
MATH 227A – LECTURE NOTES

INCOMPLETE AND UPDATING!

1. Obstruction Theory

A fundamental question in topology is how to compute the homotopy classes of
maps between two spaces. Many problems in geometry and algebra can be reduced
to this problem, but it is monsterously hard. More generally, we can ask when we
can extend a map defined on a subspace and then how many extensions exist.

Definition 1.1. If f : A→ X is continuous, then let

M(f) = X qA× [0, 1]/f(a) ∼ (a, 0).

This is the mapping cylinder of f .

The mapping cylinder has several nice properties which we will spend some time
generalizing.

(1) The natural inclusion i : X ↪→M(f) is a deformation retraction: there is a
continous map r : M(f) → X such that r ◦ i = IdX and i ◦ r 'X IdM(f).
Consider the following diagram:

A A× I

X M(f)

X.

f◦πA

i

Id

r

Since A → A × I is a homotopy equivalence relative to the copy of A, we
deduce the same is true for i.

(2) The map j : A→M(f) given by a 7→ (a, 1) is a closed embedding and there
is an open set U such that A ⊂ U ⊂M(f) and U deformation retracts back
to A: take A × (1/2, 1]. We will often refer to a pair A ⊂ X with these
properties as “good”.

(3) The composite r ◦ j = f .

One way to package this is that we have factored any map into a composite of a
homotopy equivalence r with a closed inclusion j.

We can also understand continuous maps out of M(f). For this, let’s assume
that the image of A in X is closed (although viewing this as the pushout instead
fixes this).

Proposition 1.2. A continuous map G̃ : M(f)→ Y is

(1) a continuous map g0 : X → Y and
(2) a homotopy G : A× I → Y that begins with g0 ◦ f .

1
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If we now insist that G|A×{1} is constant, then we are asking for null-homotopies
of g0 ◦ f . This is also represented.

Definition 1.3. The mapping cone of f , C(f), is the quotient space M(f)/A.

Another way to describe this is as the pushout

A CA

X C(f).

f

Proposition 1.4. A continuous map g : CA→ Y is

(1) a map g0 : A→ Y and
(2) a null-homotopy of g0, ie a homotopy from g0 to the constant map.

As a corollary, we have the following by pushout out along this description.

Corollary 1.5. A continuous map C(f)→ Y is

(1) a map g0 : X → Y and
(2) a null-homotopy of g0 ◦ f .

Remark 1.6. There is also a pointed version for all of this; here we simply collapse
∗ × I to a point everywhere.

The case of A = Sn is exact the basis for a cell complex. Here, we begin with

X [0] = {x0, . . . }
with the discrete topology, and then inductively define pushout squares∐

In

Sn−1 X [n−1]

∐
In

Dn X [n].

∐
ei

Corollary 1.5 shows then that a map

fn : X [n] → Y

is two pieces of data:

(1) a map fn−1 : X [n−1] → Y and
(2) null-homotopies of fn−1 ◦ ei for all i ∈ In.

Thus we have a series of “obstructions” to extending fn−1 over the n-skeleton
of X: if for some i ∈ In we have that fn−1 ◦ ei is not homotopic to the constant
map, then we cannot extend over that cell.

The maps fn−1 ◦ ei are maps Sn−1 → Y , and when we keep track of basepoint,
these are elements of a group πn−1(Y, y0), which we will describe extensively below.
We therefore get a function

In → πn−1(Y, y).

When n ≥ 3, the target group is abelian, so this map extends linearly to a homo-
morphism

Ccelln (X)→ πn−1(Y, y0),
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and we have an extension if and only if this homomorphism is zero. Understanding
maps out of the chains on X is the theory of cohomology, which we first study, and
then we will pick up the thread and consider the homotopy groups. Almost all of
algebraic topology is tied up in this story.

Part 1. Cohomology

2. Graded abelian groups and complexes

Definition 2.1. A graded abelian group is a sequence of abelian groups Ai, i ∈ Z.

Remark 2.2. We can talk about graded objects in any category. These are just
sequences of objects in that category. Equivalently, it is functors from Z, viewed as
a category with only identity morphisms, to our chosen category.

Graded abelian groups form a category, and in fact, a category enriched in itself.

Definition 2.3. If C• and D• are chain complexes, then a homomorphism from
C• → D• is a sequence of homomorphisms

fn : Cn → Dn.

A map of degree k is a sequence of maps

fn : Cn → Dn+k.

Since the set of homomorphisms between two abelian groups form an abelian
group, the set of map of graded abelian groups forms an abelian group, and the
maps of various degrees gives an obvious grading.

Definition 2.4. If C• and D• are chain complexes, then let

Hom(C•, D•)k = {f : C• → D• | f has degree k},

Composition here is a bilinear map

Hom(C•, D•)k ⊗Hom(B•, C•)` → Hom(B•, D•)k+`.

Definition 2.5. A chain complex (resp. a cochain complex) is a graded abelian
group C• together with a map

d : C• → C•

of degree −1 (resp. 1) such that d2 = 0.

Chain and cochain complexes form a very interesting category that is a kind of
algebraization of the homotopy category of spaces.

Definition 2.6. If (C•, d
C) and (D•, d

D) are chain complexes, then a map of chain
complex is a map of graded abelian groups f : C• → D• such that f ◦ dC = dD ◦ f .

Let ChZ be the category of chain complexes and coChZ be the category of cochain
complexes.

Since the only difference between chain and cochain complexes is the degree of
d, the categories are actually isomorphic via the functor

C• 7→ C−•,

Every structure theorem holds then for both. We will focus for now on chain
complexes.
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Definition 2.7. If (C•, d) is a chain complex, then the cycles of C• are the graded
abelian group

Zk(C•, d) = ker(dk),

the boundaries are the graded abelian group

Bk(C•, d) = Im(dk+1),

and the homology of C• is the graded abelian group

Hk(C•, d) = Zn(C•, d)/Bn(C•, d).

If f : C• → D• is a map of chain complexes, then let

Hk(f)
(
[z]
)

=
[
f(z)

]
.

In general, we will suppress explicitly naming the differential, as is common in
algebra, using only the name of the graded abelian group.

Proposition 2.8. Homology so defined is well-defined and gives a functor from
chain complexes to graded abelian groups.

Exercise 2.1. Prove this.

Definition 2.9. Let A be an abelian group and let

Hom(−, A) : ChZ → coChZ
be the functor which takes a chain complex (C•, d) to the cochain complex with
graded abelian group

Hom(C•, A)k := Hom(Ck, A),

and with differential

δk := Hom(dk+1, A).

Proposition 2.10. This is well-defined and a functor.

The cohomology of this cochain complex is the composite of two functors. We
can compare it to the composite in the other order.

Proposition 2.11. If C• is a chain complex, then we have a natural map

Hk
(

Hom(C•, A)
)

Hom
(
Hk(C•), A

)
[φ] φ|Zk(C•)

Proof. We first check that this is well-defined. Consider

φ′ = φ+ δψ = φ+ ψ ◦ d,

and let z ∈ Zk(C). Then

φ′(z) = φ(z) + ψ
(
d(z)

)
= φ(z).

Similarly, if z′ = z + d(w), then

φ(z′) = φ(z) + φ
(
d(w)

)
= φ(z) + (δφ)(w) = φ(z),

since φ is assumed to be a cycle. �
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Theorem 2.12. Let C• be a chain complex where for each degree, Ck is a free
abelian group. Then for every abelian group A, we have a natural short exact
sequence

0→ Ext
(
Hn−1(C), A

)
→ Hn

(
Hom(C•, A)

)
→ Hom

(
Hn(C), A

)
→ 0.

Moreover, the sequence always splits (but not naturally).

Proof. Since Ck is free abelian, so are Bk(C) ⊂ Zk(C) ⊂ Ck. The defining sequence

BkC → ZkC → HkC

is therefore a projective resolution of HkC. Now we observe that we have an exact
sequence of chain complexes

0→ Z•(C)→ C•
d−→ B•−1(C)→ 0,

where Z and B have trivial differential1. Additionally, since BkC is always free, this
sequence splits, but there is no natural splitting. The splitting however guarantees
that we have a corresponding short exact sequence of cochain complexes

0← Z•(C)∗ ← C∗•
δ←− B•−1(C)∗ ← 0,

where here the (−)∗ notation refers to Hom(−, A). This induces a long exact
sequence in cohomology. Since the differentials in the complexes Z•(C)∗ and
B•−1(C)∗ are zero, these are canonically their cohomology. This gives us

. . . Hn(C∗) Zn(C)∗ Bn(C)∗

Hn+1(C∗) Zn+1(C)∗ Bn+1(C)∗ . . .

By construction of the coboundary map in the long exact sequence, we know that
the coboundary map

Zn(C)∗ → Bn(C)∗

is the dual of the canonical inclusion

Bn(C)→ Zn(C).

Since this inclusion is a projective resolution for Hn(C), we deduce that the kernel
of the coboundary is canonically Hom

(
Hn(C), A

)
and the cokernel is canonically

Ext
(
Hn(C), A

)
. Our long exact sequence then gives us short exact sequences

0→ Ext
(
Hn−1(C), A

)
→ Hn

(
Hom(C•, A)

)
→ Hom

(
Hn(C), A

)
→ 0.

�

1the shift here is because the image of dk is Bk−1
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2.1. Exercises! Let R be a commutative, unital, associative ring, and let Ch be
the category of bounded below complexes of R-modules, homologically graded. Let
Hom(C∗, D∗) denote the R-module of chain maps from C∗ to D∗. Finally, all tensor
products are assumed to be over R.

The first three problems have the same general form, and in fact, each is suborned
by the next. You may simply prove the final one and use it to prove the earlier
ones (though you may find a direct approach to the early ones gives intuition).

Definition 2.13. Let ∆1
• be the chain complex defined by

∆1
k =


0 k 6= 0, 1

R k = 1

R⊕R k = 0,

where the only interesting differential is ∂1(r) = (−r, r).
We should this of this as the cellular chain complex associated the standard cell

structure on [0, 1].

Definition 2.14. If C• and D• are chain complexes, then let (C⊗D)• be the chain
complex with

(C ⊗D)k =
⊕
i+j=k

Ci ⊗Dj ,

and
∂(c⊗ d) = ∂C(c)⊗ d+ (−1)|c|c⊗ ∂D(d).

Exercise 2.2. If C• is any chain complex, show that

Hom(∆1
• ⊗ C•, D•) ∼= {(f, g, F )|f, g ∈ Hom(C•, D•), f

F' g}.
(In other words, a map from ∆1

• ⊗ C• is the same data as a pair of maps from C•
together with a homotopy between them.)

Definition 2.15. Let Sn be the unique chain complex with

Snk =

{
R k = n

0 otherwise.

Definition 2.16. Let di : S
0 → ∆1

• be the inclusion of the ith summand. This
induces a natural inclusion

d0 : C• → ∆1
• ⊗ C•.

Let f : C• → D•. Define the “mapping cylinder” of f , by

M(f) = (∆1
• ⊗ C•)⊕C• D•,

where ⊕C• means we identify the copy of C• in ∆1
• with f(C•) in D•.

Exercise 2.3. Show that for any f , we have a natural bijection

Hom(M(f)•, E•) ∼= {(g, h, F )|g ∈ Hom(C•, E•), h ∈ Hom(D•, E•), g
F' h ◦ f}.

Definition 2.17. Let f : C• → E• and g : C• → D• be maps. Define the homotopy
push out (aka the double mapping cylinder) to be

D• ⊕hC• E• = D• ⊕C• (∆1
• ⊗ C•)⊕C• E•,

where we have used the d0 copy of C• to attach D• and the d1 copy of C• to attach
E•.
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The name here indicates that this is the push out “up to homotopy”. The actual,
categorical push out is just D• ⊕C• E•, but this isn’t well behaved.

Exercise 2.4. Show that there is a natural bijection

Hom(D•⊕hC• E•, F•) ∼= {(a, b,H)|a ∈ Hom(D•, F•), b ∈ Hom(E•, F•), a◦ g
H' b◦f}.

Definition 2.18. If C• and D• are chain complexes, then let [C•, D•] denote the
chain-homotopy classes of maps from C• to D•.

Exercise 2.5. Consider the homotopy pushout square

C•
f //

g

��

E•

��
D• // D• ⊕hC• E•

Prove that the induced Mayer-Vietoris sequence:

[D• ⊕hC• E•, F•]→ [D•, F•]⊕ [E•, F•]→ [C•, F•]

is exact in the middle.

Definition 2.19. If f : C• → D• is a chain map, then let C(f)• be the homotopy
pushout 0⊕hC• D•.

Exercise 2.6.

(1) Describe the groups C(f)k and the differential in terms of the map f and
the chain complexes C• and D•.

(2) Deduce that the sequence

C•
f−→ D• → C(f)•

is coexact in the homotopy category: for any complex E•, we have an exact
sequence

[C(f)•, E•]→ [D•, E•]→ [C•, E•].

As a counter to this, we can ask “Why aren’t we using the actual quotient?”

Exercise 2.7. If f : C• → D•, then let D/C• be the quotient of D• by the image
of f . Show that for any E•, the sequence

Hom(D/C•, E•)→ Hom(D•, E•)→ Hom(C•, E•)

is exact in the middle. Given an example that explains why the corresponding
statement about homotopy classes of maps need not be true.

3. Ext and Singular cohomology

3.1. Computing Ext. The Universal Coefficients Theorem shows that we can com-
pute the cohomology groups of Hom(C•, A) for any A functorially out of the ho-
mology groups of C• via Hom and its first derived functor Ext. Since the latter
is perhaps less familiar, we start with this. So how do we compute Ext(M,N) for
two module M and N? The general procedure does not use any features of Z, so
in particular, it works for any (commutative) ring R.
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Definition 3.1. An R-module M is projective if for every surjective map N ′
f−→ N

and for every map g : M → N , there is a left g̃ : M → N ′ such that f ◦ g̃ = g.

The first step is to form a projective resolution of M . This is a long exact
sequence

· · · → P2 → P1 → P0 →M → 0

where each Pi is a projective R-module. If we throw away M here, then we have a
chain complex P•, and the resolution identifies the homology of P• with M via the
map P0 →M . We can view this as being a map of complexes P• →M , where here
M is a complex consisting entirely of M in degree 0. To say that P• is a projective
resolution of M is then to say that each Pk is projective and that the map is an
isomorphism in homology.

The second step is to build the associated cochain complex HomR(P•, N).

Definition 3.2. If M and N are R-modules, then the groups Extk(M,N) are
defined by

ExtkR(M,N) := Hk
(

HomR(P•, N)
)

for some choice of projective resolution P• of M .

As written, this seems to depend very heavily on the choice of projective res-
olution of M . Moreover, while this is visibly functorial in N , we have no way to
see that it is functorial also in M . However, in the Exercises, one shows that any
two projective resolutions of M are chain homotopy equivalent, and hence the re-
sulting cochain complexes are chain homotopy equivalent. Additionally, one shows
that given any map M → M ′ and projective resolutions P• and P ′• respectively,
there is a map of chain complexes P• → P ′• lifting the map. Together these gives
independence of the choice of resolution and functoriality.

Proposition 3.3. For any R-modules M and N , we have

Ext0
R(M,N) ∼= HomR(M,N).

Proof. This follows from the left-exactness of HomR. �

Now some basic computations.

Proposition 3.4. If M is projective, then ExtkR(M,N) vanishes for all k > 0.

Proof. Since M is projective, P0 = M and P>0 = 0 gives a projective resolution of
M . �

Proposition 3.5. Let Mi, i ∈ I be a collection of R-modules. Then

ExtkR

(⊕
i∈I

Mi, N

)
∼=
∏
i∈I

ExtkR(Mi, N).

Proof. For each i ∈ I, let P i• be a projective resolution for Mi. Since arbitrary direct
sums of projects are projective, this gives that

⊕
P i• is a projective resolution of⊕

Mi. The result follows from the fact that ⊕ is the coproduct in R-modules. �
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3.2. Unpacking Ext for Z. We restrict now to R = Z, although everything we
use works for an arbitary PID. Since subgroups of free abelian groups are free, if
ε : P0 → M is any surjective map with P0 free, then P1 = ker(ε) is also free. This
gives a projective resolution2

· · · → 0→ P1 → P0.

Corollary 3.6. For all k > 1 and for all M and N , ExtkZ(M,N) = 0.

By the structure theory of finitely generated abelian groups, Propositions 3.5
and Proposition 3.4 will allow us to compute Ext1(M,N) for any finitely generated
abelian group M once we know how to compute Ext1(Z/m,N).

Proposition 3.7. Let N be an abelian group. Then we have natural isomorphisms

Hom(Z/m,N) ∼= {n ∈ N | m · n = 0} and Ext1(Z/m,N) ∼= N/mN.

Proof. We have a simple projective resolution of Z/m:

· · · → 0→ Z m−→ Z.
Applying Hom(−, N) to this gives a complex

. . .← 0← N
m←− N,

where via the evaluation at 1, we have identified Hom(Z, N) with N . The result
follows. �

Remark 3.8. If M is not finitely generated, then we can get extremely strange
results. For example

Ext1(Q,Z) ∼=

( ∏
p prime

Z∧p

)
/Z

is an uncountable dimensional Q-vector space.

3.3. Singular Cohomology. We now restrict the kinds of chain and cochain com-
plexes which arise to those most natural in topology.

Definition 3.9. If X is a space and M is an abelian group, then the singular
cochains complex of X is

C•(X;M) := Hom
(
C•(X),M

)
.

Similarly, if A ⊂ X, then the relative singular cochaines are given by

C•(X,A;M) := Hom
(
C•(X,A),M

)
.

The singular cohomology of X with coefficients in M is the cohomology of the
cochain complex C∗(X;M).

There are similar definitions with “cellular” replacing “singular”; nothing changes.
Essentially all of the results we know from ordinary singular homology go through

without change:

(1) H∗(X,A;M) is a homotopy functor.
(2) If (X,A) is a pair, then we have an associated long exact sequence linking

the cohomologies of A, X, and (X,A).
(3) Excisions / Mayer-Vietoris sequence.

2We can even make this more functorial by taking P0 to be the free abelian group generated
by the elements of M .
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(4) A dimension axiom: H∗(pt;M) is M if ∗ = 0 and 0 otherwise.

We also have a “continuity” condition.

Proposition 3.10. If Xi, i ∈ I is a collection of spaces, then the inclusion maps
Xj ↪→

∐
Xi induce an isomorphism

Hk

(∐
i∈I

Xi;M

)
∼=
∏
i∈I

Hk(Xi;M).

Proof. Since simplices are connected, we have a splitting of cochain complexes

C∗

(∐
i∈I

Xi

)
∼=
⊕
i∈I

C∗(Xi).

Applying Hom(−,M) and using the universal property of the direct sum gives the
result. �

Here is an example of how one shows any of the other cases: the derivation of
the long exact sequence for the pair. This has several interesting features in its own
right.

Recall that for any pair (X,A), the relative chains are defined by an exact
sequence

(1) 0→ Ck(A)→ Ck(X)→ Ck(X,A)→ 0.

Since the inclusion map Ck(A)→ Ck(X) is the inclusion of a direct summand, we
have a splitting (of abelian groups!)

Ck(X) ∼= Ck(X,A)⊕ Ck(A).

In particular, Hom(−,M) takes Equation 1 to an exact sequence

(2) 0← Ck(A;M)← Ck(X;M)← Ck(X,A;M)← 0.

Taking cohomology then gives us our desired exact sequence.

Remark 3.11. The relative cochains have a much more natural geometric de-
scription than the relative chains. The cochains on X are M -valued functionals
on the singular simplicies in X. Equation 2 then shows that the relative cochains
Ck(X,A;M) are exactly those functionals on the singular simplicies in X which
vanish on the singular simplicies in A.

3.4. Exercises!

Exercise 3.1. Let M1 and M2 be R-modules, and let P i∗ be a projective resolution
of Mi.

(1) Show that any map M1 →M2 induces a map of chain complexes P 1
∗ → P 2

∗ .
(2) Show that any two lifts of a map M1 →M2 are chain homotopic.

Exercise 3.2. If N is a finitely generated abelian group, determine

Ext(Z/pk, N)

for all p and all k.
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Exercise 3.3. Let A be a finitely generated abelian group and let M(A,n) be a
Moore space with

H̃k

(
M(A,n)

)
=

{
0 k 6= n

A k = n.

(If you don’t recall how to construct such a space, figure out how to make examples).
Compute

H∗
(
M(A,n);N

)
.

Just as Hom was a left-exact functor, ⊗ is a right exact functor: if

0→ A→ B → C → 0

is a short exact sequence of R modules, then

A⊗RM → B ⊗RM → C ⊗RM → 0

is also for any R-module M .

Definition 3.12. If N and M are R-modules, then let

ToriR(N,M) = Hi(P∗ ⊗RM),

where P∗ is a projective resolution of N .

Exercise 3.4. Mirroring the proof of the universal coefficients theorem, prove the
universal coefficients theorem for homology: if A is an abelian group, then for any
chain complex C∗ with Ck a free abelian group for all k, we have a natural short
exact sequence

(3) 0→ Hn(C∗)⊗A→ Hn(C∗ ⊗A)→ Tor1(Hn−1(C∗), A)→ 0.

4. Cup Product

The Universal Coefficients Theorem shows us that the cohomology groups of a
space X are functorially determined by the homology groups of X. Moreover, if X
is a finite type complex, then we have a natural isomorphism of chain complexes

Ccell∗ (X) ∼= Hom
(
C∗cell(X;Z),Z

) ∼= Hom
(

Hom(Ccell∗ (X),Z),Z
)
,

since Ccellk (X) is a finitely generated free abelian group. Thus the cohomology
of X determines the homology of X. So one might ask why we bother to study
the cohomology at all! The answer is that we have extra natural structure on
cohomology: a multiplication.

Definition 4.1 (Cup Product). Let R be an associative ring. The cup product on
singular cochains with coefficients in R is the bilinear map

−^ − : Ck(X;R)× C`(X;R)→ Ck+`(X;R)

defined on a singular simplex

σ : ∆k+` = [v0, . . . , vk+`]→ X

by

(φ ^ ψ)(σ) :=
(
φ(σ|[v0,...,vk])

)
·
(
ψ(σ|[vk,...,vk+`])

)
.
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We have constructed this to be bilinear. It is also obviously associative. One
thing to note is that the vertex vk occurs in both the initial k-simplex and the ter-
minal `-simplex. This can be helpful in picturing what is happening. Additionally,
we will henceforth always use the shorthand

[vi, . . . , vj ] := σ|[vi,...,vj ].

Proposition 4.2. The augmentation map ε : C0(X)→ R which sends each singular
simplex σ : ∆0 = [v0]→ X to 1 is the 2-sided multiplicative unit.

Proof. We check this on singular simplices. Let φ ∈ Ck(X;R) and let σ =
[v0, . . . , vk] be a k-simplex in X.

(ε ^ φ)
(
[v0, . . . , vk]

)
= ε
(
[v0]
)
· φ
(
[v0, . . . , vk]

)
= φ

(
[v0, . . . , vk]

)
.

Thus ε ^ φ and φ give the same functional on Ck(X), and hence must agree. The
other side is the same. �

The cup product is also natural.

Proposition 4.3. If f : X → Y is continuous, then

f∗(φ ^ ψ) = (f∗φ) ^ (f∗ψ).

