g (Qrs) iz "

Here, [Q K,s) o, denotes the coefficient of Q K,s corresponding to the monomial z*yP. Tt is then straight-
forward to see that

[QK,S]G,,@ _ [QK S] ,(Y—B)
Capa,B(QK,S) Capay(.,_g) (QK,s)
This gives the desired bound. O

6.4. Proof of Theorem 2.9. The bound in this case follows from the binomial-distributed case (§6.3
above), up to scalar when K is a 0-1 matrix and s = % The details are straightforward. O
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6.5. Proof of Theorem 3.2. The equality follows from the same sort of arguments used to prove
Lemma 5.3 (2) of [ |. However, another proof can be given using the following nice capacity-
theoretic result, which we present for completeness.

Proposition 6.2. Given p1,...,pm € Ry[z1,...,2,] and a € R, we have:

m m
Cap,, (H pk> = sup H Capgr (pr)-
k=1 B, BMERY g1
B+ .. +B"=a

Proof outline. Define p := [[,—, px. First, the case where Vlog(p)|,_, = a follows from the fact that
Cap,,(p) is maximized over v € R} at v = Vlog(p)|,_;, and Cap, (p) = p(1) in this case (see Fact 2.10
of | ]). Then, to handle e in the relative interior of the Newton polytope of p, one can choose
r > 0 such that Vlog(p(r - x)) |m:1 = a. The result then follows from the first case. Since the case of
a outside the Newton polytope of p is trivial (because the capacity is 0), we only need to handle the
case when a is on the relative boundary of the Newton polytope of p. This can be done by a limiting

argument; the details are straightforward. O

Once we have this result, Theorem 3.2 follows from a straightforward application to the polynomial
Qk,s, using Lemma 5.2 to obtain explicit expressions for the capacity of the terms of the product.

6.6. Proof of Theorem 3.3. We now prove the probability bound in the case where the entries of
the table are sampled according to the Poisson distribution on {0,1,2,...} with parameter s > 0. The
probability of selecting a contingency table with marginals (a, 3) in this case is given by the coefficient
of x®yP in the power series of

Qoo.s(x,y) H H e®¥Yi=% for all a and S.
i=1 j=1

Note that Qs,s(1,1) = 1. Because this is not a polynomial, we can’t invert the y variables as we have
done above. Instead, we view this case as a limit of the binomial case. In particular, note that

e**YiT% = lim 1 (sxiyj + l)d
d—oo e’ d

uniformly on compact sets. Therefore, we can consider the polynomials

Rdswy H

m n

1 /sxy; 1 /sy d
— 1) d Ra. = 7( )
e ( + an d,s(x,y) H pr +y;

u::]:

=1 j=1

Since IA?;(LS is real stable, we can apply Theorem 5.11 to get

[Ed,s]a(md—,@) - O (nd> afi(nd — )4 ﬁ (md) /Bﬁ] (md — B;)md=Fi
Capa(md—ﬁ)(ﬁd,s) it \oy (nd)nd o (md)md .

Further, by Stirling’s approximation we have

23 nd—a; a;
(nd) ait(nd — o) alt

li =
oo \ oy (nd)n ail ¢

d—o0

and the same holds for 8;. Combining this with the above bound gives

E s m ;-
lim [Ra,s]a (md—p) > 2N+ H@‘
d=o0 Capy (md— g)(Rd 5) i—p M G P
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where N := """ «a; = Z?Zl B;. Finally since Rgs — Qoo,s coeflicient-wise as d — oo, Lemma 5.4
implies

Ra.s)e (md—
[Qoo,s}aﬁ lim [Rd,s]aﬁ — lim [ d,s]a( d—p3)

Capaﬁ(QOO,S) d—o0 Capa,8<Rd S) d—o0 Capa md—B)(Ed 9)

v 557 v ﬁﬁf
s T Gy = o o 1 5y

We now compute the capacity of Qo s, which has an explicit formula due to the nice form of the
function. Note first that we have

m

Qm,s(m,y) = H e~ st sz i ui

i=1
So the capacity expression can be broken up as follows:

—sn+5zl DY

CapaB(Qoo)s = inf ﬁ H inf o

y>0 y x; >0 z;

For every i € [m], note that

—snetems T, u;
€ — 7 — e i log z;,—sn+sz; Z?:l Yi

To minimize this expression, we only need to minimize the exponent. Applying calculus, we have

n n
o o
0 = Og, —ailogxi—sn—i—sxig Yj :——Z—i—sg Y = T = ——=m—— -
j=1 Ti j=1 §2j=1Yi

This gives

Cesrhsmiiau (se D=1 Yi) (se)
inf = = E Yj ,

;>0 x?; O[Z?éi esn aaLesn

which in turn implies

N
se)N . (Z;'l:l yj)
Capaﬂ(Qoo,s) = ﬁ . 'I,III;% T .

