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ABSTRACT. We establish the Giroux correspondence in arbitrary dimensions. As corollaries we (i) give an
alternate proof of a result of Giroux-Pardon that states that any Weinstein domain is Weinstein homotopic to
one which admits a Weinstein Lefschetz fibration and (ii) prove that any two Weinstein Lefschetz fibrations
whose Weinstein domain structures are Weinstein homotopic are related by the Weinstein Lefschetz fibration
moves, affirming a conjecture of Giroux-Pardon.
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1. INTRODUCTION

Around twenty years ago in the influential paper [Gir02], Emmanuel Giroux formulated the equivalence
of contact structures and open book decompositions with Weinstein pages up to stabilization. For contact
3-manifolds the Weinstein condition is superfluous and there is a precise equivalence between contact struc-
tures and open book decompositions up to stabilization.1 In higher dimensions, the existence of an open
book decomposition with Weinstein pages follows without much difficulty from the technology of Donald-
son [Don96], Ibort, Martinez-Torres, and Presas [IMTP00], and Mohsen [Moh, Moh19], as explained by
Giroux in [Gir02]. On the other hand, the stabilization equivalence, due to Giroux-Mohsen [GM] and as
explained below, is a much less complete result.

The aim of this paper is to apply the recent advances in convex hypersurface theory to ameliorate the
situation.

1.1. Main result. Let (M, ξ) be a closed cooriented contact manifold of dimension 2n + 1, i.e.,
ξ = kerα such that α ∧ (dα)n > 0. Here n ≥ 1. The n = 1 case is often slightly different (and easier) and
will be treated separately when a difference arises.

Definition 1.1.1. A contact manifold (M, ξ) is supported by an open book decomposition (B, π : M \B →
S1) (abbreviated OBD) if

(1) the binding B2n−1 is a codimension 2 closed contact submanifold,
(2) π : M \ B → S1 is a fibration which agrees with the angular coordinate θ on a neighborhood

B ×D2 of B = B × {0}, and
(3) there exists a Reeb vector field Rα for ξ which is everywhere transverse to all the pages π−1(θ) ⇔

all the pages π−1(θ) are Liouville.

In this paper we will view a page as either a Liouville domain or its completion and will use the same
notation (W,λ), since there is no substantial difference.

Definition 1.1.2. A Liouville domain/completion (W,λ) is Weinstein or 0-Weinstein (resp. 1-Weinstein;
2-Weinstein) if its Liouville vector field Xλ is gradient-like for some function g : W → R which only has
Morse type (resp. Morse and birth-death type; Morse, birth-death, and swallowtail type) critical points.

We denote an i-Weinstein domain/completion by (W,λ, g), or simply (W,λ) if some g is understood.

Definition 1.1.3. A supporting OBD is
• strongly Weinstein if all of its pages are 1-Weinstein; and
• weakly Weinstein if at least one page is Weinstein.

For convenience we always assume that π−1(0) is Weinstein.

Definition 1.1.4. Two strongly/weakly Weinstein OBDs (Bt, πt : M \Bt → S1), t = 0, 1, for (M, ξ) are:
• strongly Weinstein homotopic if there is a 1-parameter family of OBDs (Bt, πt : M \ Bt → S1),
t ∈ [0, 1], interpolating between (B0, π0) and (B1, π1), all of whose pages are 2-Weinstein, and

1Although, to the authors’ knowledge the only publicly available account of the stabilization equivalence is in Williams’ the-
sis [Wil].
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• weakly Weinstein homotopic if there is a 1-parameter family of OBDs (Bt, πt), t ∈ [0, 1], interpo-
lating between (B0, π0) and (B1, π1) such that π−1

t (0) is 1-Weinstein for all t ∈ [0, 1].

We can view a strongly/weakly Weinstein OBD (B, π) as a relative mapping torus of (W,ϕ), where W
is a Weinstein domain that is a slight retraction of π−1(0) and ϕ ∈ Symp(W,∂W ).

Definition 1.1.5. Let L0 ⊂ W be a regular Lagrangian disk with Legendrian boundary ⊂ ∂W . Then either
of (W ∪ h, ϕ ◦ τL) or (W ∪ h, τL ◦ ϕ) is called a (positive) stabilization of (W 2n, ϕ) along L0, where:

(1) h is a Weinstein n-handle with core Lagrangian disk L1 such that ∂L0 = ∂L1 and
(2) τL is the (positive symplectic) Dehn twist about L = L0 ∪ L1.

Remark 1.1.6. Given ϕ ∈ Symp(W,∂W ), it is not clear whether (W,ϕ) gives rise to a strongly Weinstein
OBD. However, one can verify that a positive stabilization of a strongly/weakly Weinstein OBD along a
regular L0 is strongly/weakly Weinstein.

Definition 1.1.7. Two strongly/weakly Weinstein OBDs of (M, ξ) are strongly/weakly stably equivalent if
they are related by a sequence of positive stabilizations and destabilizations, conjugations, and strong/weak
Weinstein homotopies.

The main result of this paper is the following:

Theorem 1.1.8 (Stabilization equivalence). Any two strongly Weinstein OBDs of (M, ξ) are strongly stably
equivalent.

What Giroux [Gir02] and Giroux-Mohsen [GM] had already shown was that:

Theorem 1.1.9.
(1) Any (M, ξ) is supported by a strongly Weinstein OBD.
(2) Any two strongly Weinstein OBDs of (M, ξ) obtained by the “Donaldson construction” are strongly

stably equivalent.

Strictly speaking, the details of Theorem 1.1.9(2) have not appeared yet. Also Theorem 1.1.9(2) does
not say that any two strongly Weinstein OBDs that support (M, ξ) are strongly stably equivalent, making it
very hard to use in practice. In particular, it is difficult to tell whether a give OBD has been obtained by the
Donaldson construction because the latter depends on a “sufficiently large” integer k.

We are still left with the following fundamental question:

Question 1.1.10. Is a weakly Weinstein OBD of (M, ξ) weakly stably equivalent to a strongly Weinstein
OBD?

Remark 1.1.11. In general we cannot expect an OBD with Liouville pages to be stable equivalent to a
weakly or strongly Weinstein OBD since there exist 2n-dimensional Liouville domains X with nontrivial
Hk(X) for k ≫ n (see for example [MNW13, Theorem C], which gives X diffeomorphic to [0, 1] times an
odd-dimensional closed manifold), the pages of a positive stabilization are obtained by attaching n-handles,
and Weinstein domains have the type of a ≤ n-dimensional CW complex. (The authors learned about this
from Otto van Koert.)

Remark 1.1.12. There is also work of Licata-Vértesi [LV] in dimension 3 which uses the same basic outline
as ours. In fact Vértesi, as early as 2010, insisted that there should be a proof along the lines that were
ultimately carried out in this paper (in those days we simply did not have enough convex (hyper)-surface
technology).



4 JOSEPH BREEN, KO HONDA, AND YANG HUANG

1.2. Relative version. Next we describe a relative version of our main result. We first review Weinstein
partial open book decompositions (POBDs), more or less as presented in [HHb].

Definition 1.2.1. Given a Weinstein domain W , a cornered Weinstein subdomain S ⊂ W is a (possibly
empty) codimension 0 submanifold with corners which satisfies the following properties:
(CW1) There exists a decomposition ∂S = ∂inS ∪ ∂outS such that

(1) ∂inS and ∂outS are compact manifolds with smooth boundary that intersect along their bound-
aries;

(2) ∂(∂inS) = ∂(∂outS) is the codimension 1 corner of ∂S; and
(3) ∂outS = S ∩ ∂W and is a proper subset of each component of ∂W .

(CW2) The Liouville vector field Xλ on W is inward-pointing along ∂inS and outward-pointing near ∂outS.
(CW3) W \ S is a Weinstein domain after smoothing.
The region S (without reference to the space W ) is called a cornered Weinstein cobordism.

Definition 1.2.2. A strongly Weinstein POBD for a compact cooriented contact manifold (M2n+1, ξ) with
Weinstein convex boundary is a pair (W × [0, 12 ], S × [12 , 1]), where:

(1) Wt := W × {t} is a 1-Weinstein domain for each t ∈ [0, 12 ] and St := S × {t} is a 1-Weinstein
cornered Weinstein cobordism for each t ∈ [12 , 1];

(2) S1/2 is a cornered Weinstein subdomain of W1/2 and there is an embedding ϕ : S1 ↪→ W0 that
identifies S1 with a cornered Weinstein subdomain of W0;

(3) there exists a contact form α on the glued manifold which restricts to the 1-Weinstein Liouville forms
on each Wt and St and whose Reeb vector field Rα is given by ∂t on (∂W )×[0, 12 ] and (∂S)×[12 , 1];
and

(4) (M, ξ) is obtained by filling in D2 × ∂W with a “standard” contact structure on a neighborhood
of the contact submanifold ∂W and smoothing some corners.

We may also denote a strongly Weinstein POBD by (W,ϕ : S → W ) with the understanding that all the
pages Wt and St are 1-Weinstein.

The definitions of Weinstein homotopic POBDs is analogous to the closed case, and the definition of a
positive stabilization of a POBD is as follows:2

Definition 1.2.3. Let L0 ⊂ W be a regular Lagrangian disk with Legendrian boundary ⊂ ∂W . Then either
of the following two POBDs,

(W ∪ h, τL ◦ (ϕ ∪ idh) : S ∪ h → W ∪ h),

(W ∪ h, (ϕ ∪ idh) ◦ τL : τ−1
L (S) ∪N(L0) → W ∪ h),

is called a (positive) stabilization of (W,ϕ : S → W ) along L0, where:
(1) h is a Weinstein n-handle with core Lagrangian disk L1 such that ∂L0 = ∂L1,
(2) N(L0) is the Weinstein n-handle neighborhood with cocore L0, attached to W \N(L0), and
(3) τL is a (positive symplectic) Dehn twist about L = L0 ∪ L1.