Proof. We check this on a singular (k + `)-simplex [v0, . . . , vk+`] in X:

f∗(φ ^ ψ)
(
[v0, . . . , vk+`]

)
= (φ ^ ψ)

(
f∗[v0, . . . , vk+`]

)
= φ

(
f∗[v0, . . . , vk]

)
· ψ
(
f∗[vk, . . . , vk+`]

)
= (f∗φ)

(
[v0, . . . , vk]

)
· (f∗ψ)

(
[vk, . . . , vk+`]

)
=
(
(f∗φ) ^ (f∗ψ)

)(
[v0, . . . , vk+`]

)
.

Since f∗(φ ^ ψ) and (f∗φ) ^ (f∗ψ) agree on all singular simplices of X, they are
equal. �

We now bring back in the boundary maps. There is essentially only one way
to prove any statements like the one in the next Proposition: write out all of the
terms and observe a linear dependence relation.

Proposition 4.4. For φ ∈ Ck(X;R) and ψ ∈ C`(X;R), we have

δ(φ ^ ψ) = (δφ) ^ ψ + (−1)kφ ^ (δψ).

Proof. Let [v0, . . . , vk+`+1] be a singular (k + `+ 1)-simplex. Then we have

δ(φ ^ ψ)
(
[v0, . . . , vk+`+1

)
= (φ ^ ψ)

(
d[v0, . . . , vk+`+1]

)
= (φ ^ ψ)

k+`+1∑
j=0

(−1)j [v0, . . . , v̂j , . . . , vk+`+1]


=

k+`+1∑
j=0

(−1)j(φ ^ ψ)
(
[v0, . . . , v̂j , . . . , vk+`+1]

)
.
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Similarly, we have(
(δφ) ^ ψ

)(
[v0, . . . , vk+`]

)
= (δφ)

(
[v0, . . . , vk+1]

)
· ψ
(
[vk+1, . . . , vk+`+1]

)
=

k+1∑
j=0

(−1)jφ
(
[v0, . . . , v̂j , . . . , vk+1]

)
· ψ
(
[vk+1, . . . , vk+`+1]

)

=

 k∑
j=0

(−1)j(φ ^ ψ)
(
[v0, . . . , v̂j , . . . , vk+1, . . . , vk+`+1]

)
+ (−1)k+1φ

(
[v0, . . . , vk]

)
ψ
(
[vk+1, . . . , vk+`+1

)
.

Finally, we have

(−1)k
(
φ ^ (δψ)

)(
[v0, . . . , vk+`+1]

)
= (−1)kφ

(
[v0, . . . , vk]

)
·(δψ)

(
[vk, . . . , vk+`+1]

)
=

k+`+1∑
j=k

(−1)jφ
(
[v0, . . . , vk]

)
· ψ
(
[vk, . . . , v̂j , . . . , vk+`+1]

)

=

k+`+1∑
j=k+1

(−1)j(φ ^ ψ)
(
[v0, . . . , vk, . . . , v̂j , . . . , vk+`+1]

)
+ (−1)kφ

(
[v0, . . . , vk]

)
· ψ
(
[vk+1, . . . , vk+`+1]

)
.

The result follows. �

Corollary 4.5. The cup product of cocycles is a cocycle. The collection of cobound-
aries form an ideal in the ring of cycles.

Proof. The first part is immediate. For the second, if φ = δφ′ and ψ is a cocycle,
then φ ^ ψ = δ(φ′ ^ ψ) and similarly for ψ ^ φ. �

Corollary 4.6. The cup product gives a natural, unital, associative product on
H∗(X;R) for any unital, associative ring R:

[φ] ^ [ψ] := [φ ^ ψ].

Theorem 4.7. If R is a commutative ring, then the cup product is graded commu-
tative: if [φ] ∈ Hk(X;R) and [ψ] ∈ H`(X;R), then

[φ] ^ [ψ] = (−1)k`[ψ] ^ [φ].

Proof. We modify the “prism” operator used to show homotopy invariance to build
a chain homotopy between φ ^ ψ and (−1)k`ψ ^ φ. Let n = k + `.

For each natural number j, let

εj = (−1)
j(j+1)

2 .

For each simplex [v0, . . . , vn], let

τ
(
v0, . . . , vn

)
= εn[vn, . . . , v0].

We will first build a chain homotopy between the identity and τ . Consider the prism
∆n× I, and let {v0, . . . , vn} be the vertices of the bottom face and {w0, . . . , wn} be
the vertices of the top face. In the proof that homology is a homotopy invariant, we
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gave this one cell structure. Now we give a different one, taking for each 0 ≤ j ≤ n
the (n+ 1)-simplex with vertices

[v0, . . . , vj , wn, . . . , wj ].

Note that this takes place in our abstract simplicial complex ∆n×I. The projection
map q : ∆n× I → ∆n then gives us a map back to ∆n, which we can compose with
σ. In particular, we have produced a singular (n+ 1)-simplex of X. Let

P (σ) =

n∑
j=0

(−1)jεn−jσ ◦ q
(
[v0, . . . , vj , wn, . . . , wj

)
.

By the standard induction argument used for homotopy invariance, this gives a
chain homotopy between the identity map and τ , so P ∗ gives a chain homotopy
between the identy and τ∗ on C∗(X;R). Now we compute

(τ∗φ)
(
[v0, . . . , vk]

)
= εkφ

(
[vk, . . . , v0]

)
(τ∗ψ)

(
[vk, . . . , vn]

)
= ε`ψ

(
[vn, . . . , vk]

)
.

This implies that
εkε`(τ

∗φ ^ τ∗ψ) = εk+`τ
∗(ψ ^ φ).

Since τ∗ is chain homotopic to the identity, it induces the identity on cohomology,
giving the result. �

Remark 4.8. There is a slightly more general version where we allow R to be a
graded commutative ring. The result still holds there.

5. Künneth Theorem

We have very few computations we can do directly with the definition of the cup
product.

Example 5.1. For any n, H∗(Sn;R) ∼= ER(xn) = R[xn]/x2
n, where |xn| = n,

since there is no room for any non-trivial products in the cohomology.

Example 5.2. We have a splitting of rings

H∗(X q Y ;R) ∼= H∗(X;R)×H∗(Y ;R).

The corresponding idempotents are the augmentations which send singular 0-simplices
in X to 1 and those in Y to 0 (and vice versa).

Example 5.3. We can write RP 2 as a quotient of the 2-simplex [v0, v1, v2], where
we identify [v0, v1] with [v1, v2] and send [v0, v2] to a point. This gives a CW-
structure with 1 0-, 1-, and 2-cell. Let x1 be the class dual to the 1-cell and x2 the
class dual to the 2-cell. Then we have

(x1 ^ x1)
(
[v0, v1, v2]

)
= x1

(
[v0, v1]

)
· x1

(
[v1, v2]

)
= 1.

Thus x1 ^ x1 must also be the dual basis vector to the 2-cell: x1 ^ x1 = x2.

To build more spaces, we use an external version of the cup product, the cross
product.

Definition 5.4. Let X and Y be space. If φ ∈ Hk(X;R) and ψ ∈ H`(Y ;R), then
let

φ× ψ = (q∗Xφ) ^ (q∗Y ψ) ∈ Hk+`(X × Y ;R),

where q? is the projection onto ?. This is the “cross product” of φ and ψ.
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Remark 5.5. The cross product also determines the cup product. Take Y = X,
and consider the diagonal map ∆: X → X ×X. Then since qi ◦∆ = Id, where qi
now is the projection onto the ith factor,

∆∗(φ× ψ) = φ ^ ψ.

We can describe this operation in more categorical terms, using the tensor prod-
uct in gradedR-modules. For this, recall the tensor product of chain complexes from
Definition 2.14. Forgetting the differential, this also gives us the tensor product of
graded abelian groups. We prolong this to an operation on graded commutative
R-algebras.

Definition 5.6. If A• and B• are graded commutative R-algebras, then (A⊗RB)•
becomes a graded commutative algebra via

(a⊗ b) · (a′ ⊗ b′) := (−1)|a
′||b|(aa′)⊗ (bb′).

Remark 5.7. The degree here arises from graded commutativity: we are swapping
a′ and b.

The usual argument from algebra shows the following.

Proposition 5.8. The tensor product is the coproduct in the category of graded
commutative R-algebras.

This gives us a way to interpret the cross product. The projection maps qX and
qY , being maps of spaces, induce maps of graded commutative R-algebras

H∗(X;R)
q∗X−−→ H∗(X × Y ;R)

q∗Y←−− H∗(Y ;R).

By the universal property of the coproduct, this gives us a unique map from the
tensor product to H∗(X × Y ;R). Unpacking the definition, we see that this is
exactly the cross product.

The cross product is again a natural operation. Given maps f : X → X ′ and
g : Y → Y ′, we have a commutative diagram

Hk(X ′;R)⊗R H`(Y ′;R) Hk+`(X ′ × Y ′;R)

Hk(X;R)⊗R H`(Y ;R) Hk+`(X × Y ;R)

×

f∗⊗g∗ (f×g)∗

×

since all of our constructions are functorial. In particular, if we now hold Y constant,
we have two functors of X:

X 7→

{
Hk(X;R)⊗R H`(Y ;R)

Hk+`(X × Y ;R),

and the above shows that the cup product is a natural transformation from the first
to the second. Summing these together, we see that the cross product is a natural
transormation between two functors from spaces to graded abelian groups:

X 7→

{
H∗(X;R)⊗R H∗(Y ;R)

H∗(X × Y ;R).

The Künneth Theorem gives us conditions in which this is a natural isomorphism.
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Definition 5.9. A cohomology theory on CW-complexes is a functor on pairs

h∗ : T op2 → grAb
together with a sequence of natural trasnformations

hm(A, ∅) δ−→ hm+1(X,A)

for any pair (X,A). such that

(1) hm is a homotopy functor for all m
(2) If X = A ∪B, then hm(X,A) ∼= hm(B,A ∩B) induced by the inclusions.
(3) The map δ and the maps (A, ∅) → (X, ∅) → (X,A) induce a long exact

sequence upon applying h∗.
(4) h∗ takes disjoint unions to products.

Definition 5.10. A natural transformation of cohomology theories h∗ ⇒ k∗ is a
sequence of natural transformations hm ⇒ km that commute with the corresponding
boundary maps δh and δk.

Proposition 5.11. If H∗(Y ;R) is degreewise a finitely generated projective R-
module, then

(X,A) 7→ H∗(X,A;R)⊗R H∗(Y ;R)

is a cohomology theory.

Proof. Most of the properties are inherited from H∗(−,−;R). The only ones we
need to check are the long exact sequence and the disjoint union axioms. For
the former, finitely generated projective R-modules are flat, and hence tensoring
over R with Hk(Y ;R) is tensoring with something flat, and hence preserves exact
sequences. Direct sums are also exact, and this gives the result. For the disjoint
union, we need finite generation. If Hk(Y ;R) is finitely generated free, generated
by some set Ik, then

H∗(X;R)⊗R Hk(Y ;R) ∼=
⊕
Ik

H∗(X;R) ∼=
∏
Ik

H∗(X;R),

since Ik is finite. Products always commute, so this is again the product. In any
given degree, there are only finitely many k for which Hk(Y ;R) can contribute, so
again, we get the result. A retract of an isomorphism is an isomorphism, so the
same is true for any summand of a finite sum of frees, hence any projective. �

It is obvious that
(X,A) 7→ H∗(X × Y,A× Y ;R)

is a cohomology theory, since ordinary cohomology is.

Lemma 5.12. If h∗ and k∗ are cohomology theories and F : h∗ ⇒ k∗ is a natural
transformation, then F is an isomorphism on finite dimensional CW complexes if
it is an isomorphism on a point.

Proof. Since points are finite dimensional CW complexes, one direction is clear.
For the reverse, the Mayer-Vietoris sequence, together with the 5-Lemma, shows
that if F is an isomorphism on a point, then it is so on a sphere. Let X be a finite
dimensional CW complex. We now argue by induction on the dimension. The
case that the dimension is zero is either the assumption or the Milnor axiom, so
we assume that F is an isomorphism on the (n − 1)-skeleton of X. If we consider
the long exact sequence for the pair (X [n], X [n−1]) (which by excision is a disjoint
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union of a bunch of disks relative to their boundaries), then the 5-Lemma again
shows that F is an isomorphism. �

Theorem 5.13 (Künneth Theorem). Let Y be a space such that for all k, Hk(Y ;R)
is a finitely generated projective R-module. Then for any pair (X,A) of finite
dimensional CW-complexes the cross product induces an isomorphism

H∗(X,A;R)⊗R H∗(Y ;R) ∼= H∗(X × Y,A× Y ;R).

Theorem 5.14. Both sides of the desired isomorphism are cohomology theories,
and the cross product is a natural transformation of the associated functors. By
assumption, the cross product is an isomorphism for (X,A) = (∗, ∅). We will
be able to use Lemma 5.12 if we know that the cross product commutes with the
relevant coboundary maps. This is an exercise.

Exercise 5.1. Show that the cross product commutes with the coboundary map for
the pair (X,A): we have a commutative diagram

Hk(A;R)⊗R H`(Y ;R) Hk+1(X,A;R)⊗R H`(Y ;R)

Hk+`(A× Y ;R) Hk+`+1(X × Y,A× Y ;R).

δ

−×− −×−

δ

Corollary 5.15. Let X = Sn1 × · · · × Snk . Then

H∗(X;R) ∼=
k⊗
i=1

ΛR(xni),

where |xni | = ni

6. The Milnor Sequence

An obvious downside to Lemma 5.12 is that it allowed only finite dimensional
CW complexes. This meant that our version of the Künneth Theorem was similar
hamstrung. The Milnor sequence fixes this. We first need some algebraic construc-
tions.

Definition 6.1. An inverse system of abelian groups (R-modules, etc) is a collec-
tion A1, . . . together with maps

A1
f2
1←− A2

f3
2←−← . . . .

Remark 6.2. There is an obvious extension of this to any category, and the full-
strength concept is dual to the concept of a direct system introduced in Definition 9.2
below. We will not need anything more than what we use here.

Example 6.3. If

X1
i1−→ X2

i2−→ . . . ,

then applying Hk(−;R) to this sequence of spaces gives an inverse system of R-
modules.

The product over all n ∈ N of the An has two interesting maps on it: the identity
and the map which applies fn+1

n in the appropriate component.
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Definition 6.4. If A• is an inverse system, then let

θ :

∞∏
n=1

An →
∞∏
n=1

An

be defined by

θ
(
(a1, a2, . . . )

)
=
(
f2

1 (a2), f3
2 (a3), . . .

)
.

Since all of the maps f i+1
i are homomorphisms, this is again a homomorphism.

Definition 6.5. If A• is an inverse system, then let

lim
←−

A• = ker(1− θ)

be the inverse limit and let

lim
←−

1A• = coker(1− θ)

be the first derived functor of inverse limit.

The definition of the kernel gives us a universal property for the inverse limit.

Proposition 6.6. Let A• be an inverse system, and let B be any other abelian
group. Then

Hom(B, lim
←−

A•) = {(g1, . . . ) | fn+1
n ◦ gn+1 = gn} ⊂

∞∏
n=1

Hom(B,An).

Proof. A map

G : B →
∞∏
n=1

An

lands in the inverse limit if and only if G = θ ◦G. By the universal property of the
product, G is a sequence of maps gn : B → An. The condition G = θ ◦G is exactly
the condition

fn+1
n ◦ gn+1 = gn.

�

We can think of this is a collection of maps from B to the terms An in the
sequence, compatible with the structure maps. A more universal description is to
observe that B gives an inverse system where all the structure maps are the identity,
and the map in question is exactly the obvious notion of a map of inverse systems.

Theorem 6.7 (Milnor Sequence). Assume we have given a sequence of CW inclu-
sions

X1 ⊂ X2 ⊂ · · · ⊂ X =

∞⋃
k=1

Xk.

Then we have a natural short exact sequence

0→ lim
←−

1Hn−1(Xk;R)→ Hn(X;R)→ lim
←−

Hn(Xk;R)→ 0.

Here the maps are as in Example 6.3.
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Proof. For each k, let ιk denote the inclusion of Xk → Xk+1. Observe that without
loss of generality, we can replace X with the infinite mapping telescope of the
various inclusions:

T =

( ∞∐
k=1

Xk × [k, k + 1]

)
/(x, k + 1) ∼

(
ιk(x), k + 1

)
.

The inclusion of T into X × R is a homotopy equivalence, as is the projection
X ×R→ X, so it suffices to prove the result for T . Here we have a decomposition
into two subcomplexes:

Te =

∞∐
k=1

X2k × [2k, 2k + 1]

To =

∞∐
k=1

X2k+1 × [2k + 1, 2k + 2]

Note that at the attachment points for the pieces of the telescope, we only include
the part from the “thinner” part of the telescope.

The intersection is

Te ∩ To =

∞∐
k=1

Xk × {k + 1}.

We can now use the Milnor axiom and the Mayer-Vietoris sequence to compute
the homology of T = To ∪ Te now. We have

Hn(Te;R)×Hn(To;R) ∼=
∞∏
k=1

Hn(Xk;R),

which of course is the same for the intersection. Now the key map in the Mayer-
Vietoris sequence is the map induced by the inclusion of the intersection into the
two pieces. For both of these, they are of two types (illustrated for Te):

(1) X2k ↪→ Te as X2k × {2k + 1} (which induces the obvious projection map)
and

(2) X2k−1 ↪→ Te as X2k−1 × {2k} ↪→ X2k × {2k}, which induces ι∗2k−1 on that
factor.

For To, the roles of odd and even are switched, and we have a global minus sign.
In our Mayer-Vietoris sequence, we have

∞∏
k=1

Hn(Xk;R)→
∞∏
k=1

Hn(Xk;R),

where on coordinates this looks like

(. . . , φk, . . . ) 7→ (. . . , (−1)k(φk − ι∗k+1φk+1), . . . ).

If we apply the global automorphism that switched all of the odd terms with their
additive inverse, then we see that this is exactly the map 1− θ above. �

Our proof of the Milnor sequence never used the dimension axiom, so in partic-
ular, it applies to a general cohomology theory.

Corollary 6.8. If h∗ and k∗ are cohomology theories and F : h∗ ⇒ k∗ is a natural
transformation, then F is an isomorphism of CW complexes if and only if it is an
isomorphism on a point.
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Proof. Since F is an isomorphism on finite complexes (Lemma 5.12), we know that
F induces an isomorphism on the corresponding limits and derived limits. The
result follows from the 5-Lemma. �

Corollary 6.9. If Y is a space such that for all n, Hn(Y ;R) is finitely generated
projective, then for all pairs (X,A), we have a natural isomorphism

H∗(X,A;R)⊗R H∗(Y ;R) ∼= H∗(X × Y,A× Y ;R).

7. the James construction

We briefly digress to compute the cohomology of an interesting class of spaces:
the James construction applied to spheres.

Definition 7.1. If X is a pointed space, pointed by x, then let

Jn(X) =

(
n∐
i=1

X×i

)
/(x1, . . . , xi−1, x, xi+1, . . . , xk) ∼ (x1, . . . , xi−1, xi+1, . . . , xk).

Let

J(X) =

∞⋃
n=1

Jn(X)

with the colimit topology.

This is very analogous to the tensor algebra of modules. We can use this intuition
to make this more precise.

Definition 7.2. A unital, associative monoid in spaces is a space M together with
continous maps

µ : M ×M →M and ι : ∗ →M,

such that

µ ◦ (µ× IdM ) = µ ◦ (IdM × µ)

and if m = ι(∗), then

µ(m,x) = x = µ(x,m)

for all x ∈M .
A homomorphism of unital, associative monoids in spaces is a continous map

that commutes with all the structure.

Definition 7.3. Let Assoc denote the category of associative, unital monoids in
spaces. Let U : Assoc→ T op denote the forgetful functor.

Proposition 7.4. The James construction lifts to a functor

J : T op→ Assoc

which is left-adjoint to the forgetful functor:

Assoc
(
J(X),M

) ∼= T op(X,U(M)
)
.

Exercise 7.1. Prove Proposition 7.4. As a hint: the multiplication is the obvious
concatination.

We can compute the homology of the James construction. It is helpful here to
have a slightly different reworking of the equivalence relation.
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Definition 7.5. Let X be a pointed space, pointed by x. Then the nth fat wedge
of X is

Fn(X) = {(x1, . . . , xn) | ∃i, xi = x} ⊂ Xn.

By construction, Fn(X) is exactly the space we kill off if we form the iterated
smash powers of X, so the following is immediate.

Proposition 7.6. For any space X, we have a natural homeomorphism

Xn/Fn(X) ∼= X∧n.

Additionally, if X is a CW complex with x as a zero-cell, then Fn(X) is a
subcomplex of Xn. In particular, the inclusions Fn(X)→ Xn are nice embeddings.

Now the spaces Fn(X) are also exactly the subspace on which we have an in-
teresting equivalence relation for the James construction. If ~x /∈ Fn(X), then the
equivalence class of ~x ∈ Jn(X) is just ~x itself. The points of Fn(X) are the points
which get folded into the lower summands.

Proposition 7.7. Let X be a space. Then we have a pushout diagram of spaces

Fn(X) X×n

Jn−1(X) Jn(X),

∇

where ∇ : Fn(X)→ Jn−1(X) is the map

∇
(
x1, . . . , xi−1, x, xi+1, . . . , xn

)
=
[
(x1, . . . , xi−1, x, xi+1, . . . , xn)

]
.

As written, it is not clear that ∇ is even well-defined. If there is only one copy of
x, then this is unambiguous, but if there is more than one, it appears that we had
to make a choice. This also complicated continuity. This is actually the only piece
that is possibly confusing, however, since as we observed above, the subcomplex
Fn(X) is the only one one which we see the equivalence relation non-trivially.

We can make well-definedness and continuity precise by unpacking Fn(X) slightly.

Definition 7.8. If I ⊂ {1, . . . , n}, then let

F In(X) = {(x1, . . . , xn) | ∀i ∈ I, xi = x}.

The following features of these subspaces are immediate.

Proposition 7.9.

(1) For each I ⊂ {1, . . . , n}, the space F In(X) is a subcomplex of X×n.
(2) If I, J ⊂ {1, . . . , n}, then

F In(X) ∩ F Jn (X) = F I∪Jn (X).

(3) The space Fn(X) is the union of the F In(X) where I ranges over the non-
empty subsets.

Exercise 7.2. Prove Proposition 7.9.

One way to restate the last part is that

Fn(X) =

m⋃
i=1

F {i}n (X),
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but by including the other spaces, we see that these fit into a natural stratification
which mirrors the one of the James construction. The key feature of the proof of
Proposition 7.7 is then the following.

Proposition 7.10. The maps

∇i : F {i}n (X)→ Jn−1(X)

defined by

∇i
(
x1, . . . , xi−1, x, xi+1, . . . , xn

)
=
[
(x1, . . . , xi−1, x, xi+1, . . . , xn)

]
are each continous and agree on the intersections F

{i,j}
n (X).

Remark 7.11. The spaces F In(X) as I ranges over the subsets of {1, . . . , n} form a
kind of stratification of X×n. In this, the points in F In(X) map to Jn−|I|(X) under
the canonical map Xn → Jn(X).

We can use the pushout square of Proposition 7.7 to compute the cohomology
for particular X as a ring.

Theorem 7.12. The cohomology groups of J(S2n) are

H∗
(
J(S2n);R

) ∼= {R ∗ ≡ 0 mod 2n

0 otherwise.