By Lemma 5.2, we then have

(Z?:l yj)N NN

B e - s
which finally implies
(seN)N
C cos) = ——a——— .
apaﬁ(Q 5§ ) aaﬂﬂ esmn

Combining everything then gives the desired bounds. O

7. COMPARING BOUNDS

In this section, we compare Barvinok’s bounds to the bounds we are able to achieve in this paper for
counting contingency tables. To simplify the computations, we use Stirling’s approximation indiscrim-
inately for every factorial that appears. The approximation is in general only off by at most a factor
of —%, and it holds asymptotically as min{a;, 3;} — oo and min{m,n} — oco. This is the meaning in
which we use “~” and “2”.
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7.1. New bound vs. Barvinok’s first bound. In | |, Barvinok achieves the following constant
in the general case

oty = T y
arv (14, &, = mtn—2
. 2¢5 ™% mn(N 4+ mn) \(mn)?(N +1)(N +mn)

NU(N 4+ mn)! (mn)™" ﬁ o H ﬁfj

NN (N + mn)N+tmn (mn)!

where N =50, =) j B;. We now compare to our constant:

Con(Koc0.8) = [] O -
new( aaaIB) - g Oé + ab+1 H B +1 Bi+1 ~ em-‘,—n—l H ; H E .
First note that

m n b n
NU(N 4+ mn)! ( o By’ N(N + mn) 1 1
NN (N +mn) N‘“”" n)! H ;! H Bt T\ @m)mtriimn H @ H B;°

i=1 j=1

We then further have

1+

25 175 mn (N + mn)

F(m;n) 2 m+n—1
((mn)2 (N+1)(N+ mn))
m+n—1
- 2(m +n)

~
~

Combining these approximate equalities, gives

N whmd 2N LRSS QNN
CBarv(Kvavﬂ) ~ 2 11 3 H o H B
mv/e(mn)2(N + 1) (N + mn) 4el (mn)? (N +mn) *+ o; 4 5;
We also have the more amenable bound

vm4+n

n+m—1
Corv (K, @0, 8) 5 (W\/E(mn)z(N+1)(N+mn))

To compare to our constant Chew (K, @, 3) we use the easy bound

Hai Hﬁj < Nernfl,
i=2  j=1
which leads to

Cnew(Ka «, ﬁ)
OBarv(Ka (e /6)

Vv

(W(mn)2 (N+1)(N+ mn)>m+n_1

e(m+mn)

Vv

(Nm+n—1)2

That is, our lower bound (and approximation ratio) improves upon Barvinok’s by at least the above
factor.
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7.2. New bound vs. Barvinok’s second bound. There are now two features of this bound that we
want to compare to ours: the approximation ratio and the actual lower bound. For every valid K, we
first note that

(7.1) Hy(z,y) < Px(z,y) forall x,y > 0,

since Hy and Py have the same coefficients on the support of Hy. (See Section 2.6 for the definition
of Hy.) So in fact, if our approximation ratio is better than Barvinok’s ration Cy(«, 3), then so is our
lower bound.

To compare approximation ratios, we assume the 3;’s maximize Cyu (o, 8) and partially apply Stirling’s
approximation to get

N+m-—1 _1<N+n—1)_1( 1 )"—1 N
Cu(a,B8) = _ - )
wess ~ (M) (Y0 var) A5
This then gives

MN N+m—1\(N+n—-1\ (V2r)" ! ﬁ 1 ﬁ \/E
CH(au[a) - m—1 n—1 eern*l\/]V P a1+1 j:1 B]_i_l
We now make a few simple observations. First, if k¥ < n, by Stirling’s approximation we have

n+k\ _ [n+k (n+k)"r  In+k (e(n+k) F
k OV 2mnk Eknr 7V 27nk k '

Then by the AM-—GM inequality, we obtain:

ﬁ 1 S n " n(N+n ' IN+n nfN+n—1 -1 n
~ e \/ =e — .
tLBi+1 7 \N+n n 27rNn n—1 2rN(N +n)

Similarly,

W m—1 mel L (N+m-1\" | N+m-1
11 > > gm Nyrm—-
ssaitl T \N-—ar+m-1 ~ m—1 27 N(m — 1)
Further, it is easy to see that

VB 1
Bi+1 7~ V2./B;+1

for B; > 1,

which implies

Coewl(@,B) o (N4n—1\%( 7 5n(N4tm-1)? \*
Cu(a,8) N( n—1 > (62"25N5(N—|—n)(m—1)2>

n—1

s (N+n—-1\7 72 Onp(N +m — 1)2(N +n —1) T
~ n—1 €226 N6(N +n)(m — 1)%2(n — 1)
.1 (N +n—1)\"7

~ mwNym n—1

Therefore, our approximation ratio improves upon Barvinok’s second approximation ratio.

