HOMEWORK 2: SERRE SPECTRAL SEQUENCE COMPUTATIONS

- (1) Show that $H^*(\Omega S^{2n+1}) = \Gamma(x_{2n})$ and that $H^*(\Omega S^{2n}) = E(x_{2n-1}) \otimes \Gamma(x_{4n-2})$.
- (2) Show that $H^*(U(n)) = E(x_1, x_3, \ldots, x_{2n-1})$. Show that $H^*(Sp(n)) = E(x_3, x_7, \ldots, x_{4n-1})$. Verify your computations by checking that the top non-zero degree is in the dimension of the Lie group.
- (3) The exceptional Lie group G_2 sits inside 2 fibrations:

$$SU(3) \to G_2 \to S^6$$
 and $S^3 \to G_2 \to V_2(\mathbb{R}^7)$

The former is easier to see. G_2 is the automorphism group of the octonions, the division algebra built on \mathbb{R}^8 . The "imaginary" octonions forms a copy of \mathbb{R}^7 inside this, and G_2 preserves this subspace (the other copy of \mathbb{R} is the center). It therefore acts on the unit sphere, S^6 , in this \mathbb{R}^7 . The stabilizer is a copy of SU(3). Using these two fibrations, compute the cohomology of G_2 with mod 2 and rational coefficients. (There is some indeterminacy with the product structure at this stage. When we talk about the Steenrod algebra, this will be resolved).

- (4) Compute the homology and cohomology of the fiber of the degree m map $S^n \to S^n$ (here you may assume that we have already replaced the map with a fibration).
- (5) Prove the Leray-Hirsch theorem: If $F \xrightarrow{i} E \xrightarrow{\pi} B$ is a fibration and there are classes $a_i \in H^*(E)$ such that $i^*(a_i)$ form a basis for $H^*(F)$, then $H^*(E)$ is a free $H^*(B)$ -module on the classes a_i .
- (6) Show that if p is a unit in R, then $H^{*>0}(\mathbb{Z}/p; R) = 0$ (hint: universal coefficients).
- (7) Complete the computation of H^{*}(Σ₃). You may find it easier to compute H^{*}(Σ₃; F₃).
- (8) Generalizing this, let G be the semi-direct product of \mathbb{Z}/p and $\mathbb{Z}/(p-1)$, where $\mathbb{Z}/(p-1)$ acts on \mathbb{Z}/p via multiplication by $\mathbb{Z}/p^{\times} = \mathbb{Z}/(p-1)$. Using the short exact sequence $\mathbb{Z}/p \to G \to \mathbb{Z}/(p-1)$, compute $H^*(G; \mathbb{Z}/p)$. Since \mathbb{Z}/p is the p-Sylow subgroup of Σ_p , and since G is the normalizer of that in Σ_p , the cohomology of G is the cohomology of Σ_p , p-locally.