Let x2kn generate H2kn
(
J(S2n);R

)
. Then we can choose these so that

x2kn ^ x2jn =

(
k + j

k

)
x2(k+j)n.

Proof. For both parts, we use the pushout square of Proposition 7.7. Note that
since for any CW complex X, Proposition 7.6 shows that we have a cofiber sequence

Fn(X)→ X×n → X∧n.

This implies that we have a cofiber sequence

Jm−1(X)→ Jm(X)→ X∧m.

Now specialize to X = S2n. By induction on n, this implies that we have a cell-
structure for Jm(S2n) where we have cells in dimensions

0, 2n, 4n, . . . , 2mn.

In particular, cellular cohomology immediate gives us the first part. Note also that
the map Jm(S2n) ↪→ Jm+1(S2n) induces an isomorphism in cohomology through
dimension 2n(m+ 1)− 1.

This result did not depend on R, so it is in particular true for R = Z. The
general result then again follows from this by tensoring with R, so it suffices to
compute the ring structure for R = Z. Exercise 7.3 below shows that it suffices to
show that we can choose the x2kn such that

xk2n = k!x2kn,

and this is what we will show.
The pushout square of Proposition 7.7 actually shows a little more. As con-

structed, we see that this is a cellular map, where we are simply identifying all of
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the 2kn-cells in (S2k)×m. In particular, the map on cohomology is injective, and
hence as a ring,

H∗
(
Jm(S2n)

)
↪→ H∗

(
(S2n)×m

) ∼= ΛZ(e(2n,1), . . . , e(2n,m)),

where for 1 ≤ i ≤ m, |e(2n,i)| = 2n. Since all m of the 2n-cells of (S2n)×m are

identified with the same cell in J1(S2n), we deduce that in cohomology, we have

x2n 7→
m∑
i=1

e(2n,i).

An induction argument shows that more generally, we can choose the x2nk such
that

x2nk 7→
∑
Ik

e2n,j1 ^ · · ·^ e2n,jk ,

where Ik is the set of k-element subsets of {1, . . . ,m}. Here, the only choice we
make is that of the sign; this amount to a choice of sign for the 2n-cell, which then
gives one for all others by the Künneth theorem. The result follows. �

Exercise 7.3. Let Γ(x) be the Z-algebra whose underlying abelian group is free on
the set {γi(x) | 0 ≤ i ≤ ∞} (here, γ0(x) = 1). If for all k, γ1(x)k = k!γk(x), then
show that

γi(x) · γj(x) =

(
i+ j

i

)
γi+j(x).

Remark 7.13. In fact, more is true. For a general X, we have an isomorphism
of R-modules

H̃∗
(
J(X);R

) ∼= ∞⊕
k=1

H̃∗
(
X∧k;R

)
.

This follows from a stable splitting of the James construction (in fact, it splits after a
single suspension). If H∗(X;R) is a finitely generated projective R-module in every
degree, then the Künneth theorem allows us to refine this, giving an isomorphism
of graded R-modules:

H∗
(
J(X);R

) ∼= ∞⊕
k=0

(
H̃∗(X;R)

)⊗k
.

8. Lecture 8 - the cohomology of projective space

The cohomology of projective spaces gives an important example of spaces whose
cohomology we can compute fairly directly. This also underscores the beautiful,
geometric content for the cup product: here it exactly measures the number of
intersections of particularly generic submanifolds of complementary dimension.

Theorem 8.1. For all n, we have

H∗(RPn;F2) ∼= F2[x1]/xn+1
1 , |x1| = 1

H∗(CPn;Z) ∼= Z[x2]/xn+1
2 , |x2| = 2

H∗(HPn;Z) ∼= Z[x4]/xn+1
4 |x4| = 4.

We also have
H∗(OP 2;Z) ∼= Z[x8]/x3

8,

but this is the last octonionic projective space.
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Proof. We will show the RPn case; all others are the same. We also will shorten
notation by writing P i for RP i and to stress the field independence.

Note that the (n − 1)-skeleton of Pn is Pn−1, and since all cellular boundary
and coboundary maps are zero (being multiplication by 0 or 2 which is zero mod
2, or being actually 0 for the complex and quaternionic cases), we know that the
inclusions map induces an isomorphism

Hk(Pn;F2)→ Hk(Pn−1;F2)

for 0 ≤ k ≤ n− 1. In particular, given any two elements whose degrees add up to
less than n, their product is detected in Pn−1. By induction on n, this is know to
be truncated polynomial. It therefore suffices to show that if i+ j = n, then

Hi(Pn;F2)⊗F2
Hj(Pn;F2)

^−→ Hn(Pn;F2)

is an isomorphism of one dimensional F2-vector spaces. We argue this by judiciously
unpacking the pieces.

Recall the homogeneous coordinates on Pn:

[x0 : · · · : xn] ∈ (Rn+1 −~0)/R×.
Inside Pn, let

P i =
{

[x0 : · · · : xi : 0 : · · · : 0]
}

be the standard embedding of P i in Pn, and let

P j =
{

[0 : · · · : 0 : xi : · · · : xn+1]
}
.

These intersect at {
[0 : · · · : 0 : xi : 0 : · · · : 0]

}
= P 0,

a point. We have a relative cup product:

Hj(Pn, Pn − P i)⊗F2
Hi(Pn, Pn − P j) ^−→ Hn(Pn, Pn − P 0).

By definition,

Pn − P i =
{

[x0 : · · · : xn+1 | (xi+1, . . . , xn+1) 6= ~0
}
.

The straight-line homotopy taking the first (i + 1)-coordinates to zero then gives
us a deformation retraction of this onto

P j−1 ⊂ P j ,
and similarly for Pn − P j . We therefore have that

Hj(Pn, Pn − P i) ∼= Hj(Pn, P j−1).

Since P j−1 can be used as the (j − 1)-skeleton of Pn (simply place the cells from
right to left instead of the usual way), we have a commutative square

Hj(Pn)⊗Hi(Pn) Hn(Pn)

Hj(Pn, Pn − P i)⊗Hi(Pn, Pn − P j) Hn(Pn, Pn − P 0).

^

^

∼= ∼=

We wish to show that the top line is an isomorphism, so it suffices to show the
bottom is. Now we begin excising. The points with a fixed coordinate non-zero
give us a subspace homeomorphic to Rn in Pn, and the complement is Pn−1.
Excision therefore shows us that

Hn(Pn, Pn − P 0) ∼= Hn(Rn,Rn −~0).
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Similarly, the inclusions

(P i, P i − P 0) ↪→ (Pn, Pn − P j)
induce an isomorphism of Hi, and these can then be further excised away to
(Ri,Ri −~0). By restriction, we therefore get a commutative diagram

Hi(Pn, Pn − P j)⊗Hj(Pn, Pn − P i) Hn(Pn, Pn − P 0)

Hi(Ri,Ri −~0)⊗Hj(Rj ,Rj −~0) Hn(Rn,Rn −~0).

∼=

^

∼=

×

The Künneth theorem then gives the result, since the map is the cross product for
the standard identification

(Ri,Ri −~0)× (Rj ,Rj −~0) = (Rn,Rn −~0).

�

Combining this with the Milnor sequence, we have

Corollary 8.2. We have

H∗(RP∞;F2) ∼= F2[x1]

H∗(CP∞;Z) ∼= Z[x2]

H∗(HP∞;Z) ∼= Z[x4].

And since these are free over their corresponding ground rings, the Künneth
theorem then allows us to build any truncated polynomial algebra in classes in
degrees 1, 2, and 4 by crossing these spaces together.
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Part 2. Poincaré Duality

Theorem 8.3. Let M be a closed, R-oriented, compact, connected n-manifold.
Then

(1) Hn(M ;R) ∼= R, generated by a “fundamental class” [M ].
(2) The cap product induces an isomorphism

Hk(M ;R)⊗R Hn(M ;R)
−_−−−−−→ Hn−k(M ;R).

If M is not compact, then we get an isomorphism considering instead compactly
supported cohomology.

Corollary 8.4. Let R be a field and let M be a closed, R-oriented, compact, con-
nected n-manifold. Then the cup product induces a perfect pairing

Hk(M ;R)⊗R Hn−k(M ;R)
−^−−−−−→ Hn(M ;R) ∼= Hn(M ;R) ∼= R.

Proof. The map in question is

(φ⊗ ψ) 7→ [M ] _ (φ ^ ψ).

Since the cap product is a right module action, this is

([M ] _ φ) _ ψ.

Theorem 11.4 identifies Hk(M ;R) with Hn−k(M ;R) via capping with [M ]. The
cap product

Hn−k(M ;R)⊗R Hn−k(M ;R)→ H0(M ;R) ∼= R

is the canonical action of cohomology on homology, and since R is a field, this is a
perfect pairing. �

We have a lot to define to even prove this theorem. In particular, we must say
what “orientable” means, what the “fundamental class” is, and what “compactly
supported cohomology” is. Our proof of Poincaré duality is via an open cover, so
we necessarily will consider non-compact manifolds. We will start there.

9. Compactly Supported Cohomology

For de Rham cohomology, we have an obvious notion of compact support for a
form. The support of ω ∈ Ωk(M) is the set of points m ∈ M where ω(m) 6= 0.
Compact support here then means the obvious thing: the support is contained in
a compact set. In other words, outside of a compact set, the form vanishes.

Definition 9.1. A cochain φ has compact support if there is a compact K ⊂ M
such that φ ∈ Ck(M,M −K).

The compactly supported k-cochains are

Ckc (M ;R) :=
⋃

K⊂M
Ck(M,M −K;R).

The compactly supported cochains are visibly closed under the coboundary map.
What is not clear is that the sum of these for different K are also compactly
supported. For this, we need a general, categorical notion.

Definition 9.2. A directed set is a poset (I,≤) such that if a, b ∈ I, then there is
a c ∈ I such that a, b ≤ c.

A direct system in a category C is a functor I → C.
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In this definition, we are viewing a poset as a category with object set I and
with I(a, b) a point if a ≤ b and empty otherwise.

Definition 9.3. Let A• be a direct system of abelian groups (or R-modules for
some R). Then the direct limit of A• is

lim
→
A• =

(⊕
i∈I

Ai

)
/
(
f ji (ai)− ai

)
,

where for each i ≤ j, f ji : Ai → Aj is the structure map in the direct system.

The following is a straightforward application of the universal properties of the
quotient and of the direct sum.

Proposition 9.4. If B is any abelian group, and A• is a direct system of abelian
groups, then

Hom(lim
→
A•, B) = {fi : Ai → B | fj ◦ f ji = fi}

If all of the maps in the direct system are inclusions, then the direct limit is also
the union. In particular, if we can recast the definition of compactly supported
cochains, then we will have that this is a subcochain complex. For this, we use the
following.

Proposition 9.5. The collection of all compact subsets of a manifold form a di-
rected set under inclusion.

Proof. The union of finitely many compacts is compact. �

Proposition 9.6. The assignment

K 7→ Ck(M,M −K;R)

gives a direct system of R-modules.

Proof. A cochain φ on M is in Ck(M,M − K;R) if and only if it vanishes on
Ck(M−K;R). IfK ⊂ L, thenM−L ⊂M−K, so in particular, Ck(M,M−K;R) ⊂
Ck(M,M − L;R). �

Exercise 9.1. We have a natural isomorphism

Hk
c (M ;R) ∼= lim

→
Hk
c (M,M −K;R).

We need also to be able to compute these more efficiently.

Definition 9.7. A subset C of a directed set I is cofinal if for all i ∈ I, there is a
c ∈ C such that i ≤ c.

In particular, cofinal subsets are necessarily directed sets (which is not true for a
general sub-poset). A useful exercise with the definition is the show the following.

Proposition 9.8. If C ⊂ I is cofinal, then limC = limI .

Corollary 9.9. If M is compact, then Hk
c (M ;R) = Hk(M ;R).

Proof. The set {M} is a cofinal subset of the set of compact subsets of M . �

Proposition 9.10. For any n,

Hk
c (Rn;R) ∼=

{
R k = n

0 otherwise.
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Proof. The set of closed balls of radius m ∈ N forms a cofinal subset of the compact
subsets of Rn. The relevant homologies are

Hk(Rn,Rn −B;R),

and the inclusion Bm ⊂ Bm+1 induces an isomorphism. The result follows. �

9.1. Exercises.

Exercise 9.2. Show that homology commutes with direct limits. In other words, if
I is a directed set and Ci is a direct system of chain complexes, then show that the
direct limits of C(−) is naturally a chain complex and

lim
→
Hk(Ci) ∼= Hk(lim

→
Ci),

Definition 9.11. A map f : X → Y is proper if for every compact subspace K ⊂ Y ,
f−1(K) is compact.

Exercise 9.3. Show that a proper map induces a homomorphism on cohomology
with compact support.

Exercise 9.4 (Hatcher, 3.3.21). If X is a space, let X+ denote the 1-point com-
pactification. If X+ has the property that there is a neighborhood of ∞ that is a
cone with cone point ∞, then show that the natural map

Hk
C(X)→ Hk(X+,∞)

is an isomorphism.

Exercise 9.5. Compute the cup product structure on (S6×S25)#(S10×S21), where
here # denotes the connect sum of manifolds.

10. Orientations

If M is a manifold, then excision provides us with several interesting isomor-
phisms. For all m ∈M and for all open balls B ⊂M , we have isomorphisms

Hn(M,M − {m};R) ∼= Hn(Rn,Rn −~0;R) ∼= R ∼= Hn(M,M −B;R).

In particular, a choice of element r ∈ Hn(M,M − B;R) determines elements in
Hn(M,M − {m};R) for all m ∈ B via

im∗ : Hn(M,M −B;R)→ Hn(M,M − {m};R).

Loosely speaking, an orientation of M is a continuous choice of basis for this free,
rank 1 R-module. In particular, it is a continuous choice of unit in R. To make
sense of what “continuous” means here, since the target is technically changing
with each point of m, we must assemble these.

Definition 10.1. If R is a commutative ring, then let

MR =
{

(m,µ) | m ∈M,µ ∈ Hn

(
M,M − {m};R

)}
.

Topologize this by taking as a basis

UB,µB =
{

(m,µm) | m ∈ B ⊂M,µm = im∗(µB)
}
.

We have a natural map MR →M which forgets the second coordinate.

Proposition 10.2. The map MR →M is a covering map of degree |R|.
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We in fact built the topology so this would be so. We used the local affineness
of the manifold to glue together copies of U × R, where R was given the discrete
topology.

Definition 10.3. An R-orientation of M is a section s of MR →M such that for
all m ∈M , s(m) is a generator of Hn(M,M − {m};R).

An n-manifold is R-orientable if there exists an orientation.

The property of being a generator of a free, rank 1 R-module is invariant under
any R-module automorphisms. In particular, we have a sub-covering space

MR× = {(m,µm) | µm generates} ⊂MR

which is a cover of degree |R×|. We can think of orientations as sections of this
covering space.

Proposition 10.4. If R = Z/2, then every manifold is R-orientable.

Proof. Here, R× = {1}, and MR× = M . �

We next address the universal case of R = Z, the initial ring. Here, R× = {±1}
so MR× →M is a double cover.

Proposition 10.5. For any n-manifold M , MZ× is Z-orientable.

Proof. The assignment (m,µm) 7→ µm gives a continuous choice of basis. �

Proposition 10.6. A connected n-manifold is Z-orientable if and only if MZ× has
2 components.

Proof. Since this is a double cover, if MZ× has 2 components, then it splits as M q
M . There are thus 2 sections. If MZ× has one component, then MZ× corresponds
to an index 2 subgroup of π1(M,m). In particular, by the lifting lemma, there are
no sections. �

Proposition 10.7. If M is connected, then a section of MR →M or of MR× →M
is determined by its value on a point.

Proof. This is the lifting lemma. �

For more general R, these still describe the structure!

Proposition 10.8. For any commutative ring R, we have a splitting of MR as

MR
∼=

(∐
2a=0

M

)
q

 ∐
a6=−a

MZ×

 ,

and hence of MR× as

MR×
∼=

{(∐
a∈R×M

)
2 = 0 ∈ R(∐

a∈R×/{±1}MZ×
)

2 6= 0 ∈ R.

Proof. This is an interesting exercise in naturality. A priori, we would expect that
we would have to group points according to the action ofR× onHn(M,M−{m};R),
since this corresponds to the possible choices of basis. In fact, we just see the action
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of±1. First observe that sinceHn(M,M−B;Z) is free for any ball B in an Rn ⊂M ,
we have a natural (in B and in R) isomorphism

Hn(M,M −B;Z)⊗Z R
∼=−→ Hn(M,M −B;R).

In particular, the dependence of the right-hand side on B is determined by the
dependence of Hn(M,M −B;Z) on B. Put another way, if B′ ⊂ B, then we have
a commutative square

Hn(M,M −B;Z)⊗Z R Hn(M,M −B;R)

Hn(M,M −B′;Z)⊗Z R Hn(M,M −B′;R)

∼=

∼=⊗IdR ∼=
∼=

Thus the only isomorphisms which can show up in the homology are those which
arose from the isomorphisms as a Z-module.

Now let’s unpack slightly the covering space itself. To build the covering space,
we choose an open cover of M by open balls B ⊂ Rn ⊂ M . For each of these,
choose an isomorphism

τB : Hn(M,M −B;Z)
∼=−→ Z,

and hence by the above an isomorphism

τB ⊗R : Hn(M,M −B;R)
∼=−→ R.

The isomorphism τB determines for allm ∈ B an isomorphismHn(M,M−{m};Z)
∼=−→

Z via the commutative diagram

Hn(M,M −B) Z,

Hn(M,M − {m})

τB

ιm,B∗ τB,m

where ιm,B is the map of pairs (M,M − B) ⊂ (M,M − {m}). Again, for any
coefficients R, this gives us an isomorphism Hn(M,M −{m};R) ∼= R that depends
only on the underlying case of R = Z.

Now we build our covering space by starting with the space

M̃ :=
∐

B⊂Rn⊂M
B ×R,

and we glue together along the intersections of open balls in the following way.
Given two open balls B1, B2 ⊂ Rn ⊂ M and a point m ∈ B1 ∩ B2, we have two
ways to identify Hn(M,M − {m};R) with R: τB1,m and τB2,m. In particular, we
have an automorphism

γB1

B2
= τB1,m ◦ τ−1

B2,m
: R

∼=−→ R,

which, since it comes from the underlying case of R = Z, is either ±1. Now for
each m ∈ B1 ∩B2, we identify

B1 ×R 3 (m, r) ∼ (m, γB1

B2
r) ∈ B2 ×R.

In particular, the identifications are always taking a point (m, r) to either (m, r)
or to (m,−r). We never see any other elements of R× = GL1(R) showing up here.



MATH 227A – LECTURE NOTES 31

If r = −r, then we never did anything, and hence we got a copy of M . If r 6= −r,
then the entire construction we have done is the same as for Z×, we are just naming
the fibers {±r} rather than {±1}. The result follows. �

One might be concerned that we made a lot of choices here (namely the possible
identifications. The homeomorphism type of the space we write down doesn’t care
about these. First note that a different choice of isomorphism Hn(M,M −B) ∼= Z
will just replace certain maps by −1 times themselves, and all of the maps we
consider will adjust accordingly (in other words, we are just globally switching a
bunch of directions). One might also be concerned that we might identify pieces in
B × R with themselves as we pass through our identifications. This could destroy
our covering space property! The following exercise is key to showing that this does
not happen.

Exercise 10.1. Show that the identification maps γBiBj satisfy a “cocycle condition”:

if m ∈ B1 ∩B2 ∩B3, then

γB3

B1
= γB3

B2
◦ γB2

B1
,

and γBB = Id for all B.

Corollary 10.9. If M is Z-orientable, then M is R-orientable for all R.

Proof. The decomposition of MR× into copies of M and of MZ× together with
Proposition 10.6 shows that if M is Z-oriented, then MR× is a disjoint union of
copies of M . In particular, we have sections. �

Now we add in some extra structure. This is where we use the more general
construction above (having an arbitrary A, rather than just R×).

Proposition 10.10. The sections Γ(MR) of MR → M form an R-module under
pointwise addition and multiplication.

Proposition 10.11. If M is R-orientable and connected, then an R-orientation µ
gives an identification of covering spaces

R×M −·−−−−→MR,

where · is the map (r,m) 7→ r · µ(m).

Proof. Composing µ with the “multiplication by r” map gives |R| distinct sections
of pR which mutually cover MR. In particular, MR splits as a disjoint union of
copies of M via these sections. This is exactly the map we defined. �

Corollary 10.12. If R is a ring of characteristic not 2, then R-orientability implies
Z-orientability.

Proof. Since the characteristic of R is not 2, no unit u satisfies 2u = 0. In particular,
MR× is a collection of copies of MZ× . Since we have a section, this must split by
Proposition 10.11. Hence by Proposition 10.6, we deduce Z-orientability. �

The sections of R × M are easy to determine: they are just the continuous
maps M → R (where R has the discrete topology). In particular, they are locally
constant functions on M .

Corollary 10.13. If M is a connected, R-orientable manifold, then Γ(MR) ∼= R.
If M is not R-orientable, then Γ(MR) ∼= {r ∈ R | 2r = 0}.
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Theorem 10.14. If M is a closed, connected compact n-manifold, then

(1) M is R-orientable if and only if Hn(M ;R) ∼= R.
(2) if M is not R-orientable, then Hn(M ;R) ∼= {r | 2r = 0} ⊂ R
(3) for m > n, Hm(M ;R) = 0.

To prove this, we will use Corollary 10.13 and a “characteristic function”Hn(M ;R)→
Γ(MR) defined by

[σ] 7→ [σm] ∈ Hn(M,M − {m};R).

This is locally constant, and hence a continuous section of MR →M . We will show
that this map is an isomorphism. We will prove this building up along compact
subspaces.

Lemma 10.15. Let K ⊂M be a compact subset.

(1) If a ∈ Γ(MR) is a section, then there is a unique [α] ∈ Hn(M,M −K;R)
such that for all x ∈ K, [α] maps to a(x) under the natural map

Hn(M,M −K;R)→ Hn(M,M − {x};R).

(2) For all m > n, Hm(M,M −K;R) = 0.

If M is compact, then taking K = M in Lemma 10.15 gives Theorem 10.14.

Sketch of Proof of Lemma 10.15. The Mayer-Vietoris sequence shows that if the
lemma is true for K1, for K2, and for K1 ∩K2, then it is true for K1 ∪K2. The
Mayer-Vietoris sequence here looks like

0 = Hn+1

(
M,M − (K1 ∩K2)

)
Hn

(
M,M − (K1 ∪K2)

)
Hn(M,M −K1)⊕Hn(M,M −K2) Hn

(
M,M − (K1 ∩K2)

)
. . .

Given a, by assumption we can find αK1
and αK2

that satisfy the conditions of
the lemma. The restrictions of each to Hn

(
M,M − (K1 ∩ K2)

)
works for a on

K1 ∩ K2, so by uniqueness, they must agree. Exactness then produces αK1∪K2
.

Continuing the Mayer-Vietoris sequence to the left also shows that the groups
Hm(M,M − (K1 ∪K2)) vanish for m > n.