The two POBD stabilizations will be called the (TB1) positive stabilization and the (TB2) positive stabiliza-
tion, respectively, for consistency with the language used in Section 2.5 (where we also explain how these
stabilizations arise).

As in the absolute case, a positive stabilization of a strongly/weakly Weinstein POBD along a regular L0

is strongly Weinstein.

2In previous papers, they were called partial positive stabilizations.
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Theorem 1.2.4 (Stabilization equivalence for POBDs). Let (M2n+1, ξ) be a compact cooriented contact
manifold with Weinstein convex boundary. Then:

(1) (M, ξ) is supported by a strongly Weinstein POBD.
(2) Any two strongly Weinstein POBDs of (M, ξ) are strongly stably equivalent.

Part (1) was proved in [HHb]. The proof of Part (2) is identical to that of Theorem 1.1.8 and is left to the
reader.

1.3. Some corollaries. We now state some corollaries of Theorem 1.1.8. The first is a result due to
Giroux-Pardon, originally proved using Donaldson’s technology:

Corollary 1.3.1 (Giroux-Pardon [GP17]). Any Weinstein domain is 1-Weinstein homotopic to one which
admits a Weinstein Lefschetz fibration.

Definition 1.3.2. A Weinstein Lefschetz fibration (p : X2n → D2, λ) (abbreviated WLF) satisfies the
following:

(1) X is a 2n-dimensional compact domain with corners and λ is a Weinstein structure on the smoothing
Xsm of X;

(2) p is a smooth map which is a fibration except at a finite number Crit(p) of critical points in int(X);
(3) there exist local holomorphic coordinates z1, . . . , zn about each x ∈ Crit(p) with respect to which

p(z1, . . . , zn) = p(x) + z21 + · · · + z2n and λ = i
∑n

j=1(zjdzj − zjdzj) (and hence dλ is Kähler
with respect to these local holomorphic coordinates);

(4) ∂X is the union of two faces ∂vX = p−1(∂D2) and ∂hX = ∪y∈D2∂(p−1(y)) meeting at a codi-
mension two corner and p|∂vX : ∂vX → ∂D2 and p|∂hX : ∂hX → D2 are fibrations;

(5) dλ is nondegenerate on each ker dp(x) for each x ∈ X; and
(6) the restriction of λ to each nonsingular fiber is Weinstein and λ|∂(p−1(y)) is independent of y ∈ D2.

A WLF often comes with a basepoint ∗ ∈ D2, which we take to be a regular value. We call p−1(∗) the
distinguished fiber.

There is a corresponding combinatorial object called an abstract WLF (W ♭;L = (L1, . . . , Lm)), where
W ♭ is a (2n−2)-dimensional Weinstein domain and L1, . . . , Lm are exact parametrized Lagrangian spheres
in W ♭. A WLF p : X → D2 can be constructed from an abstract WLF by attaching critical Weinstein
handles along Legendrians L̃j ⊂ W ♭ × S1 ⊂ ∂(W ♭ ×D2) near 2πj/m ∈ S1 obtained by lifting Lj . Here
W ♭ becomes the distinguished fiber of the WLF. We refer the reader to [GP17, Section 6] for more details
on how to go back and forth between WLFs and abstract WLFs.

The following moves applied to (W ♭;L = (L1, . . . , Lm)) are called the abstract WLF moves:
(1) (Deformation) Simultaneous Weinstein deformation of W ♭ and exact Lagrangian isotopy of L.
(2) (Cyclic permutation) Replace L by (L2, . . . , Lm, L1).
(3) (Hurwitz move) Replace L by (L2, τL2L1, L3, . . . , Lm) or (τ−1

L1
(L2), L1, L3, . . . , Lm).

(4) (Stabilization) Given a regular Lagrangian disk D0 ⊂ W ♭ with Legendrian boundary, replace W ♭

by W ♭ ∪ h, where h is a critical Weinstein (n − 1)-handle with core Lagrangian disk D1 such that
∂D0 = ∂D1, and replace (L1, . . . , Lm) by (L′ = D0 ∪D1, L1, . . . , Lm).

Our second corollary was conjectured by Giroux-Pardon [GP17, p.967]:

Corollary 1.3.3. Any two abstract WLFs whose Weinstein domain structures are 1-Weinstein homotopic are
related by the abstract WLF moves.

The proofs of both corollaries will be given in Section 7. The point is that, given a WLF p : X → D2,
the restriction of p to ∂X gives a strongly Weinstein OBD of ∂X , where p−1(int(D2)) is a neighborhood of
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the binding and p−1(eiθ), eiθ ∈ ∂D2, are the pages. From the point of view of an abstract WLF (W ♭;L =

(L1, . . . , Lm)), the page of the OBD is W ♭ and the monodromy is given by positive Dehn twists around
L1, . . . , Lm. The abstract WLF moves can then be described in terms of the boundary OBD.

1.4. Review and reformulation of [HHb]. This paper is an extension of the following results from
[HHb]:

Theorem 1.4.1. Any closed hypersurface in a contact manifold can be C0-approximated by a Weinstein
convex one.

Theorem 1.4.2. Let ξ be a contact structure on Σ × [0, 1] such that the hypersurfaces Σ × {0, 1} are
Weinstein convex. Then, up to a boundary-relative contact isotopy, there exists a finite sequence 0 < s1 <
· · · < sN < 1 such that the following hold:

(B1) Σ× {s} is Weinstein convex if s ̸= si for any 1 ≤ i ≤ N .
(B2) For each i, there exists a small ϵ > 0 such that ξ restricted to Σ× [si− ϵ, si+ ϵ] is contactomorphic

to a bypass attachment.

We say that ξ on Σ × [0, 1] admits a bypass decomposition if there exist 0 < s1 < · · · < sN < 1 for
some N such that (B1) and (B2) hold. Bypass attachments will be reviewed in Section 2.

The technical heart of Theorem 1.1.8 is the 1-parametric version of Theorem 1.4.2 and the case-by-case
analysis of all the possibilities that arise. As such, the following remark is essential:

Remark 1.4.3. A key feature of the proofs of Theorems 1.4.1 and 1.4.2 is that they can be done parametri-
cally, i.e., in any number of parameters.

Definition 1.4.4.
(1) A contact handlebody over a Weinstein domain (W,λ) is a contact manifold contactomorphic to

(W × [−C,C]t, ξ|W×[−C,C] = ker(dt+ λ)),

where C > 0.
(2) A generalized contact handlebody is a contact manifold which is contactomorphic to

(W × [f−(x), f+(x)]t, ξ|W×[f−(x),f+(x)] = ker(dt+ λ)),

where f−, f+ : W → R are smooth functions with f−(x) < f+(x) for all x ∈ W , and is foliated
by 1-Weinstein domains of graphical type (i.e, of the form t = f(x)).

(3) A (generalized) contact handlebody with W a flexible Weinstein domain is a flexible (generalized)
contact handlebody.

Remark 1.4.5. A (generalized) contact handlebody has a natural isotopy class of smoothings. We will often
abuse notation and also call the smoothing a (generalized) contact handlebody.

We briefly sketch the convex hypersurface theory proof of Theorem 1.1.9(1), that is, the existence of
supporting strongly Weinstein OBDs. Given a closed contact manifold (M, ξ) of dimension 2n+1, we first
choose a self-indexing Morse function f : M → R so that Σ := f−1(n + 1

2) is a smooth hypersurface
which divides M into two components M − Σ = H ′

0 ∪ H ′
1. Using Gromov’s h-principle, we can realize

some deformation retraction Hi of H ′
i, i = 0, 1, as a contact handlebody.

Definition 1.4.6 (θ-decomposition). A θ-decomposition3 of a closed contact manifold (M, ξ) is a pair con-
sisting of two decompositions M = H0 ∪ (Σ× [0, 1]) ∪H1 and ∆, where:

(1) H0 and H1 are contact handlebodies;

3Informally called a “mushroom burger”; the Hi are the buns and Σ× [0, 1] is the patty.
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(2) ∂H0 ≃ Σ× {0} and ∂H1 ≃ −Σ× {1} are Weinstein convex hypersurfaces;
(3) ∆ is a bypass decomposition of (Σ× [0, 1], ξ).

Theorem 1.4.2 implies the existence of a θ-decomposition (M = H0 ∪ (Σ × [0, 1]) ∪ H1,∆). Since
a bypass is a smoothly canceling (but contact-topologically nontrivial) pair of contact handle attachments
of indices n and n + 1, a θ-decomposition gives a contact handle decomposition of (M, ξ), which in turn
implies Theorem 1.1.9(1).

Remark 1.4.7. We will work with θ-decompositions instead of contact Morse functions g : M → R even
though a θ-decomposition gives rise to a contact Morse function. This is because convex hypersurfaces
transverse to the gradient of a contact Morse function are not necessarily Weinstein convex (i.e., the Wein-
stein data can be lost).

Organization of the paper. In Section 2 we review and rework some preliminaries, including the theory of
contact handles, Legendrian Kirby calculus, bypass attachments, and stabilizations of (P)OBDs. Then in
Section 3 we outline the proof of Theorem 1.1.8, the main stabilization equivalence result. The analysis of
all the cases that arise in the 1-parametric version of Theorem 1.4.2 is carried out in Section 4; as indicated
earlier, this is the technical heart of the proof of Theorem 1.1.8. The remaining steps of the proof of The-
orem 1.1.8 are given in Section 5 and Section 6 and the proofs of Corollaries 1.3.1 and 1.3.3 are given in
Section 7.