8. VOLUMES OF FLOW AND TRANSPORTATION POLYTOPES

8.1. The setup. Let o = (a1,...,a;,) € N™ and B8 = (B1,...,0,) € N" be integer vectors. A
transportation polytope T s is the set of m x n real matrices Z = (z;;), such that z;; > 0, and

m n
(8.1) Z z;j = B forall 1<j<n, and Z zij = a; forall 1<i<m.

i=1 =
Transportation polytopes are classical objects of study in geometric combinatorics and combinatorial
optimization | , ], and their volume is one of the motivations to study contingency tables,
see e.g. | , ]
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The celebrated Birkhoff polytope B,, is a special case of the transportation polytope Tq g, when m = n,
and a = 8 = (1,...,1) € R It is especially well studied in its own right, see e.g. | ,
First few values of vol(B,,) are given in | , ) ], see also | , A037302]. This is also
one of the few cases when the exact asymptotics for the volumes is known, see Example 8.4 below.

For a matrix K = (k;;), a flow polytope Fk o p is defined by (8.1) and 0 < z;; < k;;. For K = o0
we obtain the transportation polytopes. Note also that the K-contingency tables are integer points in

FK.ap:
The volume of flow polytopes has been actively studied in connection to both discrete geometry and
enumerative combinatorics. We refer to [ , , ], and to more recent papers [ ,

] for further references.

8.2. The results. The connection between the number of K-contingency tables and the volume of the
corresponding flow polytope is given by the following:

. CTMK(MQ,M,B)
VOI(]:K@hﬁ) = f(S7m7n) ’ A}lgloo M (m=1)(n-1) ’

where S = Supp(K) and the f(S,m,n)? is the covolume of the lattice Z(S) N R(Fk «,3)-
For the transportation polytopes, we have:

vol(Tag) = VT T . i ST MB)

M-ooo Mm=1)(n-1)

1, m—1

where the covolume m™ 'n computed e.g. in [ , Lemma 3].!

Theorem 8.1 (General lower bound). Let o € N™ and 8 € N" be such that >, a; = >, B8;. Let
K = (kij) be an m x n matriz with all entries k;; € NU {+o00}. Then:

f(Svma n) i 1 " 1 (x’byj) = 1
VOI(]:K,a,ﬁ) Z W H E H /87] Capa’@ H H ﬁ s
where S = Supp(K) and f(S,m,n) are as above.

For the transportation polytopes, we get:

Theorem 8.2. Let a € N™ and B € N" be such that 3, o; = . B;. Then we have:

\/m ME ]
vol(Ta,g) = % H 1;[ B8; Cap"‘ﬁ(H 11 log ) )

where the inf in the capacity is over 0 < x,y < 1.

Note that (@w)"o -1
log(z:y;)

Thus, one can easily compute this capacity value using convex optimization as in the case of counting
contingency tables, see §11.2.

becomes convex after you plug in e® and e and then take log on the outside.

Before we present a proof, let us single out the case of uniform marginals which are especially inter-
esting and important in applications.

Corollary 8.3 (Uniform marginals). For o = (o, ...,a0) € N™ and 8 = (b, ..., 5o) € N, we have

(EN)(mfl)(nfl)

> .
volTap) 2 DT = DD

Note that the results in | | give the exact asymptotics only for uniform marginals with max{ o, %} =
O(logn), while the lower bound above applies unconditionally.

1The covolume mnr—1nm—1 ig equal to the number of spanning graphs in a complete bipartite graph Ky,n, an obser-
vation which extends to all multigraphical matrices K, cf. §11.1.
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Example 8.4. For the Birkhoff polytope, the corollary gives:

1(B,,) > (en)" " i, wons)
VO( n) = m =€ n .

This lower bound can be compared with the exact asymptotics given in [ ]:
vol(B,) ~ C - (2m)~" en’ To) n*("*l)Q,

for some known C' > 0. Note that our lower bound coincides with the actual asymptotic bound in the
first two terms:

logvol(B,) = —n?*logn + n* + O(nlogn).