We now reduce to simpler situations. Since K ⊂ M and M is covered by open
affines, we can interatively use the Mayer-Vietoris sequence and induction on the
number of affines reduce to the case that K is a compact subset of Rn. Now the
distance from any representative of [z] ∈ Hn(M,M−K) to K is non-zero, so we can
without loss of generality replace K by a union of convex sets (slightly fattening up
K). Now by induction, we are reduced to the case that K is a closed ball of finite
radius, and here the statement from the definition of the topology on MR. �

10.1. Exercises.

Definition 10.16. If M and N are oriented n-manifolds and f : M → N is a map,
then the degree of f is the integer such that

f∗([M ]) = deg(f)[N ].

Exercise 10.2 (Hatcher 3.3.7). If M is a closed, connected, orientable n-manifold,
then show there is a degree 1 map

M → Sn.
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11. Proof of Poincare Duality

Theorem 11.1. If M is a closed, connected orientable n-manifold, then the ori-
entation gives a homomorphism

DM : Hk
c (M ;R)→ Hn−k(M ;R).

Proof. Compactly supported cohomology is a direct limit, so to define a map out
of it is the same things as defining a collection of maps

Hk(M,M −K;R)
DKM−−→ Hn−k(M ;R)

such that if K ⊂ L, then we have a commutative triangle

Hk(M,M −K;R) Hn−k(M ;R)

Hk(M,M − L;R)

DKM

DLM

An orientation is a choice of nice section s of MR → M , and Lemma 10.15 shows
that for each K ⊂M compact, there is a unique [µK ] that restricts to the value of
s at each point of K. If K ⊂ L, then let

iLK : (M,M − L)→ (M,M −K)

be the inclusion. In Hn(M,M−K;R) we then have two classes: [µK ] and (iLK)∗[µL],
and for all m ∈ K ⊂ L, the class [µL] restricts to s(m). By uniqueness of the class
[µK ], we deduce that

(iLK)∗[µL] = [µK ].

Now let
DK
M (φ) = [µK ] _ φ.

The push-pull formula (expressing naturality of the cap product) then shows that

DL
M

(
(iLK)∗φ

)
= [µL] _ (iLK)∗φ = (iLK)∗[µL] _ φ = [µK ] ∩ φ = DK

M (φ).

In particular, these assemble into a map out of the direct system and hence give a
map out of the direct limit. �

Proposition 11.2. When M = Rn, then the map DM from Theorem 11.1 is an
isomorphism.

Proof. First note that we only have compactly supported cohomology for k = n.
This reduces the cases we have to consider.

Excision shows that we have isomorphisms

Hn(Rn,Rn−B;R) ∼= Hn(∆n, ∂∆n;R) and Hn(Rn,Rn−B;R) ∼= Hn(∆n, ∂∆n;R).

The identity map on ∆n gives a generator [∆] of Hn(∆n, ∂∆n;R), and a choice
of orientation amounts to a unit u in R, giving the class u[∆n]. The Universal
Coefficients Theorem (Theorem 2.12) shows that

Hn(∆n, ∂∆n;R) ∼= HomR

(
Hn(∆n, ∂∆n;R), R

)
.

In particular, capping with a unit multiple of [∆] gives an isomorphism. However,
this is just the maps giving DM . �

Since manifolds are unions of affines homeomorphic to Rn, a Mayer-Vietoris type
argument will allow us to conclude this. Here we need a technical lemma.
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Lemma 11.3. Let M = U ∪ V , where both U and V are open. Then we have a
commutative diagram
(4)

. . . Hk
c (U ∩ V ;R) Hk

c (U ;R)⊕Hk
c (V ;R) Hk

c (U ∪ V ;R) Hk+1
c (U ∩ V ;R) . . .

. . . Hn−k(U ∩ V ;R) Hn−k(U ;R)⊕Hn−k(V ;R) Hn−k(U ∪ V ;R) Hn−k−1(U ∩ V ;R) . . .

DU∩V DU⊕DV DU∪V

δ

DU∩V

∂

with exact rows.

Theorem 11.4 (Poincaré Duality). If M is a closed, R-orientable n-manifold,
then

DM : Hk
c (M ;R)

∼=−→ Hn−k(M ;R).

Proof. We build up our manifold in pieces.
If M is an open set in Rn, then

M =

∞⋃
i=1

Ui,

where each Ui is an open ball in Rn. If we let

Vj =

j⋃
i=1

Ui,

then

M =

∞⋃
j=1

Vj ,

but here, Vj−1 ∩ Uj is a union of (n − 1) open sets which are either empty or
homeomorphic to Rn. By induction on Lemma 11.3, the maps DVj are all isomor-
phisms. This means that the direct limit of the maps DVj is also an isomorphism.
By Lemma ??, DM is an isomorphism.

If M is a union of countably many open sets homeomorphic to Rn, then we can
apply the same argument (where here Vj−1 ∩ Uj is an open in Rn, and hence we
use the previous part) to deduce that DM is an isomorphism.

For an arbitrary M (so not second countable), we choose a maximal open U for
which DU is an isomorphism. If m ∈ M − U , then we can find an affine chart of
M that contains m. Lemma 11.3 and the first part then show that DU∪Rn is also
an isomorphism. Zorn’s Lemma gives the result. �

Proof of Lemma 11.3. There are two things we have to prove: exactness and
the commutativity of the resulting diagrams.

Exactness and the rows. The bottom row is just the Mayer-Vietoris sequence for
U ∪ V . For the top row, Exercise 11.1 below shows that the collection of compacts
of the form K ∪ L, where K ⊂ U,L ⊂ V are compact, give a cofinal system of
compacts in U ∪V . Similarly, all compacts of U ∩V are of the form K∩L. So in all
cases, the compactly supported cohomology is the direct limit over the compacts
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K ⊂ U,L ⊂ V . We have a Mayer-Vietoris sequence in cohomology associated to
(M,M −K) ∪ (M,M − L):

. . . Hk
(
M,M − (K ∩ L)

)
Hk(M,M −K)⊕Hk(M,M − L)

Hk
(
M,M − (K ∪ L)

)
Hk+1

(
M,M − (K ∩ L)

)
. . .δ

Excision gives isomorphisms

Hk(U ∩ V,U ∩ V −K ∩ L) ∼= Hk
(
M,M − (K ∩ L)

)
,

Hk(U,U −K)⊕Hk(V, V − L) ∼= Hk(M,M −K)⊕Hk(M,M − L).

Taking the direct limit over K ⊂ U,L ⊂ V then gives us the desired long exact
sequence.

Commutativity of the squares. Since the top row is the direct limit along the com-
pacts K ⊂ U,L ⊂ V , it suffices to show that the squares commute for any particular
pair of compacts. We therefore have 4 different squares to show that they commute.
The squares involving maps that do not shift degree are all the same: we show the
first one here.

Proposition 11.5. Let K ⊂ U,L ⊂ V be compacts. Then we have a commutative
square

Hk
(
U ∩ V,U ∩ V − (K ∩ L);R

)
Hk(U,U −K;R)

Hn−k(U ∩ V ;R) Hn−k(U ;R).

−_[µK∩L]
(
−_[µK ]

)

Proof. Consider the following inclusions of pairs:

(U ∩ V,U ∩ V −K ∩ L)
iUU∩V−−−→ (U,U −K ∩ L)

iU−K∩LU−K←−−−−− (U,U −K).

Excision shows that the map (iUU∩V )∗ is an isomorphism. The top map is therefore
the composite

(iU−K∩LU−K )∗ ◦
(
(iUU∩V )∗

)−1
,

and we can insert a phantom Hk(U,U −K ∩ L;R) between the two groups at the
top. It is convenient to start with this group and trace around.

The bottom map in the square is just (iUU∩V )∗.
We now compute. Let ϕ̄ ∈ Hk(U,U −K ∩ L;R). Going left, we have

(iUU∩V )∗
(
µU∩VK∩L _ (iUU∩V )∗ϕ̄

)
= (iUU∩V )∗µ

U∩V
K∩L _ ϕ̄ = (∗),

by the push-pull formula. By the usual “uniqueness” argument, we have

(iUU∩V )∗µ
U∩V
K∩L = µUK∩L,

since they have the same restrictions to points in K ∩ L (as always, by excision).
We then have

(∗) = µUK∩L _ ϕ̄.

Going instead around the right, we have

µUK _ (iU−L∩KU−K )∗ϕ̄ = (iU−L∩KU−K )∗(µ
U
K∩L _ (iU−K∩LU−K )∗ϕ̄ = µUK∩L _ ϕ̄,

giving the result. �



36 INCOMPLETE AND UPDATING!

Commutativity involving δ and ∂ is trickier. Recall that to compute δ, we write
a relative cohomology class

[ϕ] ∈ Hk
(
M, (M −K) ∩ (M − L);R

)
as ϕM−L + ϕM−K , where each ϕM−? ∈ Ck(M,M−?;R). Then

δ
(
[ϕ]
)

=
[
δ(ϕM−L)

]
= −

[
δ(ϕM−K)

]
.

An almost identical formula is true for ∂. We now have a lengthy aside.
Since U − L, U ∩ V , and V −K mutually cover M = U ∪ V and are all open,

the inclusion map

C∗(U − L;R) + C∗(U ∩ V ;R) + C∗(V −K;R) ↪→ C∗(U ∪ V ;R)

is a quasi-isomorphism. We can therefore replace any class σ ∈ C∗(M ;R) with

σU−L + σU∩V + σV−K ,

where the subscripts indicate the chains on which space we have. Note that here we
are working with the absolute chains, where the Mayer-Vietoris sequence is easiest.
Since we want to compute ϕ _ −, where ϕ is a relative cycle, this is fine: ϕ _ −
will not see any of the classes we would kill for the relative case. Now since

σU−L ∈ C∗(U − L;R) ⊂ C∗(M − L;R),

we have

[σU∩V + σV−K ] = [σ] ∈ C∗(M,M − L).

We have obviously similar formulae for the other relative groups.
Let

σ = σU−L + σU∩V + σV−K ∈ Cn(M ;R)

be a class such that

[σ] ∈ Cn(M,M −K ∪ L;R)

represents µK∪L. By the above observations, and by the uniqueness of the classes
µ?, we have that

[σU∩V + σV−K ] = µL, [σU∩V ] = µK∩L, and [µU−L + σU∩V ] = µK .

Let [ϕ] ∈ Hk(M,M−K∪L;R) be represented by ϕM−L+ϕM−K . Then [µK∩L] _
δ[ϕ] is represented by

σU∩V _ δ(ϕM−L) = −σU∩V _ δ(ϕM−K).

By the boundary formula

∂(σU∩V _ φM−K) = (−1)k
(
(∂σU∩V _ ϕM−K − σU∩V _ (δφM−K)

)
,

the class [µK∩L] _ δ[ϕ] is also represented by (∂σU∩V ) _ ϕM−K .
Now we check the other direction.

[µK∪L] _ [ϕ] =
[
(σU−L+σU∩V +σV−K) _ ϕ

]
=
[
(σU−L _ ϕ)+

(
(σU∩V +σV−K) _ ϕ

)]
.

The first grouping is in Cn−k(U ;R), while the second is in Cn−k(V ;R). So the
boundary here is

∂
(
[µK∪L] _ [ϕ]

)
=
[
∂(σU−L _ ϕ)

]
.

Since ϕ is a cocycle, we have

∂(σU−L _ ϕ) = (−1)k(∂σU−L) _ ϕ.
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Now, ∂σU−L ∈ Cn−1(M − L;R), so ϕM−L vanishes identically on it. We therefore
deduce that

(−1)k(∂σU−L) _ ϕ = (−1)k
(
∂σU−K _ ϕM−K

)
.

Now, [σU−L + σU∩V ] ∈ Cn(M,M −K;R) is a cycle (since it represents µK), so

∂(σU−L + σU∩V ) ∈ Cn−1(M −K;R).

Since ϕM−K vanishes on these,

(−1)k(∂σU−L _ ϕM−K) = (−1)k+1(∂σU∩V _ ϕM−K),

as desired.

11.1. Exercises.

Exercise 11.1. If U and V are locally compact, then show that the compact subsets
of the form K ∪L, where K ⊂ U and L ⊂ V are compact form a cofinal subsystem
of all compact subsets of U ∪ V . (Hint: first think of the case that U and V are
themselves σ-compact).

Exercise 11.2 (Hatcher, 3.3.34). For a compact manifold M , verify the following
diagram relating Poincaré duality for (M,∂M) and ∂M is commutative:

Hk−1(∂M ;R) Hk(M,∂M ;R) Hk(M ;R) Hk(∂M ;R)

Hn−k(∂M ;R) Hn−k(M ;R) Hn−k(M,∂M ;R) Hn−k−1(∂M ;R).

δ

[∂M ]_− [M ]_− [M ]_− [∂M ]_−

12. Applications of Orientability & Poincaré duality

Our first application is really one of orientability.

Theorem 12.1. Let M be a closed, compact, n-manifold.

(1) If M is Z-orientable, then Hn−1(M ;Z) is torsion free.
(2) If M is not Z-orientable, then

Hn−1(M ;Z) ∼= Z/2⊕ (torsion free).

Proof. We use the Universal Coefficients for Homology: there is a natural short
exact sequence (unnaturally split)

(5) 0→ Hn(M ;Z)⊗ Z/p→ Hn(M ;Z/p)→ Tor(Hn−1(M ;Z), Z/p)→ 0.

If M is Z-orientable, then M is Z/p-orientable for all primes p. Theorem 10.14 then
says that

Hn(M ;Z) ∼= Z and Hn(M ;Z/p) ∼= Z/p.
Plugging these into Equation 5 shows then that

Tor
(
Hn−1(M ;Z),Z/p

)
= 0.

The standard projective resolution

· · · → 0→ Z p−→ Z→ Z/p

shows that for any abelian group A, we have a natural isomorphism

Tor(A,Z/p) ∼= {a ∈ A | p · a = 0}.
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We therefore conclude that we have no p-torsion in Hn−1(M ;Z) for any p, and
hence it is torsion free.

If M is not Z-orientable, then it is not orientable for any Z/p with p odd. Since
there are no 2-torsion points in Z or Z/p for p odd, Theorem 10.14 says that

Hn(M ;Z) ∼= Hn(M ;Z/p) ∼= 0.

Plugging this into Equation 5 again shows that

Tor
(
Hn−1(M ;Z),Z/p

)
= 0,

so we again have no p-torsion for odd p.
Every manifold is Z/2-orientable, and moreover, the simple 2-torsion points of

Z/2k is also a copy of Z/2, so Theorem 10.14 gives

Hn(M ;Z/2k) ∼= Z/2.

Equation 5 then shows that for all k,

Tor
(
Hn−1(M ;Z),Z/2k

) ∼= Z/2.

The same argument as above says that this Tor group is the points of order dividing
2k, so we conclude that the only 2-torsion is a Z/2. Since there is no odd torsion,
this completes the proof. �

Example 12.2. Let p be an odd prime, and let µp ⊂ S1 be the subgroup of pth roots
of unity. This acts freely (and properly discontinuously) on S(Cn) = S2n−1, so the
orbits are a manifold Ln−1

p . This description identifies µp with the fundamental

group of Ln−1
p for all n > 1, so we deduce that

H1(Ln−1
p ;Z) ∼= Z/p.

Cellular homology shows the the homology is very similar to projective space:

Hk(Ln−1
p ;Z) ∼=


Z k = 0, 2n− 1

0 keven or > 2n− 1

Z/p k = 2j − 1, 1 ≤ j ≤ n.

Of course, since π1 has no index 2 subgroups, Proposition 10.6 implies this is ori-
entable3 and Theorem 10.14 then gives that the top homology group is Z.

As an immediate consequence, we see that the 2k-skeleton of Ln−1
p can never be

a manifold: the codimension 1 homology has p-torsion. If p = 2, this is of course
different: there L2k

2 is just RP 2k is a manifold, but it is not orientable.
Working modulo p, Universal Coefficients shows that

Hk(Ln−1
p ;Z) ∼=

{
Z/p 0 ≤ k ≤ 2n− 1

0 otherwise.

Let x1 generate H1 and y2 generate H2. By graded commutativity,

x2
1 = −x2

1 = 0.

By induction on n, together with the Cup Product form of Poincaré Duality then
gives the ring structure:

H∗(Ln−1
p ;Z/p) ∼= E(x1)⊗ Z/p[y2]/yn2 .

3which also follows here from being a quotient of the unit sphere in Cn
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Exercise 12.1. Compute the cellular homology groups of Ln−1
p . (Hint: describe a

µp-equivariant cell structure of S2n−1).

We can also use the Cup Product form to get an amusing structure result about
manifolds.

Proposition 12.3. If M is a closed, connected, compact n-manifold and M ' ΣY ,
then H∗(M ;Z) ∼= H∗(S

n;Z).

For this, we need a small lemma about the cup product.

Lemma 12.4. If X = A∪B with A and B open and contractible, then for i, j > 0,
the cup product map

Hi(X;R)⊗R Hj(X;R)→ Hi+j(X;R)

is automatically zero.

Proof. Consider the diagram given by naturality of the cup product and the various
inclusions

Hi(X,x;R)⊗R Hj(X,x;R) Hi+j(X,x;R)

Hi(X,A;R)⊗R Hj(X,B;R) Hi+j(X,A ∪B;R) = 0.

∪

∪

∼=

Since A and B are contractible, we have by the long exact sequence for the triple
(X,−, ∗) that the left vertical map is an isomorphism for all i and j. Naturality
of the cup product then shows that the cup product of any two relative classes in
(X,x) factors through zero. The assumption on i and j implies that the relative
and absolute cases agree here. �

Remark 12.5. The “cup length” of a space is the length of the longest sequence
of elements in non-zero degree for which the cup product is non-zero. Lemma 12.4
shows that if X is covered by 2 contractible open sets, then the cup length is 1.
More generally, if X is covered by n contractible open sets, then the cup length is
at most (n− 1).

Proof of Proposition 12.3. Lemma 12.4 shows that all cup products in M vanish
for any coefficients. The Cup Product form of Poincaré duality shows that if we
have any cohomology between degrees 0 and n exclusive, then there must be a
corresponding dual class that cups with it to get a generator of Hn(M ;F ) for all
fields F for which M is orientable. Applying this to F = Z/2, we deduce that
M has no cohomology with coefficients in Z/2 between degrees 0 and n exclusive,
and hence no homology there. In particular, we have no Hn−1(M ;Z/2), which
means that M is orientable for Z. The same argument then shows that we have no
homology with any finite coefficients or Q between 0 and n exclusive. �
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Part 3. Homotopy Theory

13. Homotopy Co-exactness

We now turn to the study of homotopy groups. Recall the construction of the
mapping cone from Lecture ??. There is an obvious notion for pairs of spaces.

Definition 13.1. Let f = (f0, f1) : (X,A) → (Y,B) be a map of pairs. The map-
ping cone of f is the pair (Cf0, Cf1).

By construction, and by the arguments from Lecture ??, we have an identification
of the maps out of the mapping cone.

Proposition 13.2. Let (f0, f1) : (X,A) → (Y,B) be a map of pairs. Then a map
of pairs (Cf0, Cf1)→ (Z,D) is a pair:

(1) g : (Y,B)→ (Z,D).
(2) A nullhomotopy G of g ◦ f0 restricting to a nullhomotopy of g ◦ f1.

Definition 13.3. A sequence of pairs of spaces

(X,A)
f−→ (Y,B)

g−→ (Z,C)

is coexact if for all pairs (W,D), we have an exact sequence of points sets:[
(X,A), (W,D)

] f∗←−
[
(Y,B), (W,D)

] g∗←−
[
(Z,C), (W,D)

]
.

“Exact” here means Im(g∗)(f∗)−1(0).

The following is a restatement of Proposition 13.2. This is an extremely impor-
tant example that will motivate much of what we do.

Theorem 13.4. Let f = (f0, f1) : (X,A) → (Y,B) be a map of pairs. Then the
sequence

(X,A)
f−→ (Y,B)

i−→ (Cf0, Cf1)

is coexact.

Corollary 13.5. If f = (f0, f1) : (X,A)→ (Y,B) is a map of pairs, then we have
a long coexact sequence

(X,A)
f−→ (Y,B)

i−→ (Cf0, Cf1)
j−→ (Ci0, Ci1)

f1

−→ (Cj0, Cj1)
i1−→ (Cf1

0 , Cf
1
1 )→ . . .

This is just a repeated application of Theorem 13.4. Every sequence three term
sequence is a direct application of Theorem 13.4. We want to rewrite this in a
more useful form. In particular, we would like to be able to identify the spaces
(C(−)k0 , C(−)k1) without having to describe all of the previous ones. Moreover, we
would like extra structure here. Recall that the space Y is “nicely embedded” in the
space Cf0 (). Here we again mean that we have a neighborhood that deformation
retracts back onto Y . This is a more homotopically robust condition, and we expand
on that slightly.

Definition 13.6. A pair (X,A) has the homotopy extension property if for all
spaces Y and for all pairs of maps

(1) f : X → Y and
(2) F : A× I → Y such that F (a, 0) = f(a) for all a ∈ A,

then there is a map F̃ : X × I → Y such that F̃ (x, 0) = f(x) for all x ∈ X and

F̃ (a, t) = F (a, t) for all (a, t) ∈ A× I.
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If A is closed in X, then we can combine the continuous map A × I → Y and
X → Y to get a map

F̂ : X ∪A A× I := X × {0} ∪A×{0} A× I → Y.

Proposition 13.7. A pair (X,A) with A closed in X has the homotopy extension
property if and only if X ∪A A× I is a retract of X × I.

Proof. Assume (X,A) has the homotopy extension property. If we take Y = X ∪A
A× I and F̂ to be the identity, then the homotopy extension property gives us an
extension

X × I r−→ X ∪A A× I,

extending the identity. This is the retraction.
Now assume that r : X × I → X ∪A A × I is a retraction. Since A is closed in

X, a map

F̂ : X ∪A A× I → Y,

is the same data as that in Definition 13.6. Our of this, we can form F̂ ◦r : X×I →
Y . This is the desired extension. �

Exercise 13.1. If A is any space, then show that (CA,A) has the homotopy ex-
tension property. (Hint: what does a map out of CA mean).

Since I is compact (and hence locally compact) and Hausdorff, we have for any
spaces X and Y a natural homeomorphism

Map(X × I, Y ) ∼= Map
(
X,Map(I, Y )

)
,

where here we endow all of the mapping spaces with compact open topology. We
can use this to rewrite the conditions of the homotopy extension property.

(6)

A Y I

X Y,

F

ev0

f

F̃

where here ev0 is the map which sends a path γ : Y I → Y to γ(0).
This has an added advantage that we can restate this in terms of just the map

A→ X.

Definition 13.8. A map A → X is a cofibration if for every space Y and for
every solid diagram in Equation 6, the dashed map exists.

This reformulation allows us to use more categorical constructions.

Lemma 13.9. Cofibrations are closed under pushouts. If A → X is a cofibration
and g : A→ B is any map, then B → X ∪A B is a cofibration.



42 INCOMPLETE AND UPDATING!

Proof. Let Y be a space, and assume given map F : B → Y I and f : X∪A → Y
making a commutative square. We can extend this to a commutative diagram

A B Y I

X X ∪A B Y

g

G

F

ev0

f̃

G̃

f

F̃

The map G̃ exists making the solid diagram commute by applying the definition to
the curved arrows. The map F̃ then exists making the solid diagram commute by
the universal property of the pushout. �

Corollary 13.10. If f : X → Y is continuous, then i : Y → Cf is a cofibration.

