Sample problems for final exam

Please also review the midterm sample problems. For all of the problems below, you need to fully justify your answer.

- (1) True or false. Justify your answer. If something is true, you need to give a proof or cite the relevant theorem. If something is false, you need to give a counterexample. You will get no credit for simply writing "true" or "false".
 - (a) A matrix A is invertible if and only if $\det A = 0$.
 - (b) If v is an eigenvector of a linear map $T: V \to V$ with eigenvalue 100, then 3v is an eigenvector of T with eigenvalue 300.
 - (c) If a matrix $A \in M_{n \times n}(\mathbb{C})$ satisfies $A^2 = 0$, then A = 0.
 - (d) If $A, B \in M_{n \times n}(F)$ satisfy AB = I, then A and B are invertible.
 - (e) If $A \in M_{n \times n}(F)$ is diagonalizable, then A is invertible.
- (2) Let $S = \{v_1, \ldots, v_k\}$ be a finite subset of a vector space V. Show that if S' is obtained from S by an "elementary row operation":
 - (a) replacing v_i by av_i , $a \in F$ nonzero, or
 - (b) replacing v_i by $v_i + av_j$, where $a \in F$ and $j \neq i$,
 - then $\operatorname{Span} S = \operatorname{Span} S'$.
- (3) Let $T: P_{30}(\mathbb{R}) \to P_{30}(\mathbb{R})$ be given by T(f) = (x+3)f'(x). (a) Prove that T is linear.
 - (b) Is T one-to-one? onto?
- (4) If T : V → W is a linear map, then define the cokernel coker(T) of T as W/Im T. Prove that if T is a linear map from a finite-dimensional vector space V to itself, then coker T is isomorphic to ker T.
- (5) Let $T: M_{2\times 2}(\mathbb{R}) \to M_{2\times 2}(\mathbb{R})$ be given by $\begin{pmatrix} a & b \\ c & d \end{pmatrix} \mapsto \begin{pmatrix} 2a+b & c \\ b & 2d+c \end{pmatrix}$. Consider the ordered bases

$$\alpha = \begin{bmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$$
$$\beta = \begin{bmatrix} \begin{pmatrix} 1 & -1 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 1 & 2 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 1 & 0 \\ -1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$$

for $M_{2\times 2}(\mathbb{R})$.

- (a) Show that β is a basis for $M_{2\times 2}(\mathbb{R})$.
- (b) Compute $[T]^{\alpha}_{\alpha}$ and $[T]^{\beta}_{\beta}$.
- (c) If $A = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$, then compute $[T(A)]_{\beta}$.

(6) Let $V = P_2(\mathbb{R})$ with ordered basis $\alpha = [1, x, x^2]$ and let $S, T: V \to V$ be given by