8.3. Proof of Theorem 8.1. By Corollary 2.2, we have:

o 1 1 m n 1_ (.’E Y; )MkLJJrl
CTyux(Ma,MB) > e H Ve 11 H MB, +1 Cappra mp H H — :

Z;Yj

<.
I
—
<.
I
-

The first thing to note is that the constant in front of the capacity is asymptotically

m n

—m-n 1 1 ~ -m-n l1-m—n . i - i

as M — o0o. Since the constant in the denominator of the volume limit expression is order M (=1 (=1)
this means we need the order of the capacity term to be M™". This is in fact the case, and also we can
get another capacity expression for the capacity term divided by M™". Specifically, note that

Mk”+1 ki]-JrM_l)

T B — (iy;)
Mmn a:,13£0 ].:[ H JWQL ]\/[,BJ . - I?I}io H H a; 51 : (1 — (gjiyj)M—l) .

Tiy;) i=1j=1 T3 Y;

Next, we pass the limit on M into the infimum in the capacity (swapping lim and inf is valid here by a
standard argument, since we only need to prove a lower bound). We then have:

(1 (:E Y; )k1]+M ) M(l — elki;+M) log(ziyj))

e MO~ (g7 e 1 M)
1 ( Mlog(aiy)) - el 0 ostrin)
M0+ —log(z;y;) - eMloa(wiv;)
_ (miy)t —1
 log(wiyy)

With this, we have

n

f(S,m,n) O xlyj kii —1
VOl(nyay ) Z m Capa 9
B em+n71 Hi=2 o H] 1 ﬁj B H H

1=1 j=1 ].Og xzyj)

as desired. O

8.4. Proof of Theorem 8.2. The same proof works here as was used above for Theorem 8.1. The main

difference is that we consider
Cap]\/[aM,B (H H 1— 2 );
’L

i=1 j=1

and so the infimum is over 0 < «, y < 1. Another way to see this is as a limit of the lower bound of
Theorem 8.1 as K — oo.
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8.5. Proof of Corollary 8.3. We can explicitly compute the capacity in this case. Consider

Hz 1 H] 1 T, +y] m n
. ( et a>+<05(;> ) - —<:B,a> - <y’16> - Z Z log(—xi - yj).

i=1 j=1

The gradient of this expression at x = y = — 55 where N = m - ag =n - By is then computed as
( n m 1
S B )
on 'HJg Tty oy —ma
So the above expression is minimized at x = y = — 4%, which means the above capacity value is
[T, Hg 1 xl+y, B (A ymn _ (eN "
e(@,c)+(y.8) ~emn \mn
T=y=—5%

Combining this with the above lower bound gives an explicit lower bound on the volume in the uniform

case:
VT T (m)mn (eN)m=D(n—1)

e ()" () i

V01(7:x“3) >

mn o pm=3)(n=1)+1 p(n—3)(m-1)’

as desired. [

9. UNIFORM MARGINALS

In the case of uniform marginals, i.e., @ and B are both multiples of the all-ones vector, we can
explicitly compute the capacity value in the upper and lower bounds of Theorem 2.1. This then gives
the explicit upper and lower bounds for the number of contingency tables.

9.1. Explicit upper and lower bounds. In this and the next section, we adopt the following conve-
nient shorthand for bounds on CT (e, 3):

UB1 is the Barvinok first upper bound (see Theorem 2.4),

LB1 is the Barvinok first lower bound (ibid.),

UB2 is the Barvinok second upper bound (see Theorem 2.11),

LB2 is the Barvinok second lower bound (ibid.),

UB3 is the Shapiro upper bound (see Remark 2.6), and

New LB is our lower bound in the Main Theorem 2.1.

Theorem 9.1. Let o = (s,...,s) € N™, B = (t,...,t) € N*, where m,n,s,t € N, such that ms =
nt = N, and m < n. Then we have the following bounds on CT(a, 3) :

(N + mn)N+mn

UB1 =
NN (mn)mn
LBl — 2mAn=2 (AR NT(N + mn)! s ™"
b =2 (N + mn)m+n (N + 1)mtn=1 N2N (mp)2m+2n=1 (mp)! (s))m (¢)»
N+mn-—1
UB2 =
)
N+m—1\"/N+n—-1\"" Nlsm
LB2 = UB2 —
< m—1 ) ( n—1 > NN (ghym
N+(m—1)(n—1)
UB3 = UB1 % _ (Ntvmn)
(1+%)m n N (mn)(m—l)(n—l)
Ss(m—l)ttn

New LB = UBI1

(S + 1)(s+1)(m—1) (t + 1)(t+1)n

2The LB1 is given only for m +n > 10.
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Note that UB1 > UB2 in this case. This is a general fact which follows from (7.1). Note also that we
trivially have UB2 > CT (e, B), since UB2 counts all tables with sum N irrespective of the row/column
constraints. That makes only the lower bounds nontrivial in this case, and possibly UB3 when s and ¢
are large. This is confirmed by the numerical results in the next section.