Proof. The map i is the pushout of the map X ↪→ CA along X → Y . By Exer-
cise 13.1 and Lemma 13.9, we have that this is a cofibration. �

Corollary 13.11. If f : X → Y is continuous and i : Y → Cf is the inclusion of
Y into the mapping cone, then CY → Ci is a cofibration.

Proof. The map is the pushout of i along the inclusion Y ↪→ CY . Corollary 13.10
and Lemma 13.9 then give the result. �

Theorem 13.12. If (X,A) has the homotopy extension property and A ' ∗, then
the canonical quotient map q : X → X/A is a homotopy equivalence.

Proof. Let F : A × I → A be a homotopy between the identity map of A and the
constant map at the basepoint. Then viewing this as a map A × I → X via the
inclusion A ↪→ X, we get a map

F̂ : X ∪A A× I → X.

Since (X,A) has the homotopy extension property, we can find an extension F̃ : X×
I → X. Let p(x) = F̃ (x, 1). By construction, for all a ∈ A, p(a) = ∗. In particular,
p descends to a map

p̄ : X/A→ X.

Note that p̄ ◦ q = p, so by construction, p̄ ◦ q ' IdX . For the other direction, note
that since F took all of A×I back to A, q◦F̃ descends to a map X/A×I → X/A. By
construction, it is a homotopy q ◦ p̄ ' IdX/A, and these are homotopy inverses. �

Since CY is contractible, we can apply Theorem 13.12 to Corollary 13.11.

Corollary 13.13. If f : X → Y is continuous and i : Y → Cf is the inclusion of
Y into the mapping cone, then we have a homotopy equivalence

Ci ' ΣX = Ci/CY = Cf/Y.

Everything done so far obviously applies to pairs. This gives us a reformulation
of the Puppe sequence.

Theorem 13.14. Let f : (X,A) → (Y,B) be continous. Then we have a long
co-exact sequence

(X,A)
f−→ (Y,B)

i−→ (Cf0, Cf1)
j−→ (ΣX,ΣA)

Σf−−→ (ΣY,ΣB)
Σi−→ (ΣCf0,ΣCf1)→ . . .
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14. co-H-spaces

At the end of the last lecture, we saw that all of the spaces after the first 3 in
the Puppe sequence are suspensions. This gives us extra structure on the natural
exact sequences of maps out of these.

Definition 14.1. A co-H-space4 is a pointed space X together with maps

µ : X → X ∨X and ι : X → X

such that the following diagrams commute in the homotopy category:

(7)

X X ∨X,

X ∨X X ∨X ∨X

µ

µ Id∨µ

µ∨Id

(8)

X

X X ∨X X

µ

ε∨Id Id∨ε

(9)

X X ∨X X ∨X

∗ X

µ

ε

Id∨ι

∇

X X ∨X X ∨X

∗ X

µ

ε

ι∨Id

∇

Here the map ε is the canonical map to a point, and the unlabeled map is the
inclusion of the basepoint. The map ∇ is the fold map.

The map µ is the comultiplication, the map ι is the cöınversion.
A co-H-space X is cocommutative if moreover

(10)

X X ∨X

X ∨X,

µX

µX
τ

where τ is the twist map interchanging the two summands.

These form a category, with the obvious notion of a homomorphism.

Definition 14.2. Let X and Y be co-H-spaces. A continuous map f : X → Y is a
homomorphism if

(f ∨ f) ◦ µX ' µY ◦ f and f ◦ ιX ◦ ιY ◦ f.

The axioms are most easily understood in their dual form. The wedge is the
coproduct in pointed spaces and in the homotopy category of points spaces:

Map∗(X ∨ Y,Z) ∼= Map∗(X,Z)×Map∗(Y, Z) and [X ∨ Y,Z] ∼= [X,Z]× [Y,Z].

This gives us another way to interpret the axioms.

4the “co” here is in the category theory sense, while H stands for “Hopf”
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Proposition 14.3. If X is a co-H-space, then for any pointed space Y , the set

X(Y ) := [X,Y ]

is a group, with multiplication given by

[X,Y ]× [X,Y ] ∼= [X ∨X,Y ]
µ∗−→ [X,Y ],

and with inversion given by ι∗.
If f : Y → Z is any continuous map, then

f∗ : [X,Y ]→ [X,Z]

is a group homomorphism

Proof. Since pre- and post-composition commute, the second part follows immedi-
ately from the first. For the first, note that associativity is recorded by Equation 7,
that the unit condition is exactly recorded by Equation 8, and Equations 9 shows
that ι∗ is a two sided inverse. �

Exercise 14.1. Verify the claims in the proof of Proposition 14.3. You may find
it helpful to dualize the axioms for a coH-space and write the axioms for a group
object in a category.

Remark 14.4. The assignment Y 7→ [X,Y ] gives a covariant functor from spaces
to pointed sets. Since this is given by the Homs in the category out of a fixed object
X, this is a “representable” functor. The Yoneda Lemma can be used to show that
if this functor has a lift to a functor from spaces to groups, then X must be a
co-H-space.

Example 14.5. The space S1 is a co-H-space. Here, the comultiplication is just

S1 7→ S1/{±1} ∼= S1 ∨ S1,

and the cöınversion is z 7→ z̄ (in both, we have viewed S1 ⊂ C).

Remark 14.6. Proposition 14.3 can be used to deduce that [S1, X] has a natural
group structure for any space X: this is the fundamental group.

Proposition 14.7. Let X be a co-H-space and let Y be any pointed space. Then
the maps

µX∧Y := µX ∧ IdY and ιX∧Y := ιX ∧ IdY
make X ∧ Y into a co-H-space.

If f : Y → Z is any continuous map, then IdX ∧ f is a homomorphism.

In this, we of course also use the canonical distributivity isomorphism

(X ∨X) ∧ Y ∼= (X ∧ Y ) ∨ (X ∧ Y ).

Exercise 14.2. Prove Proposition 14.7.

Remark 14.8. If Y is locally compact and Hausdorff, then we can use the Yoneda
form of a co-H-space. We have a natural isomorphism of functors of Z:

[X ∧ Y,Z] ∼= [X,Map(Y,Z)].

The co-H-space structure on X endows the right-hand side with a canonical group
structure for all spaces Z, so the left-hand side inherits one via this natural iso-
morphism.
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Combining Example 14.5 and Proposition 14.7, we immediately deduce a huge
amount of extra structure on the Puppe sequence. All of the spaces beyond the
first three terms are suspensions, and all of the maps are suspensions, so all of these
spaces are canonical co-H-spaces and the maps are homomorphisms. There is yet
more structure.

Definition 14.9. If X and Y are co-H-spaces, then X ∨ Y becomes a co-H-space
with comultiplication

X ∨ Y µX∨µY−−−−−→ (X ∨X) ∨ (Y ∨ Y )
IdX∨τ∨IdY−−−−−−−−→ (X ∨ Y ) ∨ (X ∨ Y ).

Lemma 14.10. Let X be a space and assume that X has 2 co-H-space structures
and that each is a homomorphism for the other. Then the two comultiplications
agree and are co-commutative.

Proof. Let µ and µ′ denote the two comultiplications. Our assumption is then that
we have a commutative diagram

X X ∨X

X ∨X X ∨X ∨X ∨X X ∨X ∨X ∨X

µ

µ′ µ′∨µ′

µ∨µ

µX∨X

Id∨τ∨Id

Equation 8 shows that we have

(ε ∨ IdX) ◦ µ ' (IdX ∨ ε) ◦ µ ' IdX
and identically for µ′.

We now compute

(11) µ = (IdX ∨ IdX) ◦ µ '
(
(IdX ∨ ε ∨ ε ∨ IdX) ◦ (µ′ ∨ µ′)

)
◦ µ

' (IdX ∨ε∨ε∨IdX)◦(IdX ∨τ ∨IdX)◦(µ∨µ)◦µ′ ' (IdX ∨ε∨ε∨IdX)◦(µ∨µ)◦µ′
' (IdX ∨ IdX) ◦ µ′ = µ′.

Using (ε ∨ IdX ∨ IdX ∨ ε) instead gives us that µ ' τµ′, which then gives cocom-
mutativity. �

Corollary 14.11. For any spaces X,Y and for any k ≥ 2, [ΣkX,Y ] is naturally
an abelian group. If f : X ′ → X and g : Y → Y ′, then f∗ and g∗ are maps of
abelian groups.

Putting this all together, we get a shocking amount of structure on the Puppe
sequence.

Theorem 14.12. If f : (X,A) → (Y,B), and if (Z,D) is any other pair, then we
have a long exact sequence

. . .
[
Σk(X,A), (Z,D)

] [
Σk(Y,B), (Z,D)

] [
Σk(Cf0, Cf1), (Z,D)

]
. . .

Σkf∗ Σki∗

when k ≥ 1, these are all groups and group homomorphisms; when k ≥ 2, these are
all abelian.

We have one last piece of structure here.
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Definition 14.13. Let X be a co-H-space, and let Y be a space. A coäction of
X on Y is a map

ν : Y → Y ∨X
such that the following diagram commutes up to homotopy

(12)

Y Y ∨X

Y ∨X Y ∨X ∨X.

ν

ν ν∨IdX

IdY ∨µ

A map of spaces coacted on by X is the obvious thing.

Remark 14.14. Equation 12 is the dual of the usual formula expressing the action
of a group on a set or space: this is encoding the [co]associativity. Hence we
naturally get an action when mapping out of these.

Proposition 14.15. Let X be a co-H-space that coacts on Y . Let Z be any other
space. Then the pointed set [Y,Z] has a natural action of the group [X,Z].

Proof. Apply [−, Z] to the diagram in Equation 12. �

Proposition 14.16. Let f : A → X be any map, and let C = Cf be the mapping
cone. Then the map

Cf → Cf/
(
A× {1/2}

) ∼= Cf ∨ ΣA

gives a coaction of ΣA on Cf .

Proof. The spaceX here really plays no role; we might as well actually show that the
map described gives a ΣA coaction on CA. We refer to the square in Equation 12.
Tracing along the top and the right, we get the map

CA→ CA/
(
A ∧ { 1

4 ,
1
2}+

)
.

Tracing along the left and bottom, we get the map

CA→ CA/
(
A ∧ { 1

2 ,
3
4}+

)
.

Rescaling the interval gives the desired homotopy between these. �

The fact that the proof of Proposition 14.16 took place far from the copy of X
also immediately gives us the following proposition.

Proposition 14.17. The map

Cf → ΣA

is a map of spaces coacted on by ΣA, where the coaction on ΣA is via µ itself.

Corollary 14.18. If f : (X,A)→ (Y,B) is continous, and (Z,D) is arbitrary then

(1) The map [
Σ(X,A), (Z,D)

] j∗−→
[
(Cf0, Cf1), (Z,D)

]
is a map of pointed

[
Σ(X,A), (Z,D)

]
-sets.

(2) The map [
(Cf0, Cf1), (Z,D)

]
→
[
(Y,B), (Z,D)

]
factors through the

[
Σ(X,A), (Z,D)

]
orbits.
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Proof. The first part is just Proposition 14.17 combined with Proposition 14.15.
For the second part, observe that the coaction takes place near the cone point of
Cf , and hence never impacts the restriction to the base. �

15. Homotopy Groups

Definition 15.1. If (X,A) is a pair then let

• πk(X,x) = [ΣkS0, X] for k ≥ 0 and
• πk(X,A, x) =

[
Σk−1(D1, S0), (X,A)

]
for k ≥ 1.

These are the homotopy groups of X and the relative homotopy groups of
(X,A) respectively.

The name is slightly misleading, but is almost always true.

Proposition 15.2. (1) For any pointed space X, the pointed sets πk(X,x) are
groups for k ≥ 1 and abelian groups for k ≥ 2.

(2) For any pair (X,A), the pointed sets πk(X,A, x) are groups for k ≥ 2 and
abelian for k ≥ 3.

Proof. Abelianness is immediate from Corollary 14.11. The group structure is
immediate from Propositions 14.7 and Example 14.5. �

Theorem 15.3. If (X,A) is any pair, then we have a natural long exact sequence

π0(X,x) π0(A, x) π1(X,A, x) π1(X,x) . . .
i∗ ∂ j∗

The maps i∗ and j∗ are induced by the obvious inclusions. The map ∂ is just the
restriction of a map of pairs (Dk, Sk−1)→ (X,A) to the map Sk−1 → A.

Proof. Apply the Puppe long exact sequence to the map of pairs

(S0, ∗) ↪→ (S0, S0).

The mapping cone of this is just (D1, S0). This gives the long exact sequence. Now
note that a map of pairs (Sk, ∗) → (X,A) is just a map Sk → X, while a map of
pairs (Sk, Sk)→ (X,A) is just a map Sk → A. �

In general, homotopy groups are extremely difficult to compute. We shall see
below that they are much more powerful than homology groups, however. We have
some basic results.

Theorem 15.4 (Jordan Curve Theorem). If k < ` then every map

Sk → S`

is null-homotopic.

Corollary 15.5. If k < ` then

πk(S`, s) = 0.

Definition 15.6. A pair (X,A) is n-connected if

(1) every path component of X intersects A and
(2) for every choice of basepoint a ∈ A and for every k ≤ n, πk(X,A, a) = 0.

One way we can restate Corollary 15.5 is that the pair (Sn, ∗) is (n−1)-connected.
This plus the long exact sequence gives us a result for disks.
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Proposition 15.7. For any n, the pair (Dn, Sn−1) is (n− 1)-connected.

Proof. Since Dn ' ∗ and since homotopy groups are obviously a homotopy invari-
ant, we know that for all k,

πk(Dn, ∗) = 0.

Corollary 15.5 shows that for k − 1 < n− 1

πk−1(Sn−1, ∗) = 0.

The long exact sequence from Theorem 15.3 squeeze πk(Dn, Sn−1, ∗) between these
two groups, giving the result. �

We can most directly tie these to obstruction theory.

Proposition 15.8. A class [F ] ∈ πk(X,A, x) is zero if and only if F 'S1 F ′,
where

F ′ : (Dk, Sk−1, ∗)→ (A,A, x).

Proof. If F represents 0 then F ' ∗ as a map of pairs. Choose such a null-homotopy.
This gives a map

H : Dk × I → X

such that H|Sk−1×I lands in A. In all cases, H(~v, 1) = x ∈ A. If we consider the
disks

Dk × {t} ∪ Sk−1 × [0, t],

then we see that our homotopy H can also be viewed as a homotopy relative to
Sk−1 of F to a map

H|Dk×{1}∪Sk−1×I : Dk → A.

For the converse, if F is homotopic relative to Sk−1 to a map (Dk, Sk−1, ∗) →
(A,A, x), then composing with a nullhomotopy of the identity of Dk shows F is
null. �

Corollary 15.9. The relative group πk(X,A, x) = 0 if and only if every map

(Dk, Sk−1)→ (X,A)

is homotopic relative to its boundary to a map with image in A.

Proposition 15.10. Let (X,A) be a relative CW-complex, and let (Y,B) be a
pair. If whenever (X,A) has an n-cell, we have πn(Y,B, y) = 0, then any map
(X,A)→ (Y,B) is homotopic relative to A to a map with image in B.

Proof. We proceed by induction on the skeleta. Assume we have already compressed
the (n− 1)-skeleton to B:

X [n−1] fn−1−−−→ B.

For each n cell eα of X, we have a characteristic map

(Dn, Sn−1)
eα−→ (X [n], X [n−1]),

and we can compose this with f to get an element in πn(Y,B, y). Since by assump-
tion this group is zero, we know that the composite f ◦ eα is homotopic relative to
the boundary Sn−1 to a map to B. Gluing these together for all of the n-cells, we
get a homotopy

f 'X[n−1] fn,

where now fn takes the n-skeleton of X to B. For an infinite complex, note that
our homotopies move only finitely many cells, so they transfinitely glue. �
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This gives us an absurdly strong result: the Whitehead Theorem.

Theorem 15.11 (Whitehead Theorem). If X and Y are connected CW-complexes,
then f : X → Y is a homotopy equivalence if and only if f∗ : πn(X,x)→ πn(Y, f(x))
is an isomorphism for all n.

If X ⊂ Y induces an isomorphism in homotopy groups, then X is a deformation
retraction of Y .

Proof. Since homotopy groups are a homotopy functor, the forward implication is
immediate: a homotopy inverse for f gives the inverse homomorphism.

For the other implication, CW-approximation allows us replace f with a cellular
map which is homotopic to it. In this case, the mapping cylinder of f is again a
CW complex, and the map X → Mf is a CW-inclusion. Since the map Mf → Y
is always a homotopy equivalence, it will suffice to show that X →Mf is. This is
essentially the statement of the second part, so we are reduced to proving that.

Now the long exact sequence of the pair (Theorem 15.3) shows that for all n,
the relative homotopy groups

πn(Y,X, x) = 0.

Applying Proposition 15.10 to the identity map (Y,X) → (Y,X) shows that the
identity map is homotopy equivalent, relative to X, to a map (Y,X) → (X,X).
This is exactly the statement that X is a deformation retraction of Y . �

16. Homotopy groups and fibrations

In general, computing πk is extremely difficult. There is a second case where we
have a long exact sequence, and this is extremely useful.

Definition 16.1. A map p : E → B is a [Serre] fibration if for all n and for any
solid diagram

In × {0} E

In × I B

f

p

F

F̃

the dashed arrow exists making the entire diagram commutative.
We say that a Serre fibration “has the homotopy lifting property” for the inter-

vals.

Remark 16.2. A map p : E → B is a Hurewicz fibration if we have the analogous
diagram but with In replaced with an arbitrary space.

Example 16.3. If X̃
p−→ X is a covering map, then it is a fibration.

Proposition 16.4. If A→ X is a cofibration and both A and X are “nice” (locally
compact, Hausdorff), then for any space B, the induced map

BX
i∗−→ BA

is a fibration.
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Proof. Consider the solid diagram

In BX

In × I BA.

f

i∗

H

G

Via the canonical adjunctions, the map f : In → BX is equivalent to In ×X f̂−→ B

is equivalent to X
f̄−→ BI

n

. Similarly, the map H is equivalent to a map H̄ : A →
(BI

n

)I . In particular, our diagram is equivalent to the diagram

A (BI
n

)I

X BI
n

.

H̄

i

f̄

Ḡ

Since A→ X is a cofibration, the map Ḡ exists, and unpacking, this gives the map
G making the first diagram commute. �

Just as with cofibrations, the diagramatic description gives us a way to deduce
certain closure properties.

Proposition 16.5. If p : E → B is a fibration and f : X → B is any map, then

p′ = f∗(p) : X ×B E → X

is a fibration.

Proof. Exercise 16.1. �

Exercise 16.1. Prove Proposition 16.5.

Definition 16.6. Let b ∈ B, and let

P (B, b) = {γ : I → B | γ(0) = b} ⊂ Map(I,B)

be the space of paths in B based at b.

Corollary 16.7. For any b ∈ B, the evaluation map ev1 : P (B, b)→ B is a fibra-
tion.

Proof. The map {0, 1} → I is a cofibration, and so the dual map

BI → B{0,1} ∼= B ×B

is a fibration by Proposition 16.4. The map ev1 is the pullback of this along the
map B → B×B given by x 7→ (b, x), and hence Proposition 16.5 give the result. �

Exercise 16.2. Give a direct proof that the based path space gives a fibration by
describing the lift of a homotopy.

Serre fibrations actually have lifts along a much broader collection of spaces. We
can lift over any CW-complex.
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Proposition 16.8. If K is a finite CW complex and p : E → B is a Serre fibration,
then we can complete any solid diagram

K E

K × I B.

p

More generally, if (X,A) is a relative CW-complex, then we can complete any
solid diagram

X × {0} ∪A× I E

X × I B.

f

p

H

H̃

Proof. Taking A = ∅ in the second part gives the first, so we prove the second. For
this, observe that when (X,A) = (Dn, Sn−1), then there is a lift, since we have a
homeomorphism of pairs

(Dn × I,Dn × {0} ∪ Sn−1 × I) ∼= (In × I, In × {0})
given by unwrapping the disk along the cylinder. For the general case, we induct
over the cells. The base case is the “(−1)-skeleton”, which is A itself. Here, the
statement is immediate, since we have given ourselves the extension over A× I.

Assume now that we have built our extension over the (n − 1)-skeleton. This
gives us a map

fn−1 : X × {0} ∪X [n−1] × I → E

lifting H. We therefore have a solid diagram

X × {0} ∪X [n−1] × I E

X × {0} ∪X [n] × I B.

fn−1

p

H

H̃

Restricting to each n-cell in X [n] then gives us a diagram

Dn × {0} ∪ Sn−1 × I E

Dn × I B,

fn−1◦eα

p

H◦eα

H̃

and here we have a lift by the above homeomorphism. Gluing these together gives
the lift

fn : X × {0} ∪X [n] × I → E.

�

We now come to by far the most useful property of fibrations: the long exact
sequence in homotopy.

Theorem 16.9. Let p : E → B be a fibration, and let E be pointed by e and B be
pointed by b = p(e). If A ⊂ B, then p∗ induces an isomorphism

p∗ : πk(E, p−1A, e)→ πk(B,A, b).
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Proof. Both parts follow from homotopy lifting.
Let F : (Dn, Sn−1)→ (B,A) be a pointed map. IgnoringA, the map F : Dn → B

is homotopic to cb, the constant map at b. Let H : Dn × I → B be a homotopy
from cb to F . This gives us a solid diagram

Dn × {0} E

Dn × I B.

ce

p

H

H̃

Since p is a fibration, the map H̃ : Dn × I → E exists, lifting H. Let F̃ = H̃(−, 1).
By construction,

p ◦ F̃ = F,

so in particular, we deduce first that

F̃ (Sn−1) ⊂ p−1(A)

and then that [F̃ ] ∈ πn(E, p−1A, e) maps to [F ] under p∗.
For injectivity, let F̄ : (Dn, Sn−1)→ (E, p−1A) be such that p◦ F̄ represents zero

in πn(B,A, b). Proposition 15.8 then says that the map p◦ F̄ is homotopic (relative
to Sn−1) to a map F : (Dn, Sn−1)→ (A,A). Let H be such a homotopy. We then
have a solid diagram

Dn × {0} E

Dn × I B,

F̄

p

H

H̄

and since p is a fibration, the map H̄ exists. If we let F̃ = H̄(−, 1), then we know

that p ◦ F̃ = F . In particular, for all z ∈ Dn, F̃ (z) ∈ p−1(A), and hence F̄ is
homotopic to a map which takes all of Dn into p−1A. Proposition 15.8 again shows
that this is zero. �

Corollary 16.10. If F = p−1(b) is the fiber at b ∈ B, then we have a long exact
sequence

· · · → πk(F, e)
i∗−→ πk(E, e)

p∗−→ πk(B, b)
∂−→ πk−1(F, e)→ . . . .

Proof. This is the long exact sequence for the pair (E,F ), where using Theo-
rem 16.9, we replace the relative homotopy group with the absolute homotopy
group of the base. �

17. Base-points and π1 actions

In class, the question was asked “Why do we not just consider higher homotopy
groupoids rather than the higher homotopy groups?” This is a great question,
and it allows us to talk about the action of the fundamental group on the higher
homotopy groups and also on the fibers in a fibration.

