

Sample problems for midterm exam

Solutions will not be provided.

(1) (Warm-up) Express the following numbers in the form $a + ib$, where $a, b \in \mathbf{R}$:

$$(1 + 5i)/\overline{(3 - 2i)}, \quad (-3 + i)\overline{(4 + 2i)}, \quad \frac{e^{1+3\pi i}}{e^{-1+i\pi/2}}, \quad \text{Log}(1 + i), \quad \sqrt{-1 - i},$$

where $\sqrt{-}$ refers to the principal branch.

(2) (Warm-up) Find all the values of $\log(1 - i)$ and $i^{1/5}$.

(3) (Next step) Make sure you can do all the quiz problems *100% correctly!*

(4) Find all the solutions of $z^7 = -7$. Same for $z^7 - 7z = 0$.

(5) Find and sketch the set described by $|z - 1| = |z + i|$.

(6) Find and prove a formula for $\sin 5\theta$ in terms of $\sin \theta$ and $\cos \theta$, where $\theta \in \mathbf{R}$.

(7) Sketch:

- (a) $\{z = re^{i\theta} \mid r > 0, \frac{\pi}{4} < \theta < \frac{3\pi}{4}\}$ and its image under $f(z) = iz^2$.
- (b) $\{1 \leq \text{Re}(z) \leq 2\}$ and $\{1 \leq \text{Im}(z) \leq 2\}$ and their images under $f(z) = e^z$.
- (c) $\{|z| \leq 1, \text{Re}(z) \geq 0\}$ and its image under $\text{Log}((1 - i)z)$.
- (d) $\{1 \leq \text{Im}(z) \leq 2\}$ and its image under $f(z) = 1/z$.

(8) Determine whether the following functions $f(z) = u(z) + iv(y)$ satisfy the Cauchy-Riemann equations:

$$z^2, \quad \text{Log } z, \quad \text{Re}(z), \quad |z|^2, \quad \text{Re}(z) + 2i \text{Im}(z), \quad 1/z.$$

(9) Let $u(x, y) = \frac{y}{x^2 + y^2}$, defined on $\mathbf{C} \setminus \{0\}$.

- (a) Show that u is a harmonic function.
- (b) Find its harmonic conjugate.

(10) Find a conformal map of the horizontal strip $\{-A \leq \text{Im}(z) \leq A\}$ onto the right half-plane $\{\text{Re}(w) \geq 0\}$, where A is a positive number. Do the same for the vertical strip $\{-A \leq \text{Re}(z) \leq A\}$.

(11) Write down fractional linear transformations taking

- (a) $(0, 1, \infty) \mapsto (0, \infty, i)$;
- (b) $(1, i, -1) \mapsto (1, 0, -1)$.

(12) Problems II.7: 2,3,4.

(13) Problem II.7: 9.

(14) Suppose $f : U \rightarrow \mathbf{C}$ is holomorphic and satisfies $\text{Re } f(z) = \text{Im } f(z)$ for all $z \in U$. Then show that f is constant. Similarly, suppose $f : U \rightarrow \mathbf{C}$ and $\bar{f} : U \rightarrow \mathbf{C}$ are both holomorphic. Then show that f is constant.

(15) State Green's Theorem.

(16) Problems III.1: 2,3,4.

(17) Evaluate $\int_{\gamma} \frac{1}{z} dz$, where:

- (a) γ is the circle of radius $R > 0$ centered at 0, oriented counterclockwise. (Do the same for the clockwise orientation.)

(b) γ is the quarter circle centered at 0, from $-1 - i$ to $-1 + i$.
(c) γ is the line from $-1 - i$ to $-1 + i$.

(18) Evaluate $\int_{\partial D} z dz$, where D is the square $\{-1 \leq x \leq 1, -1 \leq y \leq 1\}$.