Acknowledgements. JB would like to thank Austin Christian for many valuable conversations over the
course of 2022 and 2023. KH thanks Otto van Koert and Kevin Sackel for helpful correspondence and
conversations. He is also grateful to Hirofumi Sasahira and Kyushu University for their hospitality during
his sabbatical in AY 2022–2023. KH also thanks Matthias Scharitzer for helpful email and Vera Vértesi for
discussions many many years ago.

2. PRELIMINARIES

In this section we review the theory of contact handles, Legendrian Kirby calculus, bypass attachments,
and stabilizations of OBDs, primarily from the point of view of [HHa, HHb]; see also [Sac, DG09, CM19].
We will also introduce a new ingredient — decorations on Legendrian surgery diagrams — to more effec-
tively describe contact (n+ 1)-handles.

Recall that the ambient contact manifold (M, ξ) has dimension 2n + 1, where n ≥ 1. The n = 1 and
n > 1 cases will be treated in parallel in this paper. Since the n = 1 case is simpler, we will mostly discuss
the n > 1 case and comment on the n = 1 case when appropriate.

2.1. Higher-dimensional Legendrian front projections. We begin by describing the Legendrian
surgery diagrams that we use when working with higher-dimensional Legendrians, i.e., when Λ is a Legen-
drian and dimΛ > 1.

Remark 2.1.1. Although dimM = 2n+1, many of our diagrams represent (n−1)-dimensional Legendrians
in a codimension-2 contact submanifold, like the dividing set of a convex hypersurface. Dimensions should
be clear from context.

The nature of Legendrian front singularities and Legendrian Reidemeister moves in high dimensions is
complicated, and in general cannot be comprehensively described by bootstrapping the behavior of Legen-
drian knots. In [CM19], Casals and Murphy work with a class of Legendrians in arbitrary dimensions that
exhibit spherical symmetry, and thus, with specified conventions, can be diagrammatically represented by
curves. Legendrian Reidemeister moves that respect this symmetry extend accordingly. For our purposes,
which are generally local, we can afford the luxury of working with similar conventions as [CM19].
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As such, our diagrams are drawn using curves, although they implicitly describe Legendrian fronts in
arbitrary dimensions roughly according the conventions established in Section 2.4 of [CM19]. For conve-
nience, we summarize them here; the reader is also encouraged to consult the reference in question.

Given a Legendrian front curve Λ ⊆ R2
(z,x1)

, we generate a Legendrian front Λ̃n−1 ⊆ Rn
(z,x1,...,xn−1)

representing a local Legendrian submanifold in (R2n−1, ξst) as follows:

• We include the curve and plane

Λ ⊆ R2
(z,x1)

⊆ Rn
(z,x1,...,xn−1)

in the natural way and consider z the “vertical” direction.
• Let Λ0 ⊆ Λ be a curve corresponding to a single component of the corresponding Legendrian link.

We extend Λ0 to Λ̃n−1
0 ⊆ Rn by local Sn−2-symmetry around a vertical axis ℓΛ0 which depends on

the component Λ0; see, for example, Figure 2.1.1.
• Isotropic (n − 2)-dimensional spheres — for example, those representing attaching spheres of 2n-

dimensional subcritical Weinstein (n − 1)-handles — are drawn as the union of two 2-disks, or
sometimes just one 2-disk. The higher-dimensional projection is spun around a choice of vertical
axis, which in the presence of two 2-disks will coincide with the bisecting axis. This spun region is
Sn−2×D2, and represents the projection of the attaching region Sn−2×Dn+1 of the 2n-dimensional
subcritical Weinstein (n− 1)-handle.

• When possible, the axis ℓΛ0 will be chosen to respect reflective symmetry of the Legendrian front
Λ0. In particular, local pieces of Legendrian fronts represented by parabolas are spun around the
axis passing through their extreme point. See, for example, the dark blue Legendrian in Figure 2.1.1.

We further impose the following convention, distinct from [CM19]:

• All of our cone singularities, that is, those obtained by a rotation of a transverse double point through
an axis passing through the intersection point, are obtained as the result of the ⊎ operation (which
includes handleslides), and so we do not adopt the thick dot convention of [CM19] to distinguish
cone singularities from genuine transverse intersections. That is, any regular double point in a
Legendrian diagram that does not arise from a ⊎ operation is not spun to produce a cone singularity,
but rather spun around an axis disjoint from the crossing. With the arguments below and in particular
in Section 4, there should be no confusion. See, for example, the black Legendrian in Figure 2.1.1.

FIGURE 2.1.1. Legendrian front curves on the left that imply the (local) higher-
dimensional Legendrian front projections on the right. From context, the black Legendrian
arose from a ⊎ or handleslide operation and thus produces a cone singularity.
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2.2. Contact n- and (n + 1)-handle attachments. We review the theory of contact n-handles and
(n + 1)-handles, in particular highlighting the necessary attachment data. For more details, consult [HHa]
and [Sac].

In what follows, (M2n+1, ξ) is a contact manifold with convex boundary Σ2n = ∂M . Fix an outward
pointing contact vector field on M , let Γ2n−1 ⊆ Σ be the corresponding dividing set of Σ, viewed as a
contact submanifold of (M, ξ), and let R± be the positive and negative regions of Σ, viewed as Liouville
manifolds with ideal contact boundary Γ. We also write R± = R± ∪ Γ.

The following two propositions from [HHa] summarize the effect of attaching a critical contact handle
(that is, either an n-handle or an (n+ 1)-handle) to M .

Remark 2.2.1. For the sake of brevity, we will generally not distinguish between (finite-type) Liouville
domains and their completions.

Proposition 2.2.2 (Contact n-handle attachment, Proposition 3.1.3 [HHa]). Let Λn−1 ⊆ (Γ2n−1, ξ|Γ) be
an embedded Legendrian sphere in the dividing set. A contact n-handle can be attached to M along Λ to
produce a new contact manifold (M ′, ξ′) with convex boundary Σ′ = R′

+ ∪ Γ′ ∪R′
− such that:

(1) R′
± is obtained from R± by attaching a Weinstein n-handle along Λ ⊆ ∂R±.

(2) Γ′ is obtained from Γ by performing a contact (−1)-surgery along Λ.

Proposition 2.2.3 (Contact (n+1)-handle attachment, Proposition 3.2.6 [HHa]). Let Λn−1 ⊆ (Γ2n−1, ξ|Γ)
be an embedded Legendrian sphere in the dividing set and let D± ⊆ R± be regular, asymptotically cylin-
drical, open Lagrangian disks that asymptotically fill Λ. A contact (n + 1)-handle can be attached to M
along D+ ∪Λ∪D− to produce a new contact manifold (M ′, ξ′) with convex boundary Σ′ = R′

+ ∪Γ′ ∪R′
−

such that:
(1) R′

± is obtained from R± by removing a standard neighborhood of D± from R±.
(2) Γ′ is obtained from Γ by performing a contact (+1)-surgery along Λ.

Summary of attachment data. To motivate our system of decorations on Legendrian diagrams, we highlight
the attaching data for critical contact handles.

• A contact n-handle attachment to (M2n+1, ξ) is specified by an embedded Legendrian sphere
Λn−1 ⊆ (Γ2n−1, ξ|Γ) in the dividing set.

• A contact (n+1)-handle attachment to (M2n+1, ξ) is specified by an embedded Legendrian sphere
Λn−1 ⊆ (Γ2n−1, ξ|Γ) in the dividing set, together with (regular, asymptotically cylindrical, open)
Lagrangian disks Dn

± ⊆ R± that (asymptotically) fill Λ, i.e., informally ∂D± = Λ. We call Λ the
equator of the handle attachment.

To keep track of and manipulate contact n-handles, Legendrians in the dividing set are sufficient. To keep
track of all data involving contact (n + 1)-handles via Legendrians in the dividing set, it is necessary to
further describe Lagrangian disk fillings of Legendrians in the positive and negative regions.

Decorated Legendrian diagrams. We introduce a system of decorations to Legendrian surgery diagrams of
dividing sets for the purpose of keeping track of Lagrangian disks with Legendrian boundary. As many of
our arguments are completely local, our surgery diagrams will be local, drawn in the front projection, and
typically enclosed by a rectangular frame.

Our decorated local Legendrian diagrams obey the following conventions:
(D0) In the lower right corner of the frame we indicate the manifold represented by the empty diagram,

and at the bottom center below the frame we indicate the manifold obtained after performing any
indicated surgeries in the diagram.

(D1) A (−1)-surgery coefficient (sometimes drawn outside the frame) means that a contact n-handle has
been attached along the indicated Legendrian (as usual).
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(D2) A Legendrian with a ⊕ node indicates that there is a preferred or specified Lagrangian disk in R+

filling the Legendrian. The precise location of the node has no significance. Likewise, a Legendrian
with a ⊖ node indicates a preferred or specified Lagrangian disk filling in R−. A Legendrian may
be decorated by any combination of ⊕ and ⊖ nodes; see any of the diagrams in Figure 2.2.1.

(D3) A contact (n + 1)-handle attachment is indicated by a Legendrian decorated by both a ⊕ and ⊖
node, together with a (+1)-surgery coefficient; see the top right diagram in Figure 2.2.1.