9.2. Capacity calculations. Recall the notation

=TI —=iy)~

i=1j=1

The explicit computation of the capacity of P, in the uniform case is then given by following result.

Lemma 9.2. Let a = (s,...,s) e N B =(t,...,t) € N, where m,n,s,t € N, such that ms = nt =
N. Then we have:
(N + mn)N+mn

Capap(Poo) = NN (mn)mn

Proof. In | , ], using prior work and duality, Barvinok shows (in greater generality) that the
capacity bound is equal to exp g(Z), where Z = (z;;) is the unique maximum of the strictly convex
function

m n
= Z Z zij + 1)log(zi; + 1) — zijlog z;;,
i=1 j=1
and the maximum is over the transportation polytope 7, 5. By the symmetry, this unique maximum is
attained at z;; = N/mn, and we have:

N N N N
9(2) = mn< —|—1> 10g< —|—1> — mn — log — .
mn mn mn mn

(z) _ (N A mn)¥mm
NN (mn)mn
as desired. O

Therefore,

Capgy g(Px) = €7

Additionally, we need to be able to compute the capacity of the complete symmetric polynomials,
used in Theorem 2.11. Recall from Section 2.6 the notation

m

=2 T = iy,

K i=1j

where the sum is over all K = (k;;) with total sum N of the entries: _, ;k;; = N, and hy is the
complete homogeneous symmetric polynomial of degree IV in mn variables. The explicit computation of
the capacity of Hy in the uniform case is then given as follows.

Lemma 9.3. Let a = (s,...,8) e N B =(t,...,t) € N, where m,n,s,t € N, such that ms = nt =
N. Then we have:

Capg s(Hy) = Hy(1,1) = (N+m"_ 1).

N

Proof. The second equality comes from the fact that the complete symmetric polynomial of degree N
in mn variables, evaluated at the all-ones vector, counts the number of degree N monomials in mn
variables. For the first equality, note that by symmetry we have

0u, Hy(1,1) Z dp, Hy(1,1) Z Z ZI% = HN(l 1),
=1 =1 %, kij=N j=1
and similarly,

N
0, Hy(1,1) = — Hy(1,1),
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Therefore, we in fact have

N N N N
VIOg(HN)LB:l,y:l = (m,...,m,n,...,n) = (S,...,S, t,,t)
By Fact 2.10 of | ], this implies Cap,, g(Hn) = Hn(1,1). O

Proof of Theorem 9.1. The exact values of UB1 and UB2 are given by the lemmas above. The formulas

for LB1, LB2 and New LB follow immediately from Theorem 2.4, Theorem 2.11 and Main Theorem 2.1,

respectively. For LB2, we use the fact that s > ¢. Finally, the Shapiro correction term simplifies in

the uniform case. Indeed, the product in the minimum the Remark 2.6 is equal on all spanning trees
1

T € Kynn, which all have (m +n — 1) edges, and all edges have the same weight T < m from

the proof of Lemma 9.2. We omit the details. O

10. NUMERICAL EXAMPLES

In this section we compare the bounds numerically in specific cases where the exact number of con-
tingency tables is known either exactly or approximately. Such comparisons are particulary easy when
the marginals are uniform, see Theorem 9.1.

10.1. Uniform marginals. Our first table consists of comparisons in the case of uniform marginals.
We give bounds for the number CT(a,3) of m x n contingency tables with row sums s and column
sums t, so N = ms = nt. We use the notation in §9.1 and explicit formulas from Theorem 9.1.