To describe the groupoid action, we fix some notation. Let Dn
2 denote the disk

of radius 2 in Rn, and let Dn → Dn
2 denote the obvious inclusion.
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Definition 17.1. Let γ : I → X be a path from x1 to x2. Let [f ] ∈ πk(X,x2) be
represented a map f : Sk → X, which we view as a map Dk → X which takes Sk−1

to x2. Now let
γ∗
(
[f ]
)

: (Dk
2 , S

k−1)→ (X,x1)

be the map which is f on Dk, and on closure of the complement

Dk
2 −Dk

∼= Sk−1 × I qI−→ I
γ−→ X.

On the intersection Sk−1 ⊂ Dk, these maps are both constant at x2, and hence
glue.

This gives a functorial homomorphism.

Theorem 17.2. The construction [f ] 7→ γ∗
(
[f ]
)

gives a homomorphism

γ∗ : πk(X,x2)→ πk(X,x1).

If γ = γ1 · γ2, then
γ∗ = γ1∗ ◦ γ2∗.

Proof. We first note that the map γ∗ is well-defined. All of our homotopies defin-
ing πk(X,x) are defined relative to the basepoint. In particular, if we have two
representatives, f, f ′, of the same homotopy class, then there is a homotopy

Dk × I → X

between them which takes all of Sk−1 × I to the basepoint. We can then just glue
this homotopy to the constant homotopy on the complementary annulus, showing
that this did not depend on f but rather only on its homotopy class.

To show that this is a homomorphism, we slightly recast the addition yet again.
Radial projection gives a homeomorphism of pairs (In, ∂In) ∼= (Dn, Sn−1). The
addition is then given by observing that we have a homeomorphism

In ∪In−1 In ∼= In,

where the In−1 embeds in as In−1 × {1} in the first summand and as In−1 × {0}
in the second. Since all of ∂In is sent to the basepoint under all of the maps (by
assumption), these maps glue. On every face, we can glue a copy of I, along which
we run γ. This gives us γ∗(f1 + f2). A choice of null-homotopy of γ · γ−1 gives a
homotopy between γ∗(f1 + f2) and the map γ∗(f1) + γ∗(f2).

Functoriality is immediate from considering instead a disk of radius 3 for the
construction of γ∗. �

Proposition 17.3. When k = 1, this gives us the conjugation action of π1 on
itself.

There is a similar construction and similar results for the relative homotopy
groups.

Definition 17.4. Let γ : I → A be a path from a1 to a2. If f : (Dn, Sn−1) →
(X,A), then concatinating with γ gives a map

γ∗(f) : (Dn
2 , S

n−1)→ (X,A).

Proposition 17.5. The assignment γ 7→ γ∗ gives an action of π1(A, a) on πk(X,A, a)
for any basepoint a ∈ A.

In fact, the entire long exact sequence for the pair is natural for the action of
π1(A, a).
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17.1. Fiber Bundles. We can actually do all of this in families, which gives us
information about the fibers in a fibration.

Definition 17.6. Let p : E → B be a fibration. For each b ∈ B, let Fb = p−1(B)
be the fiber over b.

Theorem 17.7. Let p : E → B be a fibration such that each of the fibers Fb are
CW complexes. Then the assignment

b 7→ Fb

extends to a contravariant functor from the fundamental groupoid of B to the ho-
motopy category of CW complexes.

Proof. Let γ : I → B be a path, starting at b0 and ending at b1. Composing γ with
the projection Fb0 × I → I gives a map γ̂ which fits into a commutative diagram

Fb0 E

Fb0 × I B,

p

γ̂

γ̄

where Fb0 → E is the natural inclusion. Since Fb0 is a CW complex and E → B is
a fibration, we know that the map γ̄ exists. Since this is a lift of γ, we have

γ̃ := γ̄(−, 1) : Fb0 → Fb1 .

These visibly glue.
Now if γ ' γ′, then choose a homotopy H realizing this. Note also that we have

a homeomorphism of pairs

(I2, I × {0}) ∼= (I2, {0, 1} × I ∪ I × {0}).
The natural inclusion of Fb0 into E together with the maps γ̃ and γ̃′ give us a map

Fb0 × ({0, 1} × I ∪ I × {0})→ E,

which fits into a commutative square with the homotopy H:

Fb0 × ({0, 1} × I ∪ I × {0}) E

Fb0 × I × I B.

p

H

H̄

We know that the map H̄ exists, as before, so this gives a homotopy between γ̃ and
γ̃′. �

Corollary 17.8. If p : E → B is a fibration such that all fibers have the homotopy
types of CW complexes, then all of the fibers in a particular path component are
homotopy equivalent.

Proof. Given two points in the path component, functoriality is exactly the state-
ment that the induced map γ̃ is an isomorphism in the homotopy category. �

Corollary 17.9. Let b ∈ B and let p : E → B be a fibration such that all fibers are
CW complexes. Then π1(B, b) acts on F in the homotopy category.

Definition 17.10. We say that p : E → B is simple if the action of π1(B, b) on
the fiber is trivial in the homotopy category.
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Part 4. Spectral Sequences

18. Filtrations and Spectral Sequences

The concept of a filtration is fundamental in algebraic topology. By filtering
away any confusing or difficult aspects of a computation, we can reduce it to a
series of less complicated steps. This is recorded in a spectral sequence.

Definition 18.1. An increasing filtration on M is a collection of submodules
F iM , i ∈ Z, such that if i < j, then

F iM ⊂ F jM.

A decreasting filtration on M is a collection of submodules FiM , i ∈ Z such that
if i < j, then

FiM ⊃ FjM.

Definition 18.2. If M and M ′ are filtered modules, then a homomorphism of
filtered modules is a homomorphism f : M →M ′ such that for all i ∈ Z, we have

f
(
F iM

)
⊂ F iM ′.

Remark 18.3. We can view a filtration as a functor from the poset Z to the cate-
gory of R-modules and injective maps. The decreasing filtrations are contravariant
functors, so one can make all of the analogous definitions there. Because of this, it
is obvious what we mean by filtered objects in other categories.

We have two extremal cases:

F−∞M =
⋂
i∈Z

F iM and F∞M =
⋃
i∈Z

F iM.

Definition 18.4. An increasing filtration is Hausdorff if F−∞M = 0.
An increasing filtration is exhaustive if F∞M = M .

Example 18.5. Let M be a module, and let r ∈ R be an element. Define the
r-Bockstein filtration by

F iM =

{
M i ≥ 0

Im
(
r−i · (−)

)
i ≤ 0.

The most important part of a filtration is the associated graded, where we ap-
proximate any M by simpler modules.

Definition 18.6. If M is a filtered module, then for each i ∈ Z, let

Gri(M) := F iM/F i−1M.

This gives a graded modules, the associated graded.

Example 18.7. If M is a finitely generated free abelian group, and if p ∈ Z is
prime, then the associated graded for the p-Bockstein filtration is

GriM =

{
M ⊗ Z/p i ≤ 0

0 i > 0.

In particular, these are all Z/p-vector spaces.
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Proposition 18.8. If f : M → M ′ is a map of filtered modules, then f induces a
homomorphism

Gr∗(f) : Gr∗(M)→ Gr∗(M
′).

Proof. By assumption, f induces homomorphisms:

F iM F iM ′

F i−1M F i−1M ′.

f

f

⊂ ⊂

The universal property of the quotient then gives the desired map Gri(f). �

Definition 18.9. A filtration on a chain complex C• is a sequence of subchain
complexes

F iC• ⊂ F i+1C• ⊂ · · · ⊂ C•.

Proposition 18.10. A filtered chain complex is a filtered graded abelian group
together with a map d of filtered graded abelian groups of degree −1 which satisfies
d2 = 0.

Proposition 18.11. If C• is a filtered chain complex, then Gr∗C• is a (bigraded)
chain complex with differential

d0 = Gr∗(d).

Proof. Since d is a map of filtered modules, it induces a map on associated gradeds.
The fact that it squares to zero is visibly unchanged, as is the fact that it is of degree
−1. �

It is important here to note that we have two degrees in the associated graded:

(1) a filtration degree (the i in GriCk), and
(2) the internal degree (the k in GriCk).

On the associated graded, the differential always drops the internal degree by 1 and
preserves the filtration.

Note that since we have inclusions of complexes F iC• → C•, we have a natural
filtration of the homology by:

F i
(
H(C•)

)
= Im

(
H(F iC•)

)
.

Warning 18.12. We have no reason to believe that H(Gr∗C•) ∼= Gr∗H(C•). A
spectral sequence allows us to deduce the latter from the former in good circum-
stances.

Here is an important example.

Example 18.13. Consider the complex

· · · → 0→ Z 2−→ Z→ 0→ . . . ,

and endow this with the 2-Bockstein filtration. The associated graded is the bigraded
complex

Gi,k =

{
Z/2 (i ≤ 0)&(k = 0, 1)

0 otherwise.
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The map d was multiplication by 2, so it gives zero on the associated graded. In
particular, the homology is the associated graded:

H(G∗,•) = G∗,•.

So we traded making the differential much simpler for having a much larger homol-
ogy.

Unpacking Example 18.13 a little more also shows us how we should fix this.
Let’s say that a class

[z] ∈ GriCk
is a d0-cycle. This means that for some lift z′ in F iCk, we have

d(z′) ∈ F i−1Ck−1 ⊂ F iCk−1.

We want to compose this with the canonical quotient to Gri−1Ck−1 to get a new
map, but here we run into well-definedness. First note that since we defined this
relative to d itself, we know that the image of this is a d-cycle, and hence the image
in Gri−1Ck−1 is a d0-cycle for any choice of lift.

If z0 is some other class that represents [z], then

z′ − z0 ∈ F i−1Ck,

and hence the difference between d(z′) and d(z0) in Gri−1Ck−1 is a boundary. In
particular, although our function was not well-defined as a map to cycles, it is
well-defined as a map to homology.

Definition 18.14. Let C• be a filtered chain complex. Let

E1
i,k = H

(
GriCk

)
,

and let

d1 : E1
i,k → E1

i−1,k−1

be the map

[z] 7→ [d(z)].

Since d is a differential, this gives us a new differential.

Proposition 18.15. If C• is a filtered chain complex, then (E1, d1) is a chain
complex.

We can continue the analysis from above, unpacking the cycles for first d1 and
then later ones. This gives our definition.

Definition 18.16. A spectral sequence is a collection of chain complexes (Er, dr)
(the pages) such that for all r, we have

Er+1 ∼= H(Er).

A map of spectral sequences is a collection of maps of chain complexes:

fr : Er1 → Er2

such that

H(fr) = fr+1.
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The spectral sequences which have historically been best studied are those which
arise as above. These are double graded in that each page is a bigraded complex.
Other natural examples are singly graded or have even more gradings! We reserve
flexibility here. In general, the procedure above takes a filtered differential graded
object (with some number of gradings), and returns a spectral sequence with one
more grading.

Warning 18.17. Many texts describe only homological or cohomological spec-
tral sequences, defining these as those for which the differentials dr shift the bigrad-
ing in the same way the Serre spectral sequence will. This often results in very
unnatural manipulations to force a spectral sequence in nature into this form! We
should instead remember that the filtration and internal degrees are often give to
us, and then we can choose how to grade everything in a way that makes the most
sense for our computations.

19. The Serre Spectral Sequence

The Serre spectral sequence is the primary tool for computing the cohomology of
the total space of a fibration. We should think of this as generalizing the Künneth
filtration, allowing us to handle “twisted” products as well.

Theorem 19.1 (Homological Serre Spectral Sequence). Let p : E → B be a fibra-
tion, as let F be the fiber over b ∈ B. Assume also that for all k ∈ N, the action of
π1(B, b) on Hk(F ;R) is trivial. Then we have a spectral sequence with

E2
p,q = Hp

(
B;Hq(F ;R)

)
and converging to Hp+q(E;R).

The dr differential changes bidegree as:

dr : Erp,q → Erp−r,q+r−1.

There is also a cohomological version, which is more highly structured (reflecting
the additional structure on cohomology). Here we need a slight bit of terminology.

Definition 19.2. A spectral sequence of algebras is a spectral sequence (Er, dr)
such that

(1) for each r, Er is an algebra and dr is a derivation and
(2) for each r, the isomorphism Er+1

∼= H(Er) is an isomorphism of algebras.

Theorem 19.3 (Cohomological Serre Spectral Sequence). Let p : E → B be a
fibration, as let F be the fiber over b ∈ B. Assume also that for all k ∈ N, the
action of π1(B, b) on Hk(F ;R) is trivial. Then we have a spectral sequence of
algebras with

Ep,q2 = Hp
(
B;Hq(F ;R)

)
and converging to Hp+q(E;R).

The dr differential changes bidegree as:

dr : Ep,qr → Ep+r,q−r+1
r .

The multiplicative structure puts tremendous constraints on the spectral se-
quence.

Exercise 19.1. Let C• be a differential graded algebra. Show that the differential
is completely determined by its value on a collection of algebra generators.
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Note that in both cases, if we plot where the spectral sequence possibly has non-
trivial values, then we find that we only see groups in the 1st quadrant. Because of
these, these are sometimes called first quadrant spectral sequences. We can make
other observations as well.

Proposition 19.4. For each r, Er0,q is a quotient of H0

(
B;Hq(F ;R)

)
.

For each r, Ep,0r is a quotient of Hp
(
B;H0(F ;R)

)
.

Proof. The possible targets of any differentials originating from these groups are all
zero by assumption (they would land in those groups for which p or q is negative).
In particular, every element is a cycle for all differentials, and hence the homology
is just an iterated quotient. �

Proposition 19.5. For all (p, q), there is an r0 such that for all r > r0,

Erp,q
∼= Er+1

p,q
∼= . . . .

Proof. If r > p, then
dr : Erp,q → Erp−r,q+r−1 = 0,

and hence every element of Erp,q is a dr-cycle. Similarly, if r > q + 1, then

dr : 0 = Erp+r,q−r+1 → Erp,q,

and hence the only boundary in Erp,q is zero. Taking r0 to be anything greater
than p and q+ 1 then shows that every element of Erp,q is a cycle and that the only
boundary is zero, as desired. �

Definition 19.6. Let E∞p,q be the group Erp,q for r >> 0.

Nothing we used here depended on our use of homological rather than cohomo-
logical Serre Spectral Sequences, so they also work there with the obvious modifi-
cations.

Theorem 19.7. Let p : E → B be a fibration.

(1) There is a natural filtration of Hk(E;R) such that the associated graded is

Grp
(
Hk(E;R)

)
= E∞p,k−p.

(2) There is a natural filtration of Hk(E;R) such that the associated graded is

Grp
(
Hk(E;R)

)
= Ek−p,p∞ .

Remark 19.8. Proving this is a bit tricky, but describing the filtration is not.
Consider a CW decomposition of B: B =

⋃
B[k], and let

F kC∗(E;R) = C∗
(
p−1B[k];R

)
⊂ C∗(E;R).

The Serre Spectral Sequence is the spectral sequence associated to this filtration,
and the filtration on the homology of E is just the filtration by the images of the
homologies of the filtered pieces.

Let’s shift focus to consider how this works in practice. We have two basic kinds
of fibrations we most often consider:

(1) If X is a space with basepoint x, then P (X,x)
p=ev1−−−−→ X is a fibration with

fiber the based loop space of X: Ω1X.
(2) If H ⊂ G is a closed subgroup of a compact Lie group G, then G → G/H

is a fibration.
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Let X be a simply connected space. Then in the fibration

Ω1X → P (X,x)→ X,

the total space P (X,x) is contractible. We therefore know a huge amount of infor-
mation about its cohomology: it’s all zero except in degree 0.

Proposition 19.9. Let X be a simply connected space. Then in the Serre Spectral
Sequence for Ω1X → P (X,x)→ X, we have

E∞p,q = Ep,q∞ = 0

for all (p, q) 6= (0, 0), and is R if p = q = 0.

Proof. The only subgroups of the zero group are zero, so this gives the answer for
p+ q 6= 0. The final case is just the observation that for degree 0, the only groups
which can contribute are Er0,0. �

Since we have

Ep,q2 = Hp
(
X;Hq(Ω1X;R)

)
,

we know that everything has to cancel out via differentials. We can use this to
produce some very nice inductive results.

An example: loops on a sphere. Consider X = S3. Since π1S
3 = 0 (Corol-

lary 15.5), we know that we have a Serre Spectral Sequence of the form

Ep,q2 = Hp
(
S3;Hq(ΩS3;R)

)
.

We also know

H∗(S3;R) ∼= ER(x3),

for any ring R, where |x3| = 3. Since this is always free, the Künneth theorem gives
an isomorphism

H∗
(
S3;H•(ΩS3;R)

) ∼= ER(x3)⊗R H•(ΩS3;R),

where viewed bigradedly, x3 has bidegree (3, 0) and where anything in Hk(ΩS3;R)
has bidegree (0, k).

Now consider the cohomology groups of the fiber. Since the E∞ page is zero in
positive degrees, we must have

d2 : H1(ΩS3;R)
∼=−→ H2(S3;R) ∼= 0.

Since x3 is a permanent cycle, we must then have that it is the target of a differential.
A d2 differential would originate in

E1,1
2
∼= H1

(
S3;H1(ΩS3;R)

)
= 0,

so it must instead be the target of a d3 differential:

d3 : H2(ΩS3;R) � H3(S3;R).

Moreover,

d2 : H2(ΩS3;R)→ H2
(
S3;H1(ΩS3;R)

)
= 0,

so we deduce that d3 is an isomorphism: there is a class

y2 ∈ H2(ΩS3;R) ∼= R

such that d3(y2) = x3.
Continuing in this manner, we see the following proposition.
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Proposition 19.10.

Hk(ΩS3;R) ∼=

{
0 k ≡ 1 mod 2

R · yk k ≡ 0 mod 2.

We can also deduce the ring structure.

Proposition 19.11. The cohomology of ΩS3 is the divided power algebra on y2.

Proof. By Exercise 7.3, it suffices to show that

yk2 = k!y2k

for all k. We argue by induction, the case of k = 1 be a tautology. Assume that

yk−1
2 = (k − 1)!y2(k−1).

Since d3 is a derivation, we have

d3(yk2 ) = kyk−1
2 d3(y2) = k!y2(k−1)x3.

Now y2k was defined by the property that the d3 differential on it hit y2(k−1)x3,
and since d3 is an injection, this gives the result. �

Note that nothing here depended in an essential way on 3: everything we did
works just as well for S2k+1.

Exercise 19.2. Show that

H∗(ΩS2k;Z) ∼= E(x2k−1)⊗ Γ(y4k−2),

where the degrees of the elements are the subscripts.

An example: Unitary Groups. We recall a basic fact about homogeneous spaces
for a compact group G.

Proposition 19.12. Let X be a Hausdorff G space on which G acts transitively,
and let x ∈ X be a point. Let H = Stab(x) be the stabilizer subgroup of H. Then
the map

fx : G/H → X

which sends gH to gx is a homeomorphism of G-spaces.

Proof. First note that if x ∈ X, then Stab(x) is a closed subgroup: if h1, . . . is any
convergent sequence of points in Stab(x), then

( lim
k→∞

hk) · x = lim
k→∞

(hk · x) = x,

so the limit is again in Stab(x). The map G/H → X is visibly continuous and
surjective. Now

fx(gH) = fx(g′H),

if and only if

g · x = g′ · x,
and hence g−1g′ ∈ Stab(x). Thus these are the same coset. Hence the map is
injective. Since the source is compact and the target is Hausdorff, this is a homeo-
morphism. �
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Corollary 19.13. We have a homeomorphism

U(n)/U(n− 1) ∼= S2n−1,

where U(n− 1) ↪→ U(n) is the map

A 7→
[
1 0
0 A

]
.

Proof. The unitary group U(n) acts on the unit sphere in Cn. Grahm-Schmidt
shows that this action is transitive, and the stabilizer of the first standard basis
vector is exactly the described copy of U(n− 1). �

Corollary 19.14. We have a fiber sequence

U(n− 1)→ U(n)→ S2n−1.

Since for n > 1 the bases are all simply connected, we again can apply Theo-
rem 19.3.

Proposition 19.15. We have a spectral sequence with

Ep,q2 = Hp
(
S2n−1;Hq(U(n− 1);R)

)
converging to the cohomology of U(n).

Theorem 19.16. For all n, we have an isomorphism of rings

H∗(U(n);R) ∼= ER(x1, x3, . . . , x2n−1),

where the degree of xi is i.

Proof. We proceed by induction on n. The base case of n = 1 is the computation
of the cohomology of U(1) ∼= S1, so assume we have proved this for U(n − 1).
Proposition 19.15 gives us a spectral sequence of algebras with

Ep,q2 = Hp
(
S2n−1;Hq(U(n− 1);R)

) ∼= E(x2n−1)⊗R E(x1, x3, . . . , x2n−3),

where here we have used the inductive hypothesis and the Künneth theorem. The
bidegrees of the elements are:

|x2n−1| = (2n− 1, 0), |x1| = (0, 1), . . . , |x2n−3| = (0, 2n− 3).

Since the differentials are derivations, they are completely determined by their value
on the generators. The class x2n−1 is a permanent cycle since it comes from the
cohomology of the base; the classes x2i−1 for 1 ≤ i ≤ n − 1 are permanent cycles
since the possible targets are all zero. Hence

Ep,q2 = Ep,q∞ .

Everything in sight is a free R-module, and hence all of the exact sequences:

Fp+1H
p+q(U(n);R) ↪→ FpH

p+q(U(n);R) � Ep,q∞

split. This shows the result additively. For the multiplicative statement, note that
any element of odd degree must square to something simple 2-torsion:

2x2
2i−1 = 0.

Considering the case of R = Z, we see that in fact, any choice of lifts x2i−1 must
be exterior, and hence we have it as algebras. �
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20. The Gysin and Wang Sequences

The two big examples from last time were greatly simplified by the fact that the
base in both cases was a sphere. In general, if the base or the fiber is a sphere,
then the Serre spectral sequence is much simpler. In general, we can only have one
differential, and it often has significant geometric content.

20.1. Gysin Sequence. Let Sn → E
p−→ B be a fibration, and assume that the

action of π1(B, b) on Sn is trivial. Then our Serre Spectral Sequence is especially
nice. We have

Ep,q2 = Hp
(
B;Hq(Sn;R)

)
,

and since the cohomology of a sphere is a free R-module, the Künneth theorem
gives us an algebra isomorphism

E∗,•2
∼= H∗(B;R)⊗R H•(Sn;R) ∼= H∗(B;R)⊗R ER(xn).

The bigrading of anything in H∗(B;R) is (∗, 0), and hence all are permanent cycles.
The bigrading of xn is (0, n). The spectral sequence is non-zero only in 2 rows: 0
and n, and so the only differential which we can have is

dn+1 : Ep,nn+1 = Ep,n2 → Ep+n+1,0
2 = Ep+n+1,0

n .

Exercise 19.1 shows that the differential is completely determined by its value on
xn, since all other algebra generators are permanent cycles.

Definition 20.1. If Sn → E → B is a fibration with a trivial action of π1(B, b)
on the fiber, then the class

e = dn+1(xn) ∈ Hn+1(B;R)

is the Euler class of the spherical fibration E.

Proposition 20.2. If Sn → E → B is a fibration with a trivial action of π1(B, b)
on the fiber, then we have

Ep,q∞ =


coker

(
Hp−n−1(B;R)

−^e−−−→ Hp(B;R)
)

q = 0

ker
(
Hp(B;R)

−^e−−−→ Hp+n+1(B;R)
)

q = n

0 otherwise.

We can do better here, since we have extremely simple sequences. For this, we
also look at a more universal situation.