$$T(f) = f(1) + f(-1)x + f(0)x^{2}$$

$$S(ax^{2} + bx + c) = cx^{2} + bx + a.$$

- Compute $[S]^{\alpha}_{\alpha}, [T]^{\alpha}_{\alpha}, [TS]^{\alpha}_{\alpha}, [(TS)^{-1}]^{\alpha}_{\alpha}$. (7) Let $A = \begin{pmatrix} 0 & 1 & -2 \\ 1 & 0 & -2 \\ 0 & 0 & -1 \end{pmatrix} \in M_{3 \times 3}(\mathbb{R})$.
 - - (a) Compute the characteristic polynomial p(t) of A and the eigenvalues. Does p(t) split? (b) Is A diagonalizable? Is yes, determine a basis of eigenvectors of A.
- (8) Determine precisely when an upper triangular matrix $A \in M_{n \times n}(F)$ with only one eigenvalue λ is diagonalizable.
- (9) Let A and B be $n \times n$ matrices such that AB = BA, i.e., they commute. Let λ be an eigenvalue of A with eigenvector v.
 - (a) Show that Bv is an eigenvector of A with eigenvalue λ (assuming $Bv \neq 0$).
 - (b) Show that if v is not an eigenvector of B, then dim $E_{\lambda} > 1$. (Here E_{λ} is the λ eigenspace for A.)
 - (c) Suppose that A has n distinct eigenvalues. Then show that B is diagonalizable.
- (10) Let $T: V \to V$ be a linear map. If $W \subset V$ is a subspace of and $T(W) \subset W$ (we say that T is *W*-invariant), then we can restrict T to W, i.e., we have a map $T|_W : W \to W$ given by $w \mapsto T(w)$. Let $\{\lambda_1, \ldots, \lambda_k\}$ be the set of eigenvalues of T and let $W = E_{\lambda_1} + \cdots + E_{\lambda_k}$.
 - (a) Show that $W = E_{\lambda_1} \oplus \cdots \oplus E_{\lambda_k}$.
 - (b) Show that $T(W) \subset W$.
 - (c) Show that $T|_W : W \to W$ is diagonalizable.
 - (d) If $Z \subset V$ is another T-invariant subspace such that $T|_Z$ is diagonalizable, then $\dim Z \le \sum_{i=1}^k \dim E_{\lambda_i}.$
- (11) Consider $P_1(\mathbb{R})$ with inner product $\langle f, g \rangle = \int_0^2 f(t)g(t)dt$.
 - (a) Compute ||x||.
 - (b) Compute the orthogonal projection of x onto the subspace generated by 1.
 - (c) Apply the Gram-Schmidt process to the ordered basis [1, x] to obtain an orthonormal basis for $P_1(\mathbb{R})$.
- (12) Let $V = \mathbb{R}^4$ with the standard inner product \langle , \rangle . Consider the linearly independent subset $S = \{w_1 = (1, 0, 1, 0), w_2 = (1, 1, 1, 1), w_3 = (2, 2, 0, 2)\}.$
 - (a) Apply the Gram-Schmidt process to S to compute an orthonormal basis α for Span S.
 - (b) Determine the Fourier coefficients of $v = (1, 2, 3, 2) \in \text{Span } S$ with respect to α .
- (13) Let (V, \langle , \rangle) be a finite-dimensional inner product space.
 - (a) If $T: V \to V$ is a linear operator such that $\langle T(x), T(y) \rangle = \langle x, y \rangle$ for all $x, y \in V$, then show that T is one-to-one.
 - (b) Show that if V is an \mathbb{R} -vector space, then $\langle x, y \rangle = \frac{1}{2}(\|x+y\|^2) \|x\|^2 \|y\|^2)$ for all $x, y \in V$. Hence an inner product can be recovered from the norm.
- (14) Let (V, \langle , \rangle) be a finite-dimensional inner product space. Let λ be an eigenvalue of T with eigenvector v.
 - (a) Show that $v \in (\text{Im}(T^* \overline{\lambda}I))^{\perp}$.
 - (b) Show that $T^* \overline{\lambda}I$ is not onto.
 - (c) Show that $\overline{\lambda}$ is an eigenvalue for T^* .

- (d) Show that if z is an eigenvector of T^* and $W = \text{Span}\{z\}$, then W^{\perp} is T-invariant, i.e., $T(W^{\perp}) \subset W^{\perp}$.
- Now suppose that the characteristic polynomial p(t) of T splits.
- (e) Show that the characteristic polynomial q(t) of $T|_{W^{\perp}}: W^{\perp} \to W^{\perp}$ divides p(t), i.e., p(t) = q(t)r(t) where r(t) is a polynomial.
- (f) Show by induction on dim(V) that V has an ordered orthonormal basis α such that $[T]^{\alpha}_{\alpha}$ is an upper triangular matrix.
- (15) Determine whether the following linear maps are diagonalizable:
 - (a) $T: \mathbb{R}^{2n} \to \mathbb{R}^{2n}, (a_1, \dots, a_n, b_1, \dots, b_n) \mapsto (b_1, \dots, b_n, a_1, \dots, a_n).$
 - (b) $T: \mathbb{C}^{2n} \to \mathbb{C}^{2n}, (a_1, \ldots, a_n, b_1, \ldots, b_n) \mapsto (ib_1, \ldots, ib_n, -ia_1, \ldots, -ia_n).$
 - (c) $T : \mathbb{R}^n \to \mathbb{R}^n, (x_1, \dots, x_n) \mapsto (x_1 + x_2, x_2 + x_3, \dots, x_{n-1} + x_n, x_n).$
 - (d) $T: \mathbb{R}^n \to \mathbb{R}^n, (x_1, \dots, x_n) \mapsto (x_1 + x_2, x_1 + x_2 + x_3, \dots, x_{n-2} + x_{n-1} + x_n, x_{n-1} + x_n).$