Case ‘ m n ‘ s t ‘ UB1 UB2 UB3 ‘ Actual ‘ New LB LB2 LB1

1 3 3 [100 100 4.7 x 107 1.8 x 107 3.4 x 1017 1.3 x 107 3.1 % 10° 2.4 % 10° 15x10°%
2 3 9 |99 33| 23x10% 1.5 x 1038 3.7 x 10% 2.8 x 10%! 7.3 x 1017 5.6 x 10° 1.2 x 10762
3 3 49 |98 6 | 81x10%  1.1x10'%° 1.1 x 10% 1.0 x 1088 9.1 x 10°® 6.4 x10% 4.1 x 10738
4 10 10 | 20 20 | 8.5x10%2 1.4 x 108! 2.2 x 107 1.1 x 10°° 5.7 x 1049 4.8 x 104 5.2 x 107104
5 18 18 | 13 13 | 6.4x10'%  1.3x 1013 6.0 x 1056 7.9 x 10127 1.1 x 10110 2.7 %10 1.1 x 107214
6 30 30| 3 3| 95x1080  38x102  3.8x10'%8 2.2 x 1092 2.2 % 107 1.6 x 1056 2.2 x 107922
7 |100 100 3 3 | 1.2x10%% 28x10%7 3.4 x 10°6 5.3 x 10459 4.9 % 1039 4.1 x10%2 1.5 x 1072267
8 4 4 1300 300] 9.9x10% 1.3 x 103* 5.1 x 10%® 2.0 x 101 4.1 x 1010 3.8 x 1012 2.5 x 10739
9 9 9 |10° 10°| 1.1x10%' 44x1097  1.8x10'68 8.0 x 101! 45 %102 73x10"® 1.8x 10
10 9 9 | 105 10° | 7.7x10%2 3.1 x10%7 1.4 x10%8 6.1 x 1027 3.2 x10°7 5.2 x 10248 1.5 x 104
11 | 15 15 [10° 103 | 6.7x10%9% 26 x 10595 3.8 x10%7 | ~1.7x 1027 | 1.7x10%9 2.3 x 10384 1.3 x 1080
12 | 15 15 [10° 10° | 1.3x10%%% 51 x10%2 1.1 x10%! | ~1.7x10%9 | 3.2x 1050  45x 107" 4.0 x 10383
13 | 100 100 | 10 103 | 1.3 x 1014593 6.0 x 10'4°%9 8.2 x 10M346 | ~ 6.3 x 10072 | 5.3 x 1013869 4.6 x 1013084 5.0 x 101074!
14 | 100 100 | 10° 10° | 1.3 x 1034345 5.2 % 1034339 1.1 x 1033750 | ~ 6.3 x 1033470 | 4.9 x 1033263 4.4 x 1032979 6.2 x 1029545

Here the actual values in cases 1-6 are taken from | , Table 1], in case 7 from [ , A001500] (computed by
Heinz), and in case 8 is from | , Table 3] (see also [ , D- 27]). Actual values in cases 9-10 are computed
from the exact form of the Ehrhart polynomial for the Birkhoff polytope By given in | ]

In the last four cases 11-14, the number of tables is only given approximately and likely imprecise, but giving
the right order of magnitude. In cases 11-12, we used a numerical approximation for the volume of the Birkhoff
polytope Bis given in | , Table 6] (see also | , Table 1]). Finally, in cases 1314, we used the exact
asymptotics, given in [ , Thm 1].

10.2. Non-uniform marginals. In the table below, the last column “Time” gives the CPU time it
took to compute Barvinok’s UB2 and LB2. To compute UB1, LB1, and our lower bound, the time never
exceeds 2 seconds. The stark difference between these two cases comes from the fact that the complete
symmetric polynomials associated to UB2/LB2 (see Section 7.2) take much longer to compute than the

rational function Pe(z,y) = [];;(1 — z;y;) " (see, however §11.2).
Case ‘ m n N ‘ UB1 UB2 UB3 ‘ Actual ‘ New LB LB2 LB1 ‘ Time
1 4 4 592 3.0x10%° 6.0x 10277 7.1x 108 [1.2x 10 [ 95x 102 4.6 x 105 3.8 x 10720 | 79 sec

2 5 4 1269 1.4x10% 1.2x10% 83 x10% |3.4x 106 | 2.0 x 10 3.0 x 107 1.5 x 10752 | 550 sec
3 4 4 65159458 | 1.3 x 10%12 ? 2.1 x 10% | 4.3 x 105 | 5.8 x 107 ? 23x107% | N/A
4 |50 50 486 7.2 x 10762 ? 1.3 x 10%%1 ?7? 5.2 x 10421 ? 6.4x 107 | N/A
5

50 50 302 1.2 x 10350 ? 7.3 x 10338 27 1.1 x 10239 ? 2.0x 107922 | N/A
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In the above table, case 1 is a celebrated example given by e = (220, 215,93,64) and 8 = (108,286, 71,127). It

was first studied in | ], the exact value was reported in | , §6], and further discussed as a benchmark in
[ , , , ]. Case 2 is given by a = (9,49,182,478,551) and B8 = (9, 309, 355, 596), was studied
in [ , §6.4]. Case 3 is a large example computed in [ , Table 3], and is given by

a = (13070380, 18156451, 13365203, 20567424), B = (12268303,20733257,17743591, 14414307).