(D4) Let Λ0 ⊆ Γ = ∂R± be a Legendrian with a (−1)-surgery coefficient, indicating the attaching sphere
of a contact n-handle to produce Γ′ = ∂R′

±. Let Λ be another Legendrian decorated by a ⊕ or ⊖
node, indicating a Lagrangian disk D± filling Λ in R′

±. If D± intersects the cocore of the Weinstein
n-handle attached to R± along Λ0 transversely and exactly once, then we indicate this with a solid
node on Λ0 and a dashed edge connecting the solid node to the ⊕ or ⊖ node on Λ; see the bottom
diagram in Figure 2.2.1.

Remark 2.2.4. We emphasize that the decorations described above are not sufficient to uniquely describe
Lagrangian disk fillings of Legendrians; a Legendrian sphere could be filled by distinct disks, and our
decorations cannot in general make the distinction. The nodes merely indicate that there is a chosen and
preferred disk, and primarily offer a convenient way to keep track of what needs to be analyzed.

Γ′
Γ

Γ′
Γ

Γ′
Γ

(−1)

(−1)
(−1)

(+1)

FIGURE 2.2.1. Three different decorated local Legendrian surgery diagrams that exhibit
the basic features of (D1)–(D4). In the top left, a contact n-handle is attached along the red
Legendrian, while the blue Legendrian is filled by a Lagrangian disk in R+. In the top right,
the green Legendrian is filled by Lagrangians disks in both R± and a contact (n+1)-handle
is attached along their union. The bottom diagram exhibits (D4). In particular, contact n-
handles are attached along both the red and green Legendrians, and the blue Legendrian is
filled by a disk in R+ that intersects the cocore of the red Weinstein n-handle. To the right
is an n = 1 version for the sake of clarity.

Remark 2.2.5. An informal consequence of (D4) is that if a (−1)-surgered Legendrian does not have any
solid nodes, then the associated contact n-handle can be removed without affecting any Lagrangian disk
fillings of other Legendrians.
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2.3. Handleslides. Here we collect some handlesliding lemmas that will be frequently used. We
begin with two that describe the effect of sliding Legendrian-Lagrangian pairs (Λ;D), by which we mean
a Legendrian Λ ⊆ Γ and a Lagrangian disk in R± that fills it, across contact n- and (n+ 1)-handles. These
are essentially reformulations of the Legendrian handleslide lemma (Lemma 5.2.3) from [HHa]; see also
Proposition 2.14 of [CM19].

In both lemmas, we let (M2n+1, ξ) be a contact manifold with convex boundary Σ = R+ ∪ Γ ∪ R−.
Let Λ,Λ0 ⊆ Γ be Legendrians in the dividing set that intersect ξ|Γ-transversely at one point. When n = 1,
Λ,Λ0 ≃ S0 and “intersecting ξ|Γ-transversely at one point” means intersecting at a common point p. Let
D± ⊆ R± be Lagrangian disk fillings of Λ, and D0,± ⊆ R± be Lagrangian disk fillings of Λ0. The
Legendrian sum operation Λ⊎Λ0 and the Legendrian boundary sum operation D±⊎bD0,± are as defined in
[HHa, Section 4]. When n = 1 we set Λ⊎Λ0 = Λ0⊎Λ = (Λ∪Λ0)\{p} and D±⊎bD0,± = D±∪D0,±∪{p}.
Finally let Λε,Γ be the time-ε pushoff of Λ with respect to some Reeb vector field on Γ and let Dε,Γ

± be the
induced Hamiltonian pushoff of D±. We will often omit the superscript Γ when it is understood from the
context.

Lemma 2.3.1 (Sliding over n-handles). Let (M ′, ξ′) with convex boundary Σ′ = R′
+∪Γ′∪R′

− be obtained
by attaching a contact n-handle hn to M along Λ0, so that Γ′ is obtained by (−1)-surgery along Λ0. Let K
be the Legendrian core of hn, which can be viewed as the Lagrangian core of the corresponding Weinstein
handles attached to R±.

(i) Sliding Λ−ε up over the (−1)-surgery along Λ0 produces new Legendrian-Lagrangian pairs(
(Λ ⊎ Λ0)

ε,Γ; (D± ⊎b K)ε,Γ
)
.

(ii) Sliding Λε down over the (−1)-surgery along Λ0 produces new Legendrian-Lagrangian pairs(
(Λ0 ⊎ Λ)−ε,Γ; (K ⊎b D±)

−ε,Γ
)
.

Here the time ±ε-pushoff is taken with respect to Γ so that (Λ ⊎ Λ0)
ε,Γ, (Λ0 ⊎ Λ)−ε,Γ ⊂ Γ′.

Γ′

Λ−ε (Λ′)ε

Λ′
0Λ0

(−1)

(−1)

Γ′

(Λ ⊎ Λ0)
ε (Λ′

0 ⊎ Λ′)−ε

(−1)

(−1)

FIGURE 2.3.1. The statement of Lemma 2.3.1, sliding across contact n-handles.

Lemma 2.3.2 (Sliding over (n + 1)-handles). Let (M ′, ξ′) with convex boundary Σ′ = R′
+ ∪ Γ′ ∪ R′

− be
obtained by attaching a contact (n + 1)-handle hn+1 to M along D0,+ ∪ D0,−, so that Γ′ is obtained by
(+1)-surgery along Λ0.

(i) Sliding Λ−ε up over the (+1)-surgery along Λ0 produces new Legendrian-Lagrangian pairs

((Λ0 ⊎ Λ)ε; (D0,± ⊎b D±)
ε) .
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(ii) Sliding Λε down over the (+1)-surgery along Λ0 produces new Legendrian-Lagrangian pairs(
(Λ ⊎ Λ0)

−ε; (D± ⊎b D0,±)
−ε

)
.

Γ′

Λ−ε (Λ′)ε

Λ′
0Λ0

(+1)

(+1)

Γ′

(Λ0 ⊎ Λ)ε (Λ′ ⊎ Λ′
0)

−ε

(+1)

(+1)

FIGURE 2.3.2. The statement of Lemma 2.3.2, sliding across contact (n+ 1)-handles.

It is often useful to diagrammatically identify the Lagrangian disk that is the cocore of a Weinstein n-
handle attached along a (−1)-surgered Legendrian.

Lemma 2.3.3 (Cocores in decorated Legendrian diagrams). Let Σ2n = R+ ∪Γ∪R− be the convex bound-
ary of (M2n+1, ξ). Let hn be a contact n-handle attached to M along Λ0 ⊆ Γ, and let h±n denote the
corresponding Weinstein n-handles attached to R±. The belt sphere and cocore pair (Λ;D±) of h±n , after
applying suitable Hamiltonian isotopies, can be described in a decorated Legendrian diagram by any of the
following in the n > 1 case; see the right side of Figure 2.3.3.

(i) The Legendrian Λδ, decorated with a ⃝± -node and a dashed edge connected to a solid node on Λ0.
Here δ is a positive or negative number and Λδ is obtained by applying a time-δ Reeb flow in the
surgered dividing set Γ′ to Λ so that Λδ ∩ hn = ∅.

(ii) A standard tb = −1 Legendrian Λ′, linked once with Λ0 and decorated with a ⃝± -node.
The contact isotopy on Γ′ taking Λ to Λδ or Λ′ extends to a Hamiltonian isotopy of D±.

The n = 1 case is given on the left side of Figure 2.3.3.

Proof. The time-δ Reeb flow on Γ′ described in (i) extends to a Hamiltonian isotopy ϕ of D± in R′
±,

obtained from R± by attaching h±n . The isotoped disk ϕ(D±) has nonzero intersection number with D±,
and hence the diagrammatic description (i) follows from decoration convention (D4).

The second description (ii) is obtained by sliding Λδ with δ < 0, obtained originally via (i), up over the
(−1)-surgery along Λ. □

Remark 2.3.4. Observe that, by a sequence of Reidemeister moves, the cusps of the belt sphere in the bottom
middle diagram on the right-hand side of Figure 2.3.3 may also be positioned below the surgered strand.

2.4. Bypass attachments. A bypass attachment is a special type of smoothly canceling pair of contact
n- and (n+ 1)-handles that may or may not be canceling at the level of contact structures. Here we review
the basic theory from [HHa]. We also introduce some new language and make use of decorations to clarify
the diagrammatic description of a bypass.
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(−1)

(−1)(−1)

(−1)

(A) (B) (C)
(A) (B) (C)

FIGURE 2.3.3. On the right half, identifying isotopic pushoffs of a cocore of a Weinstein
n-handle attached to R+ as described by Lemma 2.3.3. On the left half is the n = 1 case.
(A) is a positive Reeb pushoff, (B) is a nonintersecting pushoff, and (C) is a negative Reeb
pushoff. The same figures hold for handles attached to R−.

Definition 2.4.1. Let Σ2n = R+ ∪ Γ ∪ R− be the convex boundary of (M2n+1, ξ). A tuple of bypass
attachment data is a quadruple (Λ−,Λ+;D−, D+) where each of (Λ±;D±) is a Legendrian-Lagrangian
pair in R± such that Λ− and Λ+ intersect ξΓ-transversely at one point.

The following theorem is essentially Theorem 5.1.3 from [HHa].

Theorem 2.4.2 (Bypass attachment). Let Σ2n = R+ ∪ Γ∪R− be the convex boundary of (M2n+1, ξ) with
bypass attachment data (Λ−,Λ+;D−, D+). Then a pair of smoothly canceling contact n- and (n + 1)-
handles, called a bypass attachment, can be attached according to either of the following models:

(R+) Attach a contact n-handle along Λ− ⊎ Λ+ and a contact (n + 1)-handle along D̃− ∪ Λ−ε
+ ∪D−ε

+ ,
where D̃− is obtained by sliding Dε

− down across the (−1)-surgery along Λ− ⊎ Λ+.
(R−) Attach a contact n-handle along Λ− ⊎ Λ+ and a contact (n + 1)-handle along Dε

− ∪ Λε
− ∪ D̃+,

where D̃+ is obtained by sliding D−ε
+ up across the (−1)-surgery along Λ− ⊎ Λ+.