Proposition 20.3. Let F
i−→ E

p−→ B be a simple fibration. Then

Ep,0∞ = Im
(
p∗ : Hp(B;R)→ Hp(E;R)

)
,

and
E0,q
∞ = Im

(
i∗ : Hq(E;R)→ Hq(F ;R)

)
.

Proof. Consider the diagram

F F ∗

F E B

∗ B B.

=

= i

i p

p =

=
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Each column is a fibration. Naturality of the Serre Spectral Sequence then says that
we have a map of spectral sequences for each of the maps between columns, and
that this converges to the map on the total spaces. The Serre Spectral Sequences
for the left and right columns is very easy, since we have a point as one of the two
outer slots. In particular, for the left-hand side, we have

E0,q
2 = E0,q

∞ = Hq(F ;R),

and all other groups are zero. The right-hand side has

Ep,02 = Ep,0∞ = Hp(B;R),

and all other groups are zero. The maps on E2 terms are just given by the obvious
projections. The result follows from naturality. �

Now let’s put all of these back together with the Gysin sequence. Proposition 20.2
gives us a short exact sequence

0→ Ek,n∞ → Hk(B;R)
−^e−−−→ Hk+n+1(B;R)→ Ek+n+1,0

∞ → 0.

The filtration on Hk(E) takes the form of a short exact sequence

0→ Ek,0∞ → Hk(E;R)→ Ek−n,n∞ → 0.

Splicing these together give a long exact sequence.

Theorem 20.4 (Gysin Sequence). If Sn → E
p−→ B is a simple fibration, then we

have a natural long exact sequence

· · · → Hk+n(E;R)→ Hk(B;R)
−^e−−−→ Hk+n+1(B;R)

p∗−→ Hk+n+1(E;R)→ . . . ,

where e is the Euler class of the fibration.

20.2. Gysin Examples.

Remark 20.5. Euler classes arise from the theory of vector bundles (where they
are an obstruction to have a nowhere vanishing section). If B is paracompact and
if E → B is a vector bundle, then we can choose a metric on E (so a continuous
inner product on the fibers) and form the associated sphere bundle. The Euler class
for the Gysin sequence is then the same as the Euler class here. If E is the tangent
bundle to an oriented manifold M , then

e = χ(M) · [1]∗,

where [1]∗ is the Poincaré dual to 1.

Definition 20.6. Let V2(Rn+1) be the space of orthogonal pairs of unit vectors in
Rn+1.

There are many ways we can topologize this. First, this is a homogeneous space
for O(n + 1), where we send an ordered pair(~v, ~w) → (A~v,A~w). Alternatively, we
can connect this to tangent bundles.

Proposition 20.7. The space V2(Rn) is the unit sphere bundle in the tangent
bundle to Sn.
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Proof. A model for the tangent bundle to Sn is

TSn = {(~x,~v) | ~x · ~x = 1, ~x · ~v = 0},
and the map to Sn is the obvious projection onto the first coordinate. The unit
sphere bundle simply imposes the condition that ~v ·~v = 1, which gives us V2(Rn+1).

�

Thus we have a sphere bundle

Sn−1 → V2(Rn+1)→ Sn.

We also know the Euler class of the n-sphere:

e = χ(Sn)xn =
(
1 + (−1)n

)
xn.

If n is odd, then this is zero. If n is even, then this is 2.

Theorem 20.8. If n = 2k + 1, then

H∗
(
V2(Rn+1);Z

) ∼= E(x2k, x2k+1).

If n = 2k, then

H∗
(
V2(Rn+1);Z

) ∼=

Z ∗ = 0, 2n− 1

Z/2 ∗ = n

0 otherwise.

Proof. These computations are immediate from the Gysin sequence (Theorem 20.4).
The multiplicative structure is the only possibility. �

Remark 20.9. The spaces V2(Rn+1) are smooth, Z-orientable manifolds. When n
is odd, the cohomology is as is expected for Poincaré duality. When n is even, we
see that considering only the torsion free pieces is necessary for deducing that the
cup product is a perfect pairing.

Exercise 20.1. Let S1 → E → CP∞ be the spherical fibration5 with Euler class
2x ∈ H2(CP∞;Z). Compute the cohomology of E using the Gysin sequence.

20.3. The Wang Sequence. We have a completely analogous story when the base
is instead a sphere.

Exercise 20.2. Let F → E → Sn be a fibration. Unpacking the Serre Spectral
Sequence for homology, show that we have a long exact sequence connecting the
homologies of F and E.

21. The Hurewicz Theorem

Using the Serre spectral sequence, we can finally start determining homotopy
groups (oddly enough). Recall this fundamental theorem of Poincaré:

Theorem 21.1. If X is a path-connected space, then the map

h : π1(X,x)→ H1(X;Z)

which sends a loop γ to the same loop viewed as a singular 1-cycle is abelianization:

H1(X;Z) ∼= π1(X,x)ab.

5This is the sphere bundle associated to the tensor square of the tautological line bundle on
CP∞, and the total space E ' RP∞
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Definition 21.2. Let

h : πk(X,x)→ Hk(X,x;Z) ∼= H̃k(X;Z)

be the map which takes f ∈ πk(X,x) to

f∗([∆
k]).

This is the Hurewicz homomorphism.

Remark 21.3. If f and f ′ differ by the action of an element of π1(X,x), then

h(f) = h(f ′).

In particular, we factor through the action of the fundamental group (which when
k = 1 realizes abelianization).

Theorem 21.4 (Hurewicz Theorem). If X is a (k−1)-connected space space, then

Hi(X;Z) ∼=

{
0 0 < i < k,

πk(X,x)ab i = k.

The isomorphism in dimension k is given by h.

We will prove this via the Serre spectral sequence. We first produce a nice, long
exact sequence in good contexts.

Theorem 21.5 (Homology Serre Exact Sequence). Let F
i−→ E

p−→ B be a simple
fibration. Assume also that for all 1 ≤ p ≤ k − 1 and 1 ≤ q ≤ `− 1, we have

Hp(B;Z) ∼= Hq(F ;Z) ∼= 0.

Then we have a natural long exact sequence

Hk+`−1(E;R) Hk+`−1(B;R) Hk+`−2(F ;R) Hk+`−2(E;R) . . . .
p∗ τ i∗ p∗

Proof. The conditions on the Serre spectral sequence ensure that the E2 page is
quite simple:

E2
p,q = 0, 1 ≤ p ≤ k, 1 ≤ q ≤ `.

In particular, the first place where we have an element in E2
p,q with both p and

q non-zero is possibly E2
k,`. This is in total degree k + `, so we see that the only

things which can contribute to Hr(E;R) for r < k+ `−1 are the homologies of the
base and the fiber. This makes the Serre spectral sequence incredibly sparse in a
long range. In particular, we notice that the only differential possible on

Hp(B;R) = E2
p,0 = Epp,0

dp−→ Ep0,p−1 = E2
0,p−1 = Hp−1(F ;R),

for 1 ≤ p ≤ k + `− 1. We deduce that the E∞p,0 is the kernel of dp, while E∞p−1,0 is
the cokernel. Unpacking the filtration gives the exact sequence. �

Remark 21.6. The surprising introduction of a −1 in bounds like r < k+ `− 1 is
because we could have a d` differential on E2

k,` which would hit H`−1(F ;R). This
is giving us the slightly strange behavior.

Using Theorem 21.5, we can prove the Hurewicz theorem.

Lemma 21.7. Let B be a simply connected space.
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(1) If Hp(B;Z) = 0 for all 1 ≤ p ≤ k − 1, then Hp(ΩB;Z) = 0 for all 1 ≤ p ≤
k − 2 and

dk = τ : Hk(B;Z)
∼=−→ Hk−1(ΩB;Z).

(2) If Hp(ΩB;Z) = 0 for all 1 ≤ p ≤ k − 2, then Hp(B;Z) = 0 for all 1 ≤ p ≤
k − 1 and

dk = τ : Hk(B;Z)
∼=−→ Hk−1(ΩB;Z).

Proof. We know that PB ' ∗, so all homology groups beyond the zeroth vanish.
In particular, all classes in Hk(B;Z) and Hk(ΩB;Z) must support or be the target
of differentials. If for all 1 ≤ p ≤ k − 1, the homology groups

Hp(B;Z) = 0,

then for all 1 ≤ p ≤ k − 1, we have E2
p,q = 0 for all q. In particular, there are no

sources for differentials targeting Hp−1(ΩB;Z). Thus these groups must be zero.
Switching the roles of p and q and running the same kind of argument gives the
second part.

In both cases, Theorem 21.5 then gives the desired isomorphisms. �

Theorem 21.8 (Hurewicz Theorem). If X is (k − 1)-connected, then

Hk(X;Z) ∼= πk(X,x)ab.

Proof. We show this by induction on k. IfX is connected, then this is Theorem 21.1.
So assume this is true for a (k−2)-connected spaces. Now if X is (k−1)-connected,
then ΩX is (k− 2)-connected. So we have a natural isomorphism by the induction
hypothesis

πk(X,x) ∼= πk−1(ΩX,x) ∼= Hk−1(ΩX;Z).

Lemma 21.7 then shows that we have a natural isomorphism

Hk−1(ΩX;Z) ∼= Hk(X;Z).

�

We have not yet technically shown that our map is the Hurewicz map described
above. We can show this in a somewhat roundabout way.

Corollary 21.9. For all k, we have

πk(Sk, s) ∼= Z

generated by the identity map on Sk.

Proof. Theorem 21.8 shows that

πk(Sk, s) ∼= Hk(Sk;Z) ∼= Z.

Naturality gives a map

πk(Sk, s)→ End
(
Hk(Sk;Z)

)
which is surjective, sending the identity map to the identity. Any surjective map
Z→ Z is an isomorphism. �

Now we have an opportunity to focus on a fantastically useful lemma: the Yoneda
Lemma.
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Definition 21.10. If C and D are categories and if F,G : C → D are functors,
then let

Nat(F,G) = {F ⇒ G}
be the set of natural transformations from F to G.

Lemma 21.11 (Yoneda Lemma). Let C be a category, and let X ∈ C. Let

hX : C → Set

be the functor

Y 7→ C(X,Y ).

If F : C → Set is any other functor, then we have an isomorphism

Nat(hX , F ) ∼= F (X).

Proof. The entire argument hangs on the fact that we have a special element

IdX ∈ hX(X) = C(X,X).

This has the property that for any f ∈ hX(Y ), we have

f = hX(f)(IdX).

Thus any natural transformation η : hX ⇒ F is completely determined by the value
of ηX on IdX . Conversely, any element in u ∈ F (X) gives a natural transformation
by saying that the value on

f ∈ hX(Y )

is F (f)(u). �

Corollary 21.12. If X is (k − 1)-connected, then the Hurewicz map

h : πk(X,x)→ Hk(X;Z)

is an isomorphism.

Proof. The Yoneda Lemma shows that we have an isomorphism

Nat
(
πk(−), Hk(−;Z)

) ∼= Hk(Sk;Z) ∼= Z.

Implicit in the Hurewicz map is a choice of orientation, which corresponds to plus
or minus 1. The result follows. �

We obviously have an analogous statement for cohomology. We leave the proof
as an exercise.

Theorem 21.13 (Cohomology Serre Exact Sequence). Let F
i−→ E

p−→ B be a
simple fibration. Assume also that for all 1 ≤ p ≤ k− 1 and 1 ≤ q ≤ `− 1, we have

Hp(B;Z) ∼= Hq(F ;Z) ∼= 0.

Then we have a natural long exact sequence

Hk+`−1(E;R) Hk+`−1(B;R) Hk+`−2(F ;R) Hk+`−2(E;R) . . . .
p∗ τ i∗ p∗

Exercise 21.1. Prove Theorem 21.13.
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22. Eilenberg-MacLane spaces

We can produce a large number of spaces with interesting properties from the
Hurewicz Theorem.

Proposition 22.1. If I is a set and if Xi is a collection of (k−1)-connected spaces
for k ≥ 2, then X =

∨
i∈I Xi is also (k − 1)-connected.

Proof. The Van Kampen Theorem shows that X is simply connected, so we can
apply the Hurewicz theorem which says that the first non-zero homology and ho-
motopy groups occur in the same dimension and agree. Homology takes wedges to
direct sums, so we see that the lowest dimension in which Hk(X;Z) can be non-zero
is k. The same is therefore true for the homotopy groups. �

Proposition 22.2. Let I be a set and let k > 1. Then

πk

(∨
i∈I

Sk, s

)
∼=
⊕
i∈I

Z.

Proof. This is an immediate application of the Hurewicz Theorem. �

We can say more here, in that we can also understand what happens when we
cone off elements of πk for a (k − 1)-connected space.

Proposition 22.3. Let X be a (k − 1)-connected space with k ≥ 2, and let f ∈
πk(X,x). Then

πk(Cf, x) ∼= πk(X,x)/(f).

Proof. Since k ≥ 2, we know that attaching the cone on f does not produce new
elements of π1 (by the Van Kampen Theorem), so Cf is again simply connected.
The Hurewicz theorem then says that the first non-vanishing homology and homo-
topy groups agree, so we must find the bottom homology group of Cf . Consider
the long exact sequence for the cofiber sequence

Sk
f−→ X → Cf.

The map f∗ on homology in degree k takes 1 to the element f , viewed as an element
of

πk(X,x) ∼= Hk(X;Z).

The result follows by exactness. �

Working more generally, we can cone off families of maps by instead considering
a wedge of spheres mapping in to X. The analogous result holds.

Definition 22.4. Let A be an abelian group, and for each k ≥ 1, let

M(A, k)

be a space with

H̃`

(
M(A, k);Z

) ∼= {A ` = k

0 otherwise.

These are Moore spaces for A.

Proposition 22.5. For any A and k, a Moore space M(A, k) exists.
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Proof. Choose a presentation of A:⊕
i∈I1

Z f0−→
⊕
i∈I0

Z→ A.

Proposition 22.2 shows that

πk

(∨
i∈I0

Sk, s

)
∼=
⊕
i∈I0

Z,

and moreover, the map f0 can be realized as a map∨
i∈I1

Sk
f−→
∨
i∈I0

Sk.

Let M(A, k) = Cf . The long exact sequence in homology for Cf is exactly the
resolution for A, which completes the proof. �

Corollary 22.6. For any abelian group A and k ≥ 2, there is a space X with

πj(X,x) =

{
0 j < k

A j = k.

We can do better still: we can continue to kill off homotopy groups.

Theorem 22.7. Let X be a path connected space, and let f ∈ πk(X,x). Then the
map

πj(X,x)→ πj(Cf, x)

is an isomorphism for j < k and in dimension k, it is the quotient by the subgroup
generated by f .

Corollary 22.8. For any abelian group A and for any k, there is a space

K(A, k)

with

πj
(
K(A, k), x

) ∼= {A j = k

0 j 6= k.

Proof. We build this inductively, beginning with the Moore space M(A, k) = X0.
Assume that we have built a space Xn with the property that

πj(Xn) ∼=


0 j < k

A j = k

0 k < j ≤ k + n.

Choose a surjection ⊕
i∈In

Z fn−→ πk+n+1Xn,

and let

Xn+1 = Cfn.

Theorem 22.7 shows that the homotopy groups of Xn and Xn+1 agree through
dimension (k + n) and that πk+n+1Xn+1 = 0 as well. Passing to the colimit gives
us the desired space K(A,n). �
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23. Steenrod Operations

Definition 23.1. An Eilenberg-MacLane space is one which has a single non-
vanishing homotopy groups.

One of the most interesting features of the Eilenberg-MacLane spaces is the func-
tor which they represent. We first note that the Hurewicz and Universal Coefficients
theorems give.

Proposition 23.2. Let A be an abelian group and let k ≥ 1. Then for any M , a
choice of isomorphism

φ : πk
(
K(A, k), x

) ∼= A

gives an isomorphism

Hk
(
K(A, k);M

) ∼= Hom(A,M).

Proof. The Hurewicz Theorem, together with the map φ gives an isomorphism

A
φ−→ πk

(
K(A, k), x

) ∼= Hk

(
K(A, k);Z

)
.

Since Hk−1

(
K(A, k);Z

)
= 0, the Universal Coefficients Theorem gives

Hk
(
K(A, k);M

) ∼= Hom(A,M).

�

In particular, a choice of isomorphism

πk
(
K(A, k), x

) ∼= A

gives a canonical class

u ∈ Hk
(
K(A, k);A

)
corresponding to the identity map on A. Many texts include an isomorphism as
part of the data for something to be Eilenberg-MacLane.

Theorem 23.3. Let K(A, k) be an Eilenberg-MacLane space, and let φ be an iso-
morphism πkK(A, k) ∼= A. Then the map[

X,K(A, k)
]
→ Hk(X;A)

sending f to f∗(u) is an isomorphism.

By the Yoneda Lemma, we then gain some huge information about the natural
transformations of the ordinary homology functor.

Corollary 23.4. Let A and B be abelian groups and k and n be natural numbers.
Then we have a natural bijection

Nat
(
Hk(−;A), Hn(−;B)

) ∼= Hn
(
K(A, k);B

)
.

Theorem 23.5. For any k,

H∗
(
K(Q, k);Q

) ∼= {EQ(uk) k odd

Q[uk] k even.

Exercise 23.1. Using the Serre spectral sequence for the fibration

K(Q, k − 1)→ PK(Q, k)→ K(Q, k)

and induction on k, prove Theorem 23.5.
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Since Q is a field, we have a Künneth isomorphism for finite type complexes, like
these Eilenberg-MacLane spaces.

Corollary 23.6. The only natural transformations of the rational cohomology func-
tor are the cup products and polynomials.

At a particular prime, we have many more operations.

Definition 23.7 (Steenrod Operations). For each i ≥ 0, there are natural trans-
formations of abelian groups

Sqi : Hn(X,A;F2)→ Hn+i(X,A;F2)

such that

(1) Sq0 = Id
(2) If δ is the connecting homomorphism is the long exact sequence for the pair,

then δ ◦ Sqi = Sqi ◦ δ.
(3) (Cartan Formula)

Sqk(x ^ y) =
∑
i+j=k

Sqi(x) ^ Sqj(y).

(4) (Adem Relation) If a < 2b, then

SqaSqb =

ba/2c∑
c=0

(
b− c− 1

a− 2c

)
Sqa+b−cSqc.

(5) (Unstable axiom)

Sqi(x) =

{
0 i > |x|
x2 i = |x|.

Definition 23.8. The Steenrod algebra A is the graded, associative F2-algebra
generated by symbols Sqi and subject to the Adem Relations.

The following proposition is immediate by its construction.

Proposition 23.9. The Steenrod algebra acts on the cohomology of a space by
natural transformations.

We can also recast the Cartan formula here.

Definition 23.10. Define the total Steenrod operation by

Sq :=
∑
i≥0

Sqi.

This is a non-homogenous operation, but by considering the particular homo-
geneous pieces, we can recover any of the individual squares. The Cartan formula
now becomes

Proposition 23.11. The total square is a ring homomorphism:

Sq(x+ y) = Sq(x) + Sq(y) and Sq(x ^ y) = Sq(x) ^ Sq(y).

Example 23.12. In H∗(RP∞;F2) ∼= F2[x], we have

Sqi(xk) =

(
k

i

)
xk+i.
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We start by observing that the unstable axiom describes the total Square on the
class x:

Sq(x) = Sq0x+ Sq1x+ Sq2(x) + · · · = x+ x2.

This gives the total square on all of the higher powers of x:

Sq(xk) =
(
Sq(x)

)k
= (x+ x2)k

k∑
j=0

(
k

j

)
x2k−j

Definition 23.13. If I = (i1, i2, . . . ) is a finite sequence of positive integers, let

SqI = Sqi1Sqi2 . . . .

We say that I is admissible if ij =≥ 2ij+1 for all j.
If I is admissible, then let |I| = i1 + . . . be the degree of I, and let

e(I) = 2i1 − |I| = (i1 − 2i2) + (i2 − 2i3) + . . .

be the excess.

Remark 23.14. There are clearly only finitely many admissible sequences of a
particular degree. In particular, there is a maximal excess for any particular degree.

Proposition 23.15.

(1) SqI raises degree by |I|
(2) If |x| < e(I), then SqI(x) = 0
(3) If |x| = e(I), then

SqI(x) =
(
SqI

′
(x)
)2
,

where I ′ = (i2, i3, . . . ).

Exercise 23.2. Prove Proposition 23.15.

Theorem 23.16. The set

{SqI | I admissible}
is a basis for A.

This will also follow from our analysis of the cohomology of Eilenberg-MacLane
spaces.

Remark 23.17. Iterative use of the Adem relations always take a sequence in a
non-admissible form to an admissible sequence. This shows that the admissibles
span. We can show directly that they are linearly independent by evaluating the
admissibles of some degree on (RP∞)×k for k sufficiently large.

The dual Steenrod algebra. Since A is finite dimensional in each degree, we
can consider the degree-wise dual A∗.

Proposition 23.18. The map

Sqk 7→
∑
i+j=k

Sqi ⊗ Sqj

induces a coproduct on A that is an algebra homomorphism.

This makes A into a cocommutative Hopf algebra. In particular, A∗ is a com-
mutative Hopf algebra.
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Theorem 23.19 (Milnor). We have

A∗ = F2[ξ1, ξ2, . . . ],

where |ξi| = 2i − 1. The coproduct is given by

∆(ξk) =
∑
i+j=k

ξ2j

i ⊗ ξj .

The class ξk is dual to SqIk , where Ik = (2k−1, 2k−2, . . . , 1).
We have an evaluation pairing (or “cap product”) for every p ∈ A∗

〈p,−〉 : Ak → Ak−|p|.
Taking p to be primitive in the sense that

∆(p) = p⊗ 1 + 1⊗ p,
we get a derivation when capping with p.

Exercise 23.3. Let H be a Hopf algebra, and let p be a primitive element in the
dual H∗. Show that the map

H ∆−→ H⊗H 1⊗p−−→ H
is a derivation.

We can use this to get another form of the Adem relations.

Proposition 23.20. For any n, we have

Sq2n−1Sqn = 0.

Proposition 23.21. We have 〈ξ1, Sqi〉 = Sqi−1.

This gives us other relations. These generate all the Adem relations.

24. Homology and Cohomology with Twisted Coefficients

Our formulation of the Serre spectral sequence had a very strong assumption:
that the fundamental group of the base acted trivially on the homology or coho-
mology. We first review twisted homology and cohomology.

24.1. Twisted Coefficients. Here, let X be a CW complex and let p : X̃ → X
be the universal cover. Let G = π1(X,x). There are close connections between the
chains on the universal cover and those of X.

Proposition 24.1.

(1) Map(∆n, X̃) is a free G-set, and
(2) the projection map p∗ induces an isomorphism

C∗
(
X̃;Z

)
⊗Z[G] Z ∼= C∗

(
X;Z

)
.