Case 4 is given by

a = (10,8,11,11,13,11,10,9,7,9,10,16,11,9,12,14,12,7,9, 10, 10,6, 11,8,9,8, 14,12, 5,10, 10,8,7,8, 10, 10, 14,6, 10, 7,13, 4,6,8,9,15,11,12, 10,6),

B8 = (9,6,12,11,9,8,8,11,9,11,13,7,10,8,9,7,8,3,10,11,13,7,5,11, 10,9, 10, 13,9,9, 7, 7,6,8, 10, 12,8,12, 16, 12, 15,12, 13, 13,10, 7, 12, 13,6, 11).
These marginals were introduced in | , §6.1], where an estimate BCT(c, 8) = (7.7+.1) x 10**? was given
for the number of binary contingency tables using the sequential importance sampling (SIS). For comparison,
Gurvits’s Theorem 2.9 gives a large upper bound 1.3 x 10°!%, but a very sharp lower bound 8.9 x 10*3!, with a
0.5 sec. CPU time.

Finally, case 5 is given by

o = (14,14,19,18,11,12,12,10,13,16,8,12,6,15,6,7,12,1,12,3,8,5,9,4,2,4,1,4,4,5,2,3,3,1,1,1,2,1,1,2,1,3,3,1,3,2,1, 1, 1,2),

B = (14,13,14,13,13,12,14,8,11,9,10,8,9,8,4,7,10,9,6,7,6,5,6,8,1,6,6,3,2,3,5,4,5,2,2,2,3,2,4,3,1,1,1,3,2,2,3,5,2,5).
These marginals were also introduced in [ , §6.1], with an estimate BCT(a, 3) = (8.78 4 .05) x 10%*2.
Here Gurvits’s Theorem 2.9 gives an upper bound 1.7 x 102°°, and a sharp lower bound 3.0 x 10*#°, again with
a 0.5 sec. CPU time.

Note that we were unable to finish computation of the UB2 and LB2 in cases 35, which overwhelmed our
computer system. This could be a problem with our implementation, of course. We would be curious to see these
bounds if someone could compute them.

10.3. Discussion. All bounds above are best viewed on the log-scale, since they are multiplicative in
nature and the approximation ratios grow exponentially otherwise. However, as min{c;, 3;} — oo, we
have logs of all bounds equal to (1 + o(1))log CT (e, 3), even if the rate of convergence implied by o(1)
notation vary greatly between the bounds.

Now, in all examples we computed, New LB dominates LB2 and dwarfs LB1, confirming the asymptotic
bounds in Section 7. In fact, the latter is smaller than 1 in many cases. In addition, as discussed above,
New LB is much faster to compute than the LB2, sometimes by orders of magnitude faster. Furthermore,
in many examples, especially with non-uniform margins, the upper bounds are rather far from the actual
number of contingency tables, while our New LB is much closer (on a log-scale).

We should mention an unusual situation in cases 4 and 5, when New LB for CT(e,3) is smaller
than Gurvits’s LB for BCT(«,3). This is very counterintuitive, and suggests that for relatively small
marginals sometimes taking smaller K = (k;;) can give greater lower bounds for CTx (a, 3) than taking
K = oo gives for CT(ax, B).

Although we concentrate our efforts on the lower bounds, let us make some observations about the
upper bounds. It is clear from definition that UB1 > UB3, but the relationship of UB2 vs. UB3 is not
so clear. In fact, for s and ¢ small relative to m and n, the Shapiro correction term is very small, and
UB3 becomes close to UBL1.

11. FINAL REMARKS

11.1. There are many variations on the problem of counting general (unrestricted) and binary contin-
gency tables. These include symmetric tables with zero diagonal, which correspond to graphs with fixed
degrees, see [ ]. The technique of typical matrices was extended to this setting in [ |. High-
dimensional tables are especially important in statistical applications | , ], but even harder
to analyze computationally | ]. We refer to | ] for a recent extension of Barvinok’s first lower
bound to this setting. It would be interesting if the Lorentzian polynomials technique can be extended
or modified in either of these two directions.

