Sample problems for midterm exam

For all of the problems below, you need to fully justify your answer.

- (1) True or false. Justify your answer. If something is false, you need to give a counterexample. You will get no credit for simply writing "true" or "false". Let V, W, Z be vector spaces of dimension n, m, l, respectively, and let T : V → W and U : W → Z be linear maps.
 (a) If U = T is enter them T is enter.
 - (a) If $U \circ T$ is onto, then T is onto.
 - (b) If $U \circ T$ is one-to-one, then T is one-to-one.
 - (c) $\operatorname{Hom}(V, W) = \operatorname{Hom}(W, V)$.
 - (d) There exists a linear map $\phi : Hom(V, W) \to Hom(W, V)$ that is one-to-one and onto.
 - (e) $\operatorname{rank}(T) + \operatorname{nullity}(T) = \dim W.$
 - (f) If T is linear, then T takes linearly independent subsets of V to linearly independent subsets of W.
 - (g) There exists a linear map $T : \mathbf{R}^3 \to \mathbf{R}^3$ that takes $(1, 1, 1) \mapsto (1, 2, 3), (1, 0, 1) \mapsto (1, 2, 3)$, and $(0, 1, 0) \mapsto (1, 2, 3)$.
 - (h) Every subspace of a finite-dimensional vector space is finite-dimensional.
 - (i) If S is a subset of a vector space V, then Span(S) is the intersection of all subspaces of V that contain S.
 - (j) If $T: V \to V$ satisfies $T^2 = id_V$, then $T = id_V$.
 - (k) If α is an ordered basis for V and β is an ordered basis for W, then $[T(v)]_{\alpha} = [T]^{\beta}_{\alpha}[v]_{\beta}$.
- (2) Let $T: P_2(\mathbf{R}) \to P_2(\mathbf{R})$ be given by $f(x) \mapsto f(x) + f'(x)$. Let $\alpha = [1, x, x^2]$ and $\beta = [1 + x, x, x + x^2]$ be ordered bases of $P_2(\mathbf{R})$.
 - (a) Prove that T is a linear map.
 - (b) Verify that β is an ordered basis of $P_2(\mathbf{R})$.
 - (c) Compute $[T]^{\alpha}_{\alpha}$ and $[T]^{\beta}_{\alpha}$.
 - (d) Is T one-to-one? onto?
 - (e) If $f(x) = 1 + x + x^2$, compute $[Tf]_{\beta}$.
- (3) Which of the following are subspaces of the corresponding vector space? If it is a subspace, compute its dimension.
 - (a) $\{(x, y, z) \in \mathbf{R}^3 \mid x + y = 5z\}.$
 - (b) $\{(x, y, z, w) \in \mathbf{R}^4 \mid x + y = 0, w = 1\}.$
 - (c) $\{(x, y, z, w) \in \mathbf{R}^4 \mid x^3 = y^3\}.$
 - (d) $\{(x, y, z, w) \in \mathbf{R}^4 \mid x^3 + y = z^3 + w\}.$
- (4) Let V be a vector space with basis $\{e_1, \ldots, e_n\}$. Then show that

$$\{e_1, e_1 + e_2, e_1 + e_2 + e_3, \dots, e_1 + \dots + e_n\}$$

is also a basis for V.

- (5) Consider $W = \{A \in M_{2 \times 2}(F) \mid A_{11} + A_{12} = 0\}.$
 - (a) Show that W is a subspace of $M_{2\times 2}(F)$.
 - (b) Give a basis for W.
 - (c) What is $\dim W$?

- (d) Find a basis of $M_{2\times 2}(F)$ extending the one in part (b).
- (6) Consider the subset W of all upper triangular matrices in $M_{n \times n}(F)$.
 - (a) Show that W is a subspace of $M_{n \times n}(F)$.
 - (b) Find a basis for W.
 - (c) What is $\dim W$?
- (7) Let V be a vector space of dimension n and let W_1, W_2 be subspaces of dimension m and n m, respectively. Show that $V = \text{Span}(W_1 \cup W_2)$ if and only if $W_1 \cap W_2 = \{0\}$.
- (8) Let V be a vector space and let S, T be two subsets of V. Show that $\text{Span}(S \cap T) \subset \text{Span}(S) \cap \text{Span}(T)$. Give an example when they are equal and when they are different.
- (9) Let V be an n-dimensional F-vector space with an ordered basis α . Show that the map $T: V \to F^n, x \mapsto [x]_{\alpha}$, is linear, one-to-one, and onto. Compute $[T]^{\beta}_{\alpha}$ and $[T]^{\gamma}_{\alpha}$, where $\beta = \{e_1, \ldots, e_n\}$ and $\gamma = \{e_n, \ldots, e_1\}$.