
HOMEWORK 2: SERRE SPECTRAL SEQUENCE
COMPUTATIONS

(1) Show that H∗(ΩS2n+1) = Γ(x2n) and that H∗(ΩS2n) = E(x2n−1) ⊗
Γ(x4n−2).

(2) Show that H∗(U(n)) = E(x1, x3, . . . , x2n−1). Show that H∗(Sp(n)) =
E(x3, x7, . . . , x4n−1). Verify your computations by checking that the top
non-zero degree is in the dimension of the Lie group.

(3) The exceptional Lie group G2 sits inside 2 fibrations:

SU(3) → G2 → S6 and S3 → G2 → V2(R7)

The former is easier to see. G2 is the automorphism group of the octonions,
the division algebra built on R8. The “imaginary” octonions forms a copy
of R7 inside this, and G2 preserves this subspace (the other copy of R is the
center). It therefore acts on the unit sphere, S6, in this R7. The stabilizer
is a copy of SU(3). Using these two fibrations, compute the cohomology
of G2 with mod 2 and rational coefficients. (There is some indeterminacy
with the product structure at this stage. When we talk about the Steenrod
algebra, this will be resolved).

(4) Compute the homology and cohomology of the fiber of the degree m map
Sn → Sn (here you may assume that we have already replaced the map
with a fibration).

(5) Prove the Leray-Hirsch theorem: If F
i−→ E

π−→ B is a fibration and there
are classes ai ∈ H∗(E) such that i∗(ai) form a basis for H∗(F ), then H∗(E)
is a free H∗(B)-module on the classes ai.

(6) Show that if p is a unit in R, then H∗>0(Z/p; R) = 0 (hint: universal
coefficients).

(7) Complete the computation of H∗(Σ3). You may find it easier to compute
H∗(Σ3;F3).

(8) Generalizing this, let G be the semi-direct product of Z/p and Z/(p − 1),
where Z/(p−1) acts on Z/p via multiplication by Z/p× = Z/(p−1). Using
the short exact sequence Z/p → G → Z/(p − 1), compute H∗(G;Z/p).
Since Z/p is the p-Sylow subgroup of Σp, and since G is the normalizer of
that in Σp, the cohomology of G is the cohomology of Σp, p-locally.
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