Proof. Since the action of G is free on X̃ and since ∆n 6= ∅, the action of G on
Map(∆n, X̃) is also free. The projection map X̃ → X coincides with the quotient
map

X̃ → X̃/G = X,

and it sends a singular n-simplex in X̃ to the orbit it generates. The second part
will follow from showing that(

Map(∆n, X̃)
)
/G ∼= Map(∆n, X).
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For this, let σ : ∆n → X, and let x0 = σ(v0). Choose any x̃0 which maps to x0

under p. Since ∆n is simply connected, the Lifting Criterion shows that the solid
diagram below completes:

X̃

∆n X,

pσ̃

σ

where σ̃(v0) = x̃0. In particular, this shows that the map is surjective.
For injectivity, we consider two lifts σ̃ and σ̃′ of σ. Let x̃0 and x̃′0 be the respective

values at v0. Since X̃ is the universal cover, there is an element g ∈ G (necessarily
unique) such that g · x̃0 = x̃′0. Then gσ̃ and σ̃′ are two lifts of σ which agree at a
point, and hence coincide. �

This is a really powerful observation: the singular simplices for the universal
cover record all of the information for the singular simplices of the base. By the
standard construction of the intermediate covers, we also see that the simplices of
these are also recorded.

Proposition 24.2. For any subgroup H ⊂ G, let X̃H → X be the cover cor-
responding to the (conjugacy class of the) subgroup H. Then we have a natural
isomorphism

C∗
(
X̃;Z

)
⊗Z[G] Z[G/H] ∼= C∗

(
X̃;Z

)
⊗Z[H] Z ∼= C∗

(
X̃H ;Z

)
.

In Proposition 24.1, we used Z with a trivial action to recover the chain on
the base, and in Proposition 24.2, we used the induced module Z[G/H] to instead
recover the chains on an intermediate cover. Homology with twisted coefficients
handles the general case.

Definition 24.3. If M is a G-module, then let

H∗(X;M) := H∗
(
C∗(X̃;Z)⊗Z[G] M

)
.

This recovers the classical construction of homology with coefficients in some
abelian group.

Proposition 24.4. Let M be an abelian group, endowed with the trivial G-module
action. Then

H∗(X;M) ∼= H∗(X;M).

Proof. Proposition 24.1 shows that

C∗(X̃;Z)⊗Z[G] M ∼= C∗(X;Z)⊗Z M = C∗(X;M).

�

For cohomology, we have the standard dual construction.

Definition 24.5. If M is a G-module, then let

H∗(X;M) := H∗
(

HomZ[G]

(
C∗(X̃;Z),M

))
.

Again, when M has a trivial action, then this recovers the ordinary cohomology
of the base with coefficients in M .
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Remark 24.6. There is a sheaf-theoretic interpretation of homology with twisted
coefficients. We replace X be a cover X̃, and then consider a sheaf with descent
data for this cover: a G-module M . This sheaf then descends to a sheaf on X, and
we are taking the cohomology of X with coefficients in this sheaf. This is the reason
for replacing M with M.

There is a cellular version of these results as well. Any cell structure of X can
be lifted to a cell structure of X̃ in which π1X acts by just permuting the cells.
In other words, the set of k-cells is again a free π1(X)-set. We can therefore use
cellular chains for this lifted cell structure to compute the twisted homology and
cohomology groups.

Example 24.7. Let X = RP 2, and let M = Q− be Q with the sign representation

of π1X = Z/2. A cell structure for X̃ = S2 as a Z/2-space is given by

S2 = (Z/2) ∪ (Z/2×D1) ∪ (Z/2×D2).

This is just the usual cell decomposition with 2 k-cells for k = 0, 1, 2. The cellular
chains are then

Z[Z/2]
1−γ←−−− Z[Z/2]

1+γ←−−− Z[Z/2],

where γ is the non-zero element of Z/2. Tensoring this with Q− gives

Q 2←− Q 0←− Q,

so we deduce that

H∗(RP 2;M) ∼=

{
Q ∗ = 2

0 otherwise.

In the cohomological case, we have via standard homological algebra a pairing
in cohomology.

Proposition 24.8. Let M and N be G-modules. Then we have a twisted cup-
product

Hk(X;M)⊗H`(X;N )→ Hk+`(X;M⊗N ).

There is an extremely important example of twisted coefficients: when X has a
contractible universal cover.

Proposition 24.9. Let X be a space with X̃ ' ∗. Then C∗(X̃;Z) is a resolution
of Z by free Z[G]-modules.

Proof. Since X̃ is contractible, augmentation map C∗(X̃;Z) → Z induces an iso-

morphism in homology. In particular, the chains on X̃ forms a resolution of Z.
Proposition 24.1 then gives the freeness result. �

This is a categorical description, not one that’s particular to the space: we have
formed a free resolution of Z, which is a purely algebraic construction. In particular,
the twisted homology and cohomology are familiar algebraic constructions.

Proposition 24.10. Let M be a G-module, and let X have contractible universal
cover. Then

H∗(X;M) ∼= H∗(G;M) := TorZ[G]
∗ (Z,M)

and

H∗(X;M) ∼= H∗(G;M) := Ext∗Z[G](Z,M).
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Proof. Since C∗(X̃;Z) is a projective resolution of Z in Z[G]-modules, the result
follows from the standard homological algebra techniques. �

We can use this to deduce other, more surprising results.

Proposition 24.11. Let R be a ring in which |G| is a unit, and let X be a space

such that X̃ ' ∗. Then for any R[G]-module M , we have

H∗(X;M) ∼=

{
MG ∗ = 0

0 otherwise.

Proof. The conditions given ensure that the category of R[G]-modules is semisim-
ple. In particular, every representation is projective, and hence the Ext groups
above Ext0 vanish. �

24.2. The Serre E2-term. With twisted coefficients, we can handle the general
case of a fibration.

Theorem 24.12. Let F → E → B be a fibration. Then we have a spectral sequence
of algebras with

Ep,q2 = Hp
(
B;Hq(F ;R)

)
converging to Hp+q(E;R).

We have a spectral sequence with

E2
p,q = Hp

(
B;Hq(F ;R)

)
converging to Hp+q(E;R).

Proof. A short exact sequence of groups gives a fibration

BN → BG→ B(G/N).

The spectral sequence given is the spectral sequence for this fibration. �

We will need several examples where we have an interesting non-trivial action
on the fiber. One of the most important from algebra is the “Lyndon-Hochschild-
Serre” spectral sequence.

Corollary 24.13 (Lyndon-Hochschild-Serre). Let

{e} → N → G→ G/N → {e}
be a short exact sequence of groups. Then for any G-module M , we have a spectral
sequence with

Ep,q2 = Hp
(
G/N ;Hq(N ;M)

)
and converging to Hp+q(G;M).

This is refining the statement about H0 which is the “fixed points” functor for
a G-module:

H0
(
G/N ;H0(N ;M)

) ∼= (MN
)G/N ∼= MG = H0(G;M).

Example 24.14. Consider the short exact sequence

{e} → Z/3→ Σ3 → Z/2→ {e}.
This is a split exact sequence, and the homomorphism defining the semi-direct prod-
uct is

Z/2
∼=−→ Aut(Z/3) = (Z/3)×.
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This gives a spectral sequence

Ep,q2 = Hp
(
Z/2;Hq(Z/3;R)

)
⇒ Hp+q(Σ3;R).

Now let R = F3. Then since 2 is a unit in F3, we have

Hp
(
Z/2;Hq(Z/3;F3)

) ∼= {(Hq(Z/3;F3)
)Z/2

p = 0

0 otherwise.

For degree reasons, the Serre spectral sequence collapses.
Now we need only understand the action of Z/2 on

H∗(Z/3;F3) ∼= E(x1)⊗ F3[y2].

The action preserves skeleta and gives a ring homomorphism, so it will suffice to
understand what happens on the 1-skeleton. Here, the we have just a copy of S1.

The inversion map on Z/3 = {e
2πik

3 } comes from complex conjugation on S1, which
is a map of degree −1. Thus x1 7→ −x1. Since y2 and x1 are connected by a mod
3 Bockstein, we also deduce y2 7→ −y2. This gives the action.

Remark 24.15. We can play the same game for the exact sequence

{e} → Z/p→ G→ Z/p× → {e}.

We see that for mod p coefficients, the action of Z/p× is give by the ordinary
multiplication of Z/p× on Z/p. The group Z/p is the p-Sylow subgroup of Σp, and
G is the normalizer of it in Σp. A general argument shows that the cohomology of
G and Σp with coefficients in Fp agree.

25. Constructing the Squares

We will give a geometric construction of the Steenrod squares. There is also
a purely algebraic construction, and we can recover this one from thinking of the
chains at each stage, rather than the actual spaces. We fix some notation for this
section.

Notation 25.1. Let X be a pointed space, pointed at x0, and let π ⊂ Σn be a
subgroup. Let F be a field, and let Kn = K(F, n). All cohomology in this section
will be taken with coefficients in F.

Since X is pointed, the Cartesian powers are filtered, just as in Definition 7.8.

Definition 25.2. For each 0 ≤ i ≤ n, let

Fi(X) =
⋃

|I|=n−i

F In(X)

be the subspace of all points of Xn, at most i of which are possibly not the basepoint.

The group π acts on Xn via

σ(x1, . . . , xn) = (xσ−11, . . . , xσ−1n),

and this action restricts to actions on the filtered pieces Fi(X), since they are
determined by a count of non-basepoint coordinates and this is independent of the
ordering. We conclude that the maps

Fi(X) ↪→ Fi+1(X)
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are π-equivariant, and hence the mapping cones inherit an action of π. The most
important of these is again the smash powers Fn(X)/Fn−1(X). It is important to
note here that the π-action is not free: for all σ ∈ π,

σ(x, . . . , x) = (x, . . . , x).

This means that we expect bad behavior upon passage to orbits, since we are losing
information here. We can fix this via a more homotopically robust construction.

Definition 25.3. If G is a group, then let EG be a contractible space on which G
acts freely, and let BG be the quotient EG/G.

Remark 25.4. There are several ways to build such a space. If G is a discrete
group, then we can first build BG by producing a connected CW complex with
π1 = G, and then killing all of the higher homotopy groups. The universal cover
then works as EG. When G has a topology, then Milnor produced a good EG as
the infinite join of G with itself, and for nice topological groups G, Segal produced
an explict CW complex.

Definition 25.5. If X is a G-space, then the Borel construction or homotopy
orbits is the orbit space

XhG := EG×G X = (EG×X)/G,

where G acts diagonally on EG×X.

Exercise 25.1.

(1) If G acts freely on X, then XhG ' XG.
(2) If G acts trivially on X, then XhG ' BG×X.

The idea for the first part is that if G acts freely, then the map EG ×X → X
is a G-equivariant homotopy equivalence.

We can realize XhG as the total space of a fibration over BG. There are two
ways to think of this:

(1) We have a map X → ∗, and this is G-equivariant for any G that acts on
X. The Borel construction is functorial, so this gives us a canonical map

XhG → (∗)hG = BG.

(2) We have a fibration G→ EG→ BG. We can then form XhG by fiberwise
replacing G with X using the G-action. This gives us a fibration

X → XhG → BG.

Everything we have done is natural in X and equivariant maps, so we can apply
it to X∧n, the filtered pieces, and G = π. In particular, we have bundles

Eπ ×π Fn−1 ⊂ Eπ ×π Xn,

both bundles over Bπ.

Definition 25.6. The π-extended power of X is

DπX =
(
Eπ ×π Xn

)
/
(
Eπ ×π Fn−1

)
.

The standard properties of the quotient allow us to rewrite the right-hand side:

DπX ∼= Eπ+ ∧π X∧n.
Working in the relative case is slightly easier.
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The π-extended power construction is fundamental in algebraic topology, and it
is the source of all Steenrod operations. We need to understand this in cohomology,
especially in universal cases.

Theorem 25.7. If H̃q(X) = 0 for q < r, then

H̃s(DπX) =

{
0 s < nq(
H̃r(X)⊗n

)π
s = nr.

The intuition for this is as follows. If X is simply connected, then by cellular
approximation and the Hurewicz theorem, we may assume that the q-skeleton of
X is a wedge of Sq. This forces the nq-skeleton of X∧n to be a wedge of Snq, and
hence the same is true for the Borel construction. To prove this, however, we need
a relative Serre spectral sequence.

Theorem 25.8. Let F → E → B be a fibration and let E′ ⊂ E be a subspace such
that E′ → B is also a fibration (with fiber F ′). Then we have a spectral sequence
of algebras with

Ep,q2 = Hp
(
B;Hq(F, F ′;R)

)
⇒ Hp+q(E,E′;R).

Proof of Theorem 25.7. We apply Theorem 25.8 to E = Eπ ×π Xn, and E′ =
Eπ ×π Fn−1, so

Hp+q(E,E′) = Hp+q(DπX).

Now B = Bπ has π1B = π, and the action on the fibers (which are Fn−1 and X×n

respectively) is very non-trivial. Note that

H∗(F, F ′) ∼= H̃∗(F/F ′) = H̃∗(X∧n).

By the Künneth theorem (since F is a field), we have that this is(
H̃∗(X)

)⊗n
,

and π, which rotated the factors of X, just has the natural action rotating the
tensor factors. Again, since B = Bπ, the twisted cohomology groups are just group
cohomology:

Ep,q2 = Hp
(
π; H̃q(X)⊗n

)
.

This means that for q < nr, we have that

Ep,q2 = 0.

Moreover, the group

E0,nr
2 = H0

(
π; H̃r(X)⊗n

)
=
(
H̃r(X)⊗n

)π
are all non-bounding permanent cycles. Since nothing else can contribute to this
degree, and since this is the non-zero group of smallest degree, we conclude the
theorem. �

Corollary 25.9. For any r, we have

H̃nr(DπKr) ∼= R,

generated by a class Pπ(ιr) such that under the restriction map

H̃nr(DπKr)→ H̃nr(K∧nr ),

we have
Pπιr 7→ ι⊗nr .
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Since ordinary cohomology is represented by maps to Eilenberg-MacLane spaces,
this gives us a map

Pπιr : DπKr → Knr.

Definition 25.10. Let u ∈ Hr(X). Then the total Steenrod power on u is the
composite

DπX
Dπu−−−→ DπKr

Pπιr−−−→ Knr.

To get the Steenrod operations in their usual form, we pull back along the
diagonal map

∆: X → X∧n.

This map is π-equivariant, and hence induces a map on Borel constructions:

Bπ+ ∧X ∼= Eπ+ ∧π X
∆hπ−−−→ DπX.

Since we are working over a field, the Künneth isomorphism shows

H̃∗(Bπ+ ∧X) ∼= H∗(Bπ)⊗ H̃∗(X),

so the composite

Bπ+ ∧X
∆hπ−−−→ DπX

Pπu−−→ Krn

is a sum ∑
bi ⊗ xrn−i,

where bi ∈ Hi(Bπ) and xrn−i ∈ H̃rn−i(X).
Restricting attention to n = 2, π = Σ2 and F = F2, we have that Bπ = RP∞,

and so H∗(Bπ) = F2[x].

Definition 25.11. If u ∈ Hr(X), then define classes Sqi(u) for all i by

∆∗hΣ2
PΣ2u =

∑
xq−i ⊗ Sqi(u).

Every map we have used is described by a universal property, and every con-
struction we have used is functorial. This then defines natural operations

Sqi : Hr(X)→ Hr+i(X).

Proposition 25.12. For any u ∈ Hr(X), we have

Sqr(u) = u2.

Proof. We prove this via considering the universal case. The diagonal map Kr →
K∧2
r fits into a commutative square

Eπ+ ∧π Kr DΣ2
Kr

Kr K∧2
r ,

∆

∆

where the unlabeled maps are the “inclusions of the fibers”. These inclusions of
the fibers correspond to the inclusion of zero cell in BΣ2, and hence pulling back
along them exactly gives the class Sqrιr. By assumption, the pullback of PΣ2ιr
along the inclusion of the fiber from K∧2

r is exactly ι⊗2
r , and by the definition of

the cup product, that pulls back to ι2r under the diagonal map. �
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26. The cohomology of Eilenberg-MacLane spaces

The squares actually give complete information about the cohomology of Eilenberg-
MacLane spaces. This is a beautiful theorem of Serre and a fantastic application
of the Serre spectral sequence.

Definition 26.1. The differential

dn+1 : E0,n
n+1 → En+1,0

n+1

is called the transgression τ . If φ ∈ E0,n
2 survives to En+1 and dn+1(φ) 6= 0, then

we say φ is transgressive.

This is the last possible differential from E0,n, and it is related to actual geo-
metric content. Consider the coboundary map

Hn(E)→ Hn(F )
δ−→ Hn+1(E,F )→ Hn+1(E).

The projection map p also gives a map of pairs (E,F ) → (B, b), so we have a
diagram:

Hn(F ) Hn+1(E,F )

Hn+1(B, b) Hn+1(B).

δ

p∗

∼=

Proposition 26.2. The transgression is

τ = (p∗)−1 ◦ δ.

This is obviously not entirely well-defined, since we have no reason to believe
that Im(δ) ⊂ Im(p∗). One way to restate this proposition is

δ(φ) = p∗(β)⇔ dn+1(φ) = β.

So really, we have that dn+1(φ) hits a coset of β.

Corollary 26.3. If φ is transgressive, then for all i, Sqiφ is also transgressive and

τ(Sqiφ) = Sqiτ(φ).

Proof. By naturality and the commuting of the squares with the coboundary, we
have

δ(Sqiφ) = Sqiδ(φ) = Sqip∗(β) = p∗(Sqiβ).

�

The second important piece is a theorem of Borel.

Definition 26.4. A collection of elements {x1, . . . } is a simply system of gen-
erators for H∗(X) if the simple products

xi1 ^ · · ·^ xik

forms a basis.

Example 26.5.

(1) The polynomial ring F2[x] has {x, x2, x4, . . . } as a simple system of gener-
ators.

(2) If {x1, . . . } is a simple system for A and {y1, . . . } is a simple system for
B, then {x1, . . . , y1, . . . } is a simple system for A⊗B.
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Theorem 26.6 (Borel). Let F → E
p−→ B be a fibration with E ' ∗. If H∗(F )

has a simple system of transgressive generators, then H∗(B) is polynomial on the
transgressions.

Theorem 26.7 (Serre). For any n,

H∗
(
K(Z/2, n);F2

) ∼= F2

[
SqIun | e(I) < n

]
.

Example 26.8. If n = 1, then the condition e(I) = 0 forces I = 0. We recover
that

H∗
(
K(Z/2, 1);F2

)
= H∗

(
RP∞;F2

) ∼= F2[u1].

When n = 2, the only strings of excess 1 are the strings

Ik = (2k, 2k−1, . . . , 1),

so we deduce

H∗
(
K(Z/2, 2);F2

) ∼= F2

[
u2, Sq

1u2, Sq
2Sq1u2, . . .

]
.

Proof of Theorem 26.7. The proof will be by induction on n. Recall also that if
e(I) > n, then Proposition 23.15 shows that SqIun = 0 and if e(I) = n, then

SqIun =
(
SqJun

)2k
,

for some subsequence J with e(J) < n. We will proceed by induction on n, the
base case of which is RP∞. The inductive hypothesis says that

H∗
(
K(Z/2, n);F2

) ∼= F2[SqIun | e(I) < n].

Example 26.5 shows that this has a simple system of generators{(
SqIun

)2k | e(I) < n
}
.

We can then rewrite this as {
SqIun | e(I) ≤ n.

}
The element un is transgressive for degree reasons, and it must therefore hit un+1.
Corollary 26.3 then shows that all of the squares on this are transgressive, and
hence H∗

(
K(Z/2, n);F2

)
has a simple system of transgressive generators. Borel’s

theorem then gives the result. �

Corollary 26.9. The admissible sequences for a basis for A.

Proof. The map of A-modules

A 7→ H∗
(
K(Z/2, n);F2

)
which sends 1 to un sends classes of excess less than n to linearly independent
elements. Since linear independence is a finite condition, choose n sufficiently large
(larger than the excess of any element in a chosen finite set) shows that these are
linearly independent in A. �

The same arguments apply to give the cohomology of K(Z, n) and K(Z/2k, n).

Theorem 26.10. For each n, let IZn be the set of admissible sequences I such that
e(I) < n and the last term in I is not 1. Then

H∗
(
K(Z, n);F2

) ∼= F2

[
SqIun | I ∈ IZn

]
.
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Definition 26.11. Let βk denote the connecting homomorphism for the coefficient
sequence

Z/2→ Z/2k+1 → Z/2k.
This gives a natural transformation

H∗(−;Z/2k)⇒ H∗+1(−;Z/2).

Theorem 26.12. For each n and each k,

H∗
(
K(Z/2k, n);F2

) ∼= F2

[
S̃q

I
un | e(I) < n

]
,

where S̃q
I

= SqI if I does not end in 1, and if I does end in 1, then S̃q
I

is SqI

with the final Sq1 replaced with βk.
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Part 5. Extra Topics

Appendix A. Postnikov Towers

This procedure for killing the homotopy groups above some point seems very ad
hoc. In fact, we can do so functorially by building a much bigger space. This gives
the Postnikov tower.

Definition A.1. Let X be a pointed space. For each k ≥ 0, we define a sequence
of spaces

(
P kX

)
i

via the pushout squares∨
m≥k+1

∨
f∈Map

(
Sm,(PkX)i−1

)Sm (P kX)i−1

∨
m≥k+1

∨
f∈Map

(
Sm,(PkX)i−1

)Dm+1 (P kX)i,

F

where F is the map which on the summand corresponding to f is just f .
Let

P kX = lim
−→

(P kX)i.

This is the kth Postnikov section functor.

Proposition A.2. The assignment X 7→ P kX is functorial in X.

Proof. Let g : X → Y . We will show that the cofiber squares defining P kX are
actually functors. Assume that we have shown this for (i− 1). This gives us a map

(P kg)i−1 : (P kX)i−1 → (P kY )i−1.

For the other pieces, note that if f : Sm → X, then g ◦f : Sm → Y . In other words,
we have a map on indexing sets

(P kg)i−1∗ : Map
(
Sm, (P kX)i−1

)
→ Map

(
Sm, (P kY )i−1

)
,

and if we use the identity map on the corresponding summands, then we have a
map of the left vertical columns. This gives a map of the pushouts, as desired. �

Remark A.3. We have chosen here functorial models of the pushout and of the
colimit.

The Postnikov section has two key features:

Theorem A.4. Let X be a pointed space, and let fk : X → P kX be the inclusion
of X into the colimit. Then

(1)

πj(P
kX,x) ∼=

{
πj(X,x) j ≤ k
0 j > k,

and the isomorphism is induced by fk.
(2) The map fk is initial among all maps from X to a space with π>k = 0.
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Proof. Note that in forming the stages of the space P kX, we attached cells of
dimensions at least (k + 2). In particular, by Theorem 22.7, we know that the
homotopy groups through dimension k are unchanged. Now given any

[f ] ∈ πj
(
(P kX)i, x

)
,

with j > k, any representative f gives a map of a sphere into (P kX)i. This is
exactly what we cone off to form (P kX)i+1, so we deduce that the map

πj
(
(P kX)i, x

)
→ πj

(
(P kX)i+1, x

)
is an isomorphism for j ≤ k and is zero for j > k. Since the homotopy groups of a
direct limit are the direct limit of the homotopy groups, this gives the result. �

This universal property of the Postnikov spaces also guarantees that we have
natural transformations

P k(−)⇒ P k−1(−).

Thus to any space, we have a tower

(13)

...

P k(X)

X P k−1(X)

...

fk

fk−1

Definition A.5. The tower of Equation 13 is the Postnikov tower.

By considering the long exact sequence is homotopy, we see that the homotopy
fiber of the map

P k(X)→ P k−1(X)

is the Eilenberg-MacLane space K(πk(X,x), k). Thus we can think of the Postnikov
tower as a way to reassemble X by putting the homotopy groups in one at a time.
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