The two models, called the R±-centric models, respectively, are identified by a handleslide of the (n + 1)-
handle across the n-handle; see Figure 2.4.1.

Remark 2.4.3. While the R±-centric models are equivalent via a handleslide, we distinguish them in this
paper for the purpose of decorated Legendrian calculations. It is often convenient to use one model over the
other when manipulating multiple bypass attachments. Furthermore, we call them the R±-centric models
because they each give a natural description of R′

±, respectively, in terms of Weinstein handles attached to
and removed from R±.

2.5. Trivial bypasses and stabilizations of POBDs. Informally, a trivial bypass is a bypass attachment
which also cancels on the level of contact structures, not just smoothly. For convenience we review the
definition from [HHa].

Definition 2.5.1. The bypass attachment data (Λ±;D±) is trivial if either of the following holds:
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(Bypass attachment data)

Γ

Γ

Λ−

Λ+

(R−-centric)

Γ′

Γ

(−1)

(+1)

Λε
−

Λ− ⊎ Λ+

(R+-centric)

Γ′

Γ

(−1)

(+1)

Λ−ε
+

Λ− ⊎ Λ+

Handleslide

FIGURE 2.4.1. The two equivalent models of a bypass attachment according to Theo-
rem 2.4.2. In the lower figures, Λε

− and Λ−ε
+ are isotopic via a handleslide across Λ− ⊎Λ+.

(TB1) (Λ+;D+) is a pair consisting of a standard Legendrian and standard Lagrangian disk such that
Λ+ is below Λ−

4 (in the n = 1 case a standard Lagrangian disk cuts off a half-disk D ⊂ R+ with
boundary δ ∪D+, where δ ⊂ Γ lies right below Λ+ ∩ Λ−).

(TB2) (Λ−;D−) is a pair consisting of a standard Legendrian and standard Lagrangian disk such that Λ−
is above Λ+ (in the n = 1 case D− cuts off a half disk D ⊂ R− with boundary δ ∪ D−, where
δ ⊂ Γ lies right above Λ+ ∩ Λ−).

A bypass with trivial bypass data is itself called trivial. See Figure 2.5.1.

(TB1)

Γ

Γ

(TB2)

Γ

Γ

FIGURE 2.5.1. The two types of trivial bypass data described in Definition 2.5.1.

Proposition 2.5.2 (Proposition 8.3.2 [HHa]). A trivial bypass attachment to Σ× {0} produces a vertically
invariant contact structure on Σ × [0, 1]. That is, a trivial bypass does not change the isotopy class of the
contact structure.

Of importance to this paper is the ability to identify trivial bypasses directly via pairs of contact handles.

4More precisely, Λ+ is below Λ− if in the local front projection given by Figure 2.5.1 the z-coordinates of Λ+ are smaller than
those of Λ−, except at the unique point of intersection Λ− ∩ Λ+.
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Lemma 2.5.3 (Identifying trivial bypasses). Let Σ2n = R+∪Γ∪R− be the convex boundary of (M2n+1, ξ).
Let hn be a contact n-handle attached to M along Λn ⊆ Γ, and let hn+1 be a contact (n+1)-handle attached
to M ∪ hn along D+ ∪ Λn+1 ∪D−. Then the pair of handles hn ∪ hn+1 forms a trivial bypass if either of
the following conditions hold; see Figure 2.5.2:
(TB1) D+ is a positive Reeb shift of the cocore of the n-handle attached to R+ along Λn, and D− ⊆ R−.
(TB2) D− is a negative Reeb shift of the cocore of the n-handle attached to R− along Λn, and D+ ⊆ R+.

(TB1)

Γ′

Γ

Λn

Λn+1

(−1)

(+1)

(TB2)

Γ′

Γ

(−1)

(+1)

Λn

Λn+1

FIGURE 2.5.2. The two trivial bypasses described in Lemma 2.5.3. On the left, the positive
Lagrangian disk filling of the red Legendrian is isotopic to the cocore of the Weinstein
n-handle attached to R+ along the black Legendrian. The same holds for the negative
Legendrian disk filling of the blue Legendrian on the right. We again warn the reader that
the dotted lines in the diagram do not uniquely determine the specific disks D+ in (TB1)
and D− in (TB2).

Proof of Lemma 2.5.3. We prove the lemma for the (TB1) case; the (TB2) case is completely analogous.
Let hn, hn+1 be a pair of contact handles attached to (M, ξ) according to (TB1). This pair of handles arises
from the bypass attachment data (Λ̃±; D̃±), where Λ̃− = Λ−ε

n+1, D̃− = D−ε
− , and (Λ̃+; D̃+) is a standard

Legendrian unknot with standard Lagrangian disk filling, positioned below Λ̃− as in Figure 2.5.3. The

Γ′

Γ

Λ̃ε
− = Λn+1

Λ̃− ⊎ Λ̃+

(−1)

(+1)

Γ′

Γ

Λn+1

Λn
(−1)

(+1)

Γ

Γ

Λ̃+

Λ̃−

FIGURE 2.5.3. The pair of handles in (TB1) of Lemma 2.5.3 arising from a trivial bypass
attachment. From the left to the middle is given by an R−-centric bypass as in Theo-
rem 2.4.2, and from the middle to the right is given by a Kirby move.



16 JOSEPH BREEN, KO HONDA, AND YANG HUANG

resulting bypass is trivial by Definition 2.5.1. □

Remark 2.5.4. Lemma 2.5.3 implies that a pair of decorated Legendrians as in Figure 2.5.2 can be erased
at the level of the underlying contact manifold. That is, not only do the surgeries on Γ2n−1 cancel, but the
corresponding contact handles attached to M2n+1 cancel at the level of contact structures.

Now we discuss bypass attachments at the level of POBDs. Recall that if Σ = R+∪Γ∪R− is the convex
boundary of the contact manifold (M, ξ) supported by the POBD (W,ϕ : S → W ), then R+ = W \ S and
R− = W \ϕ(S). A contact handle attachment, and thus a bypass attachment, can be interpreted in terms of
its effect on a supporting POBD. Briefly, a contact n-handle has the effect of adding a Weinstein n-handle to
W with no additional monodromy, and a contact (n+ 1)-handle attached along D+ ∪D− has the effect of
enlarging the the cornered subdomain S by a regular neighborhood of D+ and modifying the monodromy
so that the image of D+ is D−. For details see Section 8 of [HHb].

Importantly, attaching a trivial bypass to the boundary of a POBD is equivalent to performing a positive
stabilization of the POBD.

Lemma 2.5.5 (Trivial bypasses are positive stabilizations). Let (W,ϕ : S → W ) be a POBD supporting
(M, ξ) with convex boundary Σ. Let (Λ±;D±) ⊆ Σ be trivial bypass data.

(1) If the trivial bypass is trivial in the sense of (TB1) in Definition 2.5.1, then attaching the trivial
bypass corresponds to a (TB1) positive stabilization of (W,ϕ : S → W ) along D−.

(2) If the trivial bypass is trivial in the sense of (TB2) in Definition 2.5.1, then attaching the trivial
bypass corresponds to a (TB2) positive stabilization of (W,ϕ : S → W ) along D+.

Proof. First we attach the contact n-handle of the bypass to Σ along Λ− ⊎ Λ+. As a contact n-handle
is a Reeb-thickened Weinstein n-handle h, the resulting POBD is (W ∪ h, ϕ : S → W ∪ h). Note that
the cornered subdomain S and the partially-defined monodromy ϕ remain unchanged. Next we attach the
contact (n+ 1)-handle. Here we consider separately the trivial bypasses of type (TB1) and (TB2).

(TB1). First assume the bypass data is trivial in the (TB1) sense, so that (Λ+;D+) is standard and below Λ−.
With this assumption the n-handle h is attached along Λ−⊎Λ+

∼= Λ−. We attach the contact (n+1)-handle
according to the R+-centric model. The positive hemisphere of the attaching sphere of the (n + 1)-handle,
that is, the intersection of the attaching sphere with R+, is D−ε

+ . The negative hemisphere arises from sliding
Dε

− down across the n-handle attached along Λ−. By Lemma 2.3.3, we may isotop (via Legendrian isotopy
in the dividing set) the attaching sphere of the contact (n+ 1)-handle so that D−ε

+ becomes the cocore K of
h. After this isotopy, the image of the negative hemisphere is exactly τL(K), where L is the union of D−
and the core of h; see the top row of Figure 2.5.4.

Consequently, the effect of this handle attachment to the POBD (W ∪ h, ϕ : S → W ∪ h) is to add to
S a neighborhood of K, which we may take to be all of h, and to compose the monodromy with τL. This
yields a (TB1) positive stabilization of (W,ϕ : S → W ).

(TB2). Next assume the bypass data is trivial in the (TB2) sense, so that (Λ−;D−) is standard and above Λ+.
With this assumption the n-handle h is attached along Λ−⊎Λ+

∼= Λ+. We attach the contact (n+1)-handle
according to the R+-centric model. The positive hemisphere of the attaching sphere of the (n + 1)-handle,
is D−ε

+ . The negative hemisphere arises from sliding Dε
− down across the n-handle attached along Λ+; see

the bottom row of Figure 2.5.4. We remark for the sake of symmetry with the (TB1) case that in the (TB2)
case we can isotop the attaching sphere of the (n + 1)-handle so that the negative hemisphere is the cocore
K of h and the positive hemisphere is τ−1

L (K), where L is the union of D+ and the core of h. However, at
the moment we do not perform this last isotopy and work directly with the R+-centric model of the bypass
attachment.
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Consequently, the effect of this handle attachment to the POBD (W ∪h, ϕ : S → W ∪h) is to add to S a
neighborhood of D−ε

+ , and to compose the monodromy with τL. Note that by assumption D+ ⊆ W \S and
so τL commutes with ϕ ∪ idh. The yields a (TB2) positive stabilization of (W,ϕ : S → W ) along D+. □

(TB1)

D−
D+

attach n-handle identify attaching sphere
of (n + 1)-handle

isotop

D−ε
+

(TB2)

D−
D+

attach n-handle identify attaching sphere
of (n + 1)-handle

isotop
D−ε

+

FIGURE 2.5.4. Positive stabilizations of POBDs arising from trivial bypass attachments in
the case n = 1. All figures depict W×[0, 12 ]t with the t-direction oriented out of the page, so
that W ×{1

2} is in front and W ×{0} is in back. In each row, the first figure depicts trivial
bypass data. The second figure depicts the contact n-handle attachment, interpreted as a
Weinstein n-handle attachment to W . The third figure identifies the R+-centric attaching
sphere of the contact (n + 1)-handle. In both the third and fourth figures, the new POBD
monodromy after attaching the contact (n+1)-handle maps the solid blue arc to the dashed
red arc.

We leave it to the reader to further verify that, likewise, inserting a trivial bypass into the patty of a
mushroom burger corresponds to positively stabilizing the OBD.

Remark 2.5.6. The pair of contact handles described by the π-rotation of Figure 2.5.2 — for example,
involving a down-shift of the positive cocore, or an up-shift of the negative cocore — corresponds to a
negative stabilization of the POBD, rendering the contact manifold overtwisted.

2.6. How to detect stabilizations geometrically. Above, we described the detection of stabilizations in
terms of canceling contact handles. It will also be useful to detect stabilizations directly in a POBD, which
we describe here.

Given a strongly Weinstein OBD (W,ϕ) for (M, ξ), there exists a small neighborhood N(B) of the
binding B and a decomposition M \ N(B) = H0 ∪ H1 such that H0 = W × [−2ϵ, 2ϵ] with ϵ > 0 small
is a contact handlebody and H1 = M \ int(N(B) ∪ H0) is a generalized contact handlebody. (We may
interchangeably use H1 = M \ int(N(B) ∪ H0) or H1 = M \ int(H0), provided N(B) is sufficiently
small.)

Let L0 ⊂ W be a regular Lagrangian disk with Legendrian boundary Λ0 ⊂ ∂W . Since L0 is regular,
W admits a decomposition into a Weinstein domain W ′ and an n-handle h attached along Λ′

0 ⊂ ∂W ′ with
core L′

0 and cocore L0; see Figure 2.6.1.
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W ′ W ′Λ′
0 Λ′

0
L′

0

Λ0

Λ0

L0

(Λ′
0)

δ

(Λ′
0)

δ

hδ

hδ

FIGURE 2.6.1. The shaded region is the n-handle h, with cocore L0 and core L′
0. The

purple arcs from (Λ′
0)

δ to Λ0 represent the trace of a Legendrian isotopy from (Λ′
0)

δ to Λ0.

Next let L̃t ⊂ h × [−ϵ, ϵ], t ∈ [−ϵ, ϵ], be a 1-parameter family of pairwise disjoint ξ-Legendrians (this
means Legendrians with respect to the contact structure ξ) with boundary ∂L̃t = Λ̃t such that:

(i) L̃0 = L0 × {0};
(ii) Λ̃t ⊂ (∂W ∩ h)× {t} for t ∈ [−ϵ, ϵ];

(iii) any two Λ̃t1 , Λ̃t2 , t1, t2 ∈ [−ϵ, ϵ], are taken to each other by the characteristic foliation of (∂W ) ×
[−ϵ, ϵ] and hence ⊔t∈[−ϵ,ϵ]Λ̃t is ξ-Legendrian;

(iv) ⊔t∈[−ϵ,ϵ]L̃t is a smooth disk with corners which sweeps out the core of a contact (n + 1)-handle;
and

(v) Λ̃−ϵ, Λ̃ϵ ⊂ (∂W ′ ∩ ∂W )× {±ϵ}.
See Figure 2.6.2. Recall that if β is the Liouville form on W and dt+ β|∂W is the restriction of the contact
form on (∂W ) × [−2ϵ, 2ϵ], then the characteristic foliation on (∂W ) × [−ϵ, ϵ] is directed by ∂t − Rβ|∂W ,
where R denotes the Reeb vector field. We leave it to the reader to verify the existence of the family
{L̃t}t∈[−ϵ,ϵ].

We then set H ′
0 = H0 \ ⊔t∈[−ϵ,ϵ]N(L̃t) and H ′

1 = M \ int(H ′
0). Here N(L̃t), t ∈ [−ϵ, ϵ], is a Weinstein

n-handle which is a small neighborhood of Lt.

L̃−ϵ L̃ϵ

L0

FIGURE 2.6.2. The 1-parameter family L̃t in blue.

Lemma 2.6.1. The decomposition M = H ′
0 ∪H ′

1 corresponds to the stabilization of (W,ϕ) along L0.
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Proof. We reformulate Lemma 2.6.1 in terms of POBDs.
Let (Λ′

0)
δ be the δ-Reeb pushoff of Λ′

0 in ∂W ′ and hδ an n-handle attached to W along (Λ′
0)

δ, where
δ > 0 is small. Also let L be the Lagrangian sphere in W ∪ hδ obtained by gluing L0, the core of hδ with
boundary on (Λ′

0)
δ, and a standard modification of the trace of the Legendrian isotopy from (Λ′

0)
δ to Λ0.

Then:

Claim 2.6.2. The contact handlebody H0 admits a POBD (W ∪ hδ, τL).

Proof of Claim 2.6.2. The key is to view H ′
0 as W × [−2ϵ,−ϵ] with a thickening of hδ attached, where δ is

taken to be a small number with a dependency on ϵ. For this we slide the handle N(L̃ϵ), viewed as attached
to W ′ × {ϵ}, along the characteristic foliation of ∂W ′ × [−2ϵ, 2ϵ] in the negative t-direction. (As far as the
description of the POBD is concerned, there is no difference between isotopic handles h and N(L̃ϵ).) This
has the effect of pushing Λ̃ϵ = ∂L̃ϵ in the positive Reeb direction by an amount δ which depends on the
constant ϵ.

The contact handlebody H0 is obtained from H ′
0 by attaching the canceling contact (n + 1)-handle

⊔t∈[−ϵ,ϵ]N(L̃t). After a slight isotopy, we may assume that:

(1) L̃−ϵ is on the R+ part of the boundary of the contact handlebody over W ∪N(L̃t);
(2) L̃ϵ is on the R− part of the boundary of the contact handlebody over W ∪N(L̃t) and is represented

by the purple arcs in Figure 2.6.2; and
(3) the projections of their boundaries to W ∪N(L̃t) coincide.

Hence the partially defined monodromy map sends L̃−ϵ to L̃ϵ and is isotopic to τL. □

Lemma 2.6.1 follows from Claim 2.6.2. □

2.7. Folded Weinstein hypersurfaces. A C0-generic hypersurface in a contact manifold is Weinstein
convex, which, informally, is equivalent to admitting a decomposition as the union of two positive and
negative Weinstein domains. There is a more general class of folded Weinstein hypersurfaces [HHb], which,
informally, is one that admits a decomposition into alternating positive and negative Weinstein cobordisms.
Retrogradients of characteristic foliations, and hence bypass attachments, are described naturally by folded
Weinstein hypersurfaces. In this subsection we review the concept as it will be used in the next section.

The following definition is from [HHb]:

Definition 2.7.1. A folded Weinstein hypersurface Σ ⊆ (M, ξ) is an oriented closed hypersurface such that
the characteristic foliation Σξ satisfies the following properties:
(FW1) There are pairwise disjoint codimension-1 submanifolds Ki ⊆ Σ called the folding loci that cut Σ

into 2m pieces, i.e.,
Σ = W1 ∪K1 · · · ∪K2m−1 W2m

where Wi are compact with ∂Wi = Ki ∪Ki−1. Here we assume K0 = K2m = ∅.
(FW2) The singular points of Σξ in each Wi have the same sign, and the sign changes upon crossing Ki or

Ki−1. We assume the singularities in W1 are positive, and that each Wi has at least one singularity.
(FW3) There is a Morse function on each Wi for which Σξ|Wi is gradient-like and Ki,Ki−1 are regular

level sets.

Remark 2.7.2. We refer to Ki as maximal if i is odd, and minimal if i is even. That is, maximal folding
loci behave like dividing sets, in the sense that the oriented characteristic foliation flows from a positive to a
negative region. The opposite is true of a minimal folding locus.

In [HHb] the second and third authors construct a normalized contact neighborhood of a folded Weinstein
hypersurface. In particular, there is a contact form which induces a Weinstein cobordism structure on each
Wi.
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2.8. Retrogradient and bypass diagrams. If Σ2n is a convex hypersurface, then it naturally admits a
(trivial) folded Weinstein structure as Σ = R+∪ΓR−. Let p± be positive and negative, respectively, critical
points of index n of the characteristic foliation of Σ and suppose that W u(p+) ∩W s(p−) = ∅, where W u

and W s indicate the unstable and unstable manifolds. By exchanging the values of the critical points, we
can shuffle the corresponding elementary Weinstein cobordisms to give Σ a non-trivial folded Weinstein
structure

Σ = W1 ∪W2 ∪Y W3 ∪W4.

See Figure 2.8.1.

Σ (convex) Σ (folded Weinstein)

Γ Y

G+ Y

Y

(local retrogradient diagram)

(local bypass diagrams)

Γ

Γ

G+

Γ

G+

Γ

(−1) (−1)

FIGURE 2.8.1. Shuffling cobordisms in a convex hypersurface to produce a non-trivial
folded Weinstein structure. Various local surgery diagrams are drawn. The bottom three
diagrams all depict the same information.

We will use this non-trivial folded Weinstein structure to identify and model retrogradient trajectories. To
this end the following two types of Legendrian surgery diagrams are particularly relevant:

Definition 2.8.1.
(1) A (local) retrogradient diagram is a (local) Legendrian surgery diagram that represents a minimal

contact folding locus of a folded Weinstein hypersurface, where intersections of red and blue Leg-
endrians represent retrogradient trajectories.

(2) A (local) bypass diagram is a (local) Legendrian surgery diagram that describes the dividing set of
a convex hypersurface, often with decorations representing bypass attachment data.

Remark 2.8.2. We will often draw retrogradient diagrams parametrically; for example, see Figure 2.8.2.

Remark 2.8.3. It is not necessary for us to keep track of Lagrangian disk fillings of Legendrians in local
retrogradient diagrams inside folded Weinstien hypersurfaces, so we typically omit decorations.
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Σ

Y

Y

Y

FIGURE 2.8.2. A 1-parametric family of folded Weinstein hypersurfaces in which two
retrogradients appear.

2.9. The bypass-bifurcation correspondence. Here we review material from Section 8 of [HHb]. Ev-
ery retrogradient of the characteristic foliation between nondegenerate critical points of index n is modeled
by a bypass attachment, in a way that will be given precisely by Proposition 2.9.1 below.

We will often translate between folded Weinstein descriptions of retrogradients and bypass attachment
data via this correspondence. In particular, we will perform chains of bypass attachments in succession, and
as such it is important to keep track of the (un)stable disks of the critical points involved in retrogradients
before and after a bypass.

Proposition 2.9.1 (Proposition 8.3.2 of [HHb]). Let (Σ× [−δ, δ], ξ) satisfy the property that Σs := Σ×{s}
is convex for s ̸= 0 and is folded Weinstein at s = 0, at which point there is a retrogradient p− ⇝ p+
between nondegenerate critical points p± of index n. Then (Σ × [−δ, δ], ξ) is contactomorphic relative to
the boundary to a bypass attachment along Σ−δ with data (Λ±;D±), where

• D+ can be identified with a small positive Reeb shift of the unstable disk K+ of p+, and
• D− can be identified with a small negative Reeb shift of the stable disk K− of p−.

Moreover, after the bypass,
• the unstable disk of p+ in Σδ can be identified in the R+-centric model as the cocore of the positive

Weinstein n-handle, and
• the stable disk of p− in Σδ can be identified in the R−-centric model as the cocore of the negative

Weinstein n-handle.
See Figure 2.9.1.

3. PROOF OF STABILIZATION EQUIVALENCE

In this section we prove Theorem 1.1.8, modulo several theorems (Theorems 3.1.1, 3.1.7, 3.1.8, and 3.1.9)
that will be proven in subsequent sections.

For the rest of the paper, unless otherwise stated, “(P)OBD” refers to a strongly Weinstein (P)OBD. Our
starting point is a 1-Morse family of smooth functions ft : M → R, t ∈ [0, 1], where f0 and f1 are
contact Morse functions corresponding to the two OBDs. The analysis of such a family {ft}t∈[0,1] together
with its gradient-like vector fields in smooth topology is classical and is due to Cerf [Cer70] and Hatcher-
Wagoner [HW73]. Our goal is to make the family ft as contact as possible. In particular, we will use the
smooth homotopy ft to build a family of θ-decompositions, and then we will analyze the θ-decompositions
to conclude stable equivalence of the OBDs.
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t = −δ t = 0 t = δ

Folded Weinstein

Bypass attachment

K+

K−

Convex

FIGURE 2.9.1. The bypass-bifurcation correspondence as described by Proposition 2.9.1.
The top row is a family of folded Weinstein hypersurfaces where at t = 0 there is a retro-
gradient p− ⇝ p+ of the characteristic foliation. Below is the corresponding situation for
the convex hypersurfaces at times t = ±δ. The black arrows are the dividing sets. The by-
pass data is given by shifting the highlighted blue and red disks on the left in the indicated
directions until they intersect.

The θ-decompositions are analyzed in the three steps described in the next subsection. The proof of
stabilization equivalence is then given in §3.2.

Idea of proof. To clarify the role of each step below, we briefly outline the idea of the proof. For most
times t, i.e., when ft is Morse, we can apply the technology of [HHb] to produce a θ-decomposition Θt. If
two such θ-decompositions have buns that are smoothly isotopic, then after a flexibilization process of the
buns (Step 2 below) we can assume they are contact isotopic. The θ-decompositions are then related by a
homotopy of patties, which allows us to analyze the OBDs (Step 1 below). It remains to consider moments
in the homotopy ft that change the topological type of the buns of the θ-decompositions. This only happens
at birth-death type critical points of index (n, n + 1); note that birth-death points of strictly super- or sub-
critical indices do not affect the relevant topologies. The analysis of the OBDs near such points is given by
Step 3.

3.1. Three main steps. Here we analyze special kinds of θ-decompositions in three steps.

Step 1: Homotopies of patties.

This step corresponds to Section 4, where we will prove the following main technical theorem:

Theorem 3.1.1. Let Θt = H0 ∪ (Σ× [0, 1]) ∪H1, t ∈ [0, 1], be a 1-parameter family of θ-decompositions
of (M, ξt), where ξt is independent of t on H0 and H1. Then the OBDs corresponding to Θ0 and Θ1 are
stably equivalent.

Theorem 3.1.1 is equivalent to the following statement, which generalizes a result of Bin Tian [Tia] in
dimension three.
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Theorem 3.1.2. Any two sequences of bypass attachments starting with Σ×{0} that describe (Σ× [0, 1], ξ)
can be related to each other by two types of moves: far commutativity and adding a trivial bypass.

This theorem guides our general philosophy, which is to push as much of the nontrivial contact topology
into the family of patties as possible.

Step 2: Wrinkling Legendrians via bypasses.

In this step we show that we can flexibilize the buns of a θ-decomposition. The precise statement is
Theorem 3.1.8 and the proof will be given in Section 5. As a consequence, we prove stable equivalence of
the OBDs corresponding to homotopies with no birth-death points of middle index (Theorem 3.1.5 below),
which will be used in the proof of Theorem 1.1.8. To state the theorem cleanly, we introduce some language.

Definition 3.1.3. Let f : M → R be a self-indexing Morse function. Let Y0 and Y1 be the n-skeleta of f
and −f , respectively. We say that a θ-decomposition Θ = H0∪(Σ× [0, 1])∪H1 of (M, ξ) is bun-supported
by f if there is a diffeomorphism ϕ : M → M isotopic to the identity such that Hi is a neighborhood of
ϕ(Yi).

Remark 3.1.4. Given a self-indexing Morse function f : M → R, the proof of Corollary 1.3.1 in [HHb]
produces a θ-decomposition of (M, ξ) that is bun-supported by f , and moreover we may take the diffeo-
morphism ϕ to be C0-close to the identity.

With this, we prove:

Theorem 3.1.5. Let Θ0 and Θ1 be θ-decompositions of (M2n+1, ξ) such that there exists a 1-Morse family
ft : M → R, t ∈ [0, 1] satisfying:

• for t = 0, 1, Θt is bun-supported by ft, and
• for t ∈ [0, 1], ft has no birth-death critical points of index (n, n+ 1).

Then the OBDs corresponding to Θ0 and Θ1 are stably equivalent. In particular, any two θ-decompositions
bun-supported by the same Morse function give stably equivalent OBDs.

Remark 3.1.6. Note that in this theorem we are not assuming that f0 and f1 are contact Morse functions,
only that they are smooth Morse functions bun-supporting the corresponding θ-decompositions.

In order to prove this theorem, we would like to “freely” move the skeleta of the contact handlebodies of
the θ-decompositions, i.e., find a C0-close approximation of the smooth isotopy of the handles arising from
the family ft, t ∈ [0, 1]. When n = 1, one needs to apply a sequence of positive and negative stabilizations
to the the Legendrian skeleta in order to realize the link isotopy by a Legendrian isotopy; this is well-known.
From now on in this step we will assume n > 1. In this case we replace the contact handlebodies Hi,t,
t = 0, 1, of Θt by flexible contact handlebodies H ′

i,t. This is analogous to the construction of flexible
Weinstein manifolds due to Cieliebak-Eliashberg [CE12].

Before describing how to do this in general (Theorem 3.1.8 below) we first consider a basic example.
Let L be a closed Legendrian submanifold diffeomorphic to Sn. Its standard neighborhood N = N(L) is
a contact handlebody and its boundary is a convex hypersurface which we denote by Σ. Let L′ ⊂ N be a
wrinkled stabilization of L, i.e., those with an unfurled swallowtail as in Eliashberg-Mischachev [EM97];
see also Murphy [Mur, Section 3]. See Figure 3.1.1. Its small standard neighborhood N ′ = N(L′) ⊂ N is
also a contact handlebody with convex boundary Σ′.

At this point it is convenient to switch perspectives to POBDs. Note that a contact handlebody over
a Weinstein domain W admits a trivial POBD (W,∅), where ∅ is the trivial map ∅ → W . The layer
N \ int(N ′), i.e., the region bounded by Σ and Σ′, is then described as follows:

Theorem 3.1.7.
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FIGURE 3.1.1. The front projection of an unfurled swallowtail (left) and a bypass attach-
ment (right). On the right, the gray disk is a contact n-handle, and the blue interior of the
“air pocket” is the smoothly canceling contact (n+ 1)-handle of the destabilizing bypass.

(1) N (resp. N ′) is a contact handlebody over W (resp. W ′), obtained by a attaching a handle along
the standard (resp. loose) Legendrian unknot on ∂D2n where D2n is standard. More precisely,
when n = 2, a “loose Legendrian” means a twice-stabilized Legendrian, with one positive and
one negative stabilization as given by Λ′ in Figure 3.1.2, and when n > 2 the loose Legendrian is
obtained from the n = 2 one by spinning.

(2) N is obtained from N ′ by attaching a bypass. Moreover, the resulting POBD obtained from attach-
ing the bypass to N ′ is a stabilization of (W,∅). See Figure 3.1.3 for a schematic picture.

bypass
Λ′

N ′ N

contact handlebody over W ′ contact handlebody over W

(−1) (−1)

FIGURE 3.1.2. The statement of Theorem 3.1.7. On the left is a handlebody diagram for
W ′, and on the right is a handlebody diagram for W . The contact handlebody N (over W )
is obtained by attaching a bypass to N ′.

See Figure 3.1.4 which describes the 1- and 2-handles of the bypass in the n = 1 case and also the right-
hand side Figure 3.1.1 which describes the n-handle and smoothly canceling (n + 1)-handle. The explicit
bypass data is given by Figure 5.1.4 in Section 5.

In general we have the following:

Theorem 3.1.8. Let N be a contact handlebody over a Weinstein domain W .
(1) If we replace each n-handle hi, i = 1, . . . , κ, of W with core Li by its wrinkled stabilization L′

i, then
we obtain a contact handlebody N ′ over the flexible Weinstein domain W ′ which is obtained from
the neighborhood W (n−1) of the (n − 1)-skeleton of W by attaching n-handles h′i, i = 1, . . . , κ,
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N ′ ≃ (W ′,∅)

Bypass B

(W,∅) ≃ N

Pos. stab.
N

0-handle

(n + 1)-handle

0-handle

(n + 1)-handle

0-handle

(n + 1)-handle

n-handlen-handle

n-handle n-handle

n-handle n-handle

FIGURE 3.1.3. A schematic description of the statement of Theorem 3.1.7(2). The colors
are consistent with Figure 5.1.4.

FIGURE 3.1.4. The middle depicts attaching a 1-handle (solid gray arc) and a canceling
2-handle (disk foliated by dotted blue arcs) of a bypass to a standard neighborhood of the
once-stabilized Legendrian L′ on the left in the n = 1 case. The right-hand side depicts
attaching two bypasses. Although it looks as though we need two bypasses to go from the
standard neighborhood N(L′) to the neighborhood N(L) of the original Legendrian, one
bypass (as in the middle) suffices.

along the stabilizations of ∂Li. Here the stabilizations are done along spheres Sn−1 bounding disks
in Li.

(2) N is obtained from N ′ by attaching bypasses Bi, i = 1, . . . , κ, along ∂N ′, and moreover the
resulting POBD for N is a stabilization of (W,∅).

We will prove this theorem in Section 5. For now, we use it to prove Theorem 3.1.5.

Proof of Theorem 3.1.5. For t = 0, 1, let Hi,t be the contact handlebody buns of Θt. Let H ′
i,t ⊂ Hi,t be the

“wrinkled” contact handlebodies described by Theorem 3.1.8 and let Θ′
t be the θ-decompositions obtained

from Θt by replacing

Hi,t → H ′
i,t, Σt × [0, 1] → (Σt × [0, 1]) ∪ (H0,t −H ′

0,t) ∪ (H1,t −H ′
1,t).

By Theorem 3.1.8(2), for each t = 0, 1 the OBDs corresponding to Θt and Θ′
t are stably equivalent. Thus,

it suffices prove stable equivalence of the OBDs corresponding to Θ′
0 and Θ′

1.
Because the smooth homotopy ft has no birth-death critical points of index (n, n+1), the corresponding

n-skeleta of ±ft for t = 0, 1 are ambient isotopic. Since Θt is bun-supported by ft for t = 0, 1, the han-
dlebodies Hi,0 and Hi,1 are smoothly isotopic. By the wrinkled stabilization of the Legendrian cores of the
critical contact handles as described in Theorem 3.1.8(1), the wrinkled contact handlebodies H ′

i,0 and H ′
i,1
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are then contact isotopic. Thus we can connect the θ-decompositions Θ′
0 and Θ′

1 via these contact isotopies,
and after normalizing the contact isotopy on the buns we are reduced to a family of θ-decompositions as
described by Theorem 3.1.1 in Step 1. From that theorem it follows that the OBDs corresponding to Θ′

0 and
Θ′

1, and thus Θ0 and Θ1, are stably equivalent. □

Step 3: Birth-death homotopies.

This step corresponds to Section 6, where we prove a theorem comparable to Theorem 3.1.5 for a 1-Morse
family with a middle-index birth-death critical point.

Theorem 3.1.9. Suppose that ft : (M2n+1, ξ) → R, t ∈ [t0 − ϵ, t0 + ϵ], is a 1-Morse family with ft
Morse for t ̸= t0 and with a single birth-death critical point of index (n, n + 1) at t = t0. Then there are
θ-decompositions Θt0±ϵ such that

(1) Θt0±ϵ is bun-supported by ft0±ϵ, and
(2) the OBDs corresponding to Θt0−ϵ and Θt0+ϵ are stably equivalent.

Remark 3.1.10. Again, we are not assuming that ft0±ϵ are contact Morse functions.

Here we describe the buns of the θ-decompositions Θt0±ϵ. In Section 6 we will describe the bypass
decompositions of the patties and prove that the resulting OBDs are stably equivalent. First, assume that the
birth-death point at t = t0 is a birth point; the case of a death point is identical.

• The θ-decomposition Θt0−ϵ.
Here we simply apply the technology of [HHb] to ft0−ϵ without need for specification. In partic-

ular, by the proof of Corollary 1.3.1 and in particular Claim 10.0.1 in [HHb], we may let H0,t0−ϵ be
a contact handlebody that is C0-close to a neighborhood of the n-skeleton of ft0−ϵ, and let H1,t0−ϵ

be the same for −ft0−ϵ. The buns are then Hi,t0−ϵ and the patty Σt0−ϵ× [0, 1] is the region between
H0,t0−ϵ and H1,t0−ϵ. See the left side of Figure 3.1.5. By construction, Θt0−ϵ is bun-supported by
ft0−ϵ.

• The θ-decomposition Θt0+ϵ.
We build a θ-decomposition Θt0+ϵ starting from Θt0−ϵ. Note that at t = t0+ϵ there is a smoothly

but not necessarily contact-topologically canceling pair of n- and (n + 1)-handles. We C0-closely
approximate the n-handle by a sufficiently stabilized5 Legendrian L0, subject to the condition that
the attaching locus of L0 on ∂H0,t0−ϵ is a sufficiently stabilized Legendrian in the dividing set of the
latter. Similarly, we let L1 be the analogous Legendrian approximation of the cocore of the (n+1)-
handle. We set H0,t0+ϵ := H0,t0−ϵ ∪ N(L0) and H1,t0+ϵ := H1,t0−ϵ ∪ N(L1), where N(L0) and
N(L1) are contact handles corresponding to L0 and L1. The buns are then Hi,t0+ϵ and the patty
Σt0+ϵ × [0, 1] is the region between H0,t0−ϵ and H1,t0−ϵ. See the right side of Figure 3.1.5. Again,
by construction Θt0+ϵ is bun-supported by ft0+ϵ.

3.2. Proof of Theorem 1.1.8. With the tools above we now prove our main theorem.

Proof of Theorem 1.1.8. Given two supporting OBDs of (M2n+1, ξ), let ft : (M, ξ) → R, t ∈ [0, 1] be a
1-Morse family of smooth functions such that f0 and f1 are contact Morse functions corresponding to the
OBDs. Let Θ0 and Θ1 be corresponding θ-decompositions.

By genericity there is a sequence 0 < t1 < · · · < tK < 1 such that ftk has a single birth-death critical
point of index (n, n+1) for k = 1, . . . ,K, and ft has no such points for t ̸= t1, . . . , tK . By Theorem 3.1.9
in Step 3, for ϵ > 0 sufficiently small there are θ-decompositions Θtk±ϵ, k = 1, . . . ,K, each bun-supported
by ftk±ϵ, such that:

5Here, “sufficiently stabilized” means sufficiently stabilized when n = 1 and either loose or wrinkled with an unfurled swal-
lowtail when n > 1.
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Θt0−ϵ

H0,t0−ϵ

H1,t0−ϵ

Θt0+ϵ

N(L1)

N(L0)

FIGURE 3.1.5. The buns of the θ-decompositions Θt0±ϵ on either side of a birth point of
ft.

• For each k = 1, . . . ,K, the OBD corresponding to Θtk−ϵ is stably equivalent to that of Θtk+ϵ.
Next, since ft has no birth-death points of index (n, n+ 1) for t ̸= t1, . . . , tK