In the paper, we consider only a special case of flow polytopes and integer flows corresponding to
weighted bipartite graphs, see e.g. | , ]. In fact, flow polytopes for general directed graphs can
be reduced to this case via a simple BDV—transformation of graphs, which gives a bijection between the
flows [ ]. Finally, our lower bound can be further extended to weighted contingency tables, which
can be viewed as evaluations of the natural generating function of CT (e, 3), see e.g. | , 88.5].
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11.2. From the computational complexity point of view, the upper and lower bounds in our paper can
be viewed as a deterministic approximation algorithm. The algorithm has an exponential approximation
ratio, of course. For some special cases of the problem, such as the permanent, there are probabilistic
strong polynomial time approximation algorithms, see | ].

Now, capacities in the paper are defined to be solutions of a convex polynomial optimization problem.
Thus, they can be solved in polynomial time by the classical interior point method, see e.g. | ,
Ch. 6]. More specifically, capacity can be seen as the convex dual program to a certain maximum-entropy
program, and strong polynomial time algorithms based on the ellipsoid method have also been developed
to solve such problems, see e.g. | , §13.3]. For example, the capacity Cap, g in Theorem 1.1 can be
e-approzimated, i.e. estimated up to a multiplicative factor (1 & ¢), in time poly(¢ + log %)7 where

= Z [log ;| + Z [log 5,1

i=1 j=1

is the size of the input.

The minimization of Shapiro’s correction term in Remark 2.6 is an instance of the minimum spanning
tree problem and can be solved by the greedy algorithm. On the other hand, computing the complete
homogeneous polynomial necessary for Barvinok’s second bound (Theorem 2.11) is harder, but can be
done efficiently in several different ways, e.g. via | , Thm 1].

For flow polytopes, the covolume f(S,m,n) in §8.2 is a matrix determinant of size at most mn, and
thus easy to compute from the computational complexity point of view. Finally, the BDV—transformation
mentioned above gives at most a quadratic blowup in the size of the graph, and is also easy to compute.

11.3. We can interpret a graphical matrix K as an m x n adjacency matrix of a bipartite graph G.
Then CTk («, ) is the number of subgraphs of G with degree sequences given by e and 3. In this case,
the vectors A and ~ in Theorem 2.9 correspond to the degree sequences of G.

11.4. There is a surprisingly strong (unproven) independence heuristic due to Good | ], for the
number of (unconstrained) contingency tables:

n

CT(a, B) ~ I(ax, B) := (N:L;nill_lyl ﬁ(aiffl) 1:[ (ﬁj+m_1>'

i=1 =

This heuristic is discussed further in | ) ) ] and most recently in | ]. For the uniform
marginals, a weak version of the heuristic is stated as a conjecture in [ , Conj. 1], where it is proved
asymptotically in some “near-square” cases.

For example, in the uniform case 4 in §10.1, we have I(c, 3) = 7.4 x 10°®, which is much closer to the
actual value CT(a, B) = 1.1 x 10%? than any of the bounds. Similarly, in the non-uniform case 3 in §10.2,
we have I(a, 3) = 3.7 x 10%!, which is again much closer to the actual value CT(c, 3) = 4.3 x 10%! than
any of the bounds. Finally, for the non-uniform case 4 in §10.2, we have I(a, 3) = 7.8 x 104"}, a very
reasonable guess given that the New LB is clearly undercounting CT(e, 3) in this case, cf. §10.3.

11.5. Let m, n and N be fixed, and let K = co. When we vary the marginals o and 3 over all
partitions of N, the uniform case has the largest approximation ratio in the Main Theorem 2.1, while
CT(a, B) is also the largest of all such marginals, see | , ]. This explains why our New LB
can be still far away from the actual value in §10.1. This can also be seen in the approximation ratio in
Theorem 2.3 and in the lower term gap in the volume of the Birkhoff polytope (Example 8.4).

On the other hand, all previously known lower bounds and other techniques tend to behave rather
poorly when the matrix is far from uniform, and this includes the MCMC algorithms, see | , ].
So perhaps our lower bound coupled with Shapiro’s upper bound are the only provably good bounds in
that case.

Let us also mention that it is unlikely there is a universally good lower and upper bound for the general
CT(a, B). Sidestepping conjectural hardness of approximation results in computational complexity, there
is also a probabilistic evidence of this phenomenon. In the simplest nonuniform case with marginals of
two types, we already have a phase transition for the number of contingency tables, first predicted
in | ], and recently proved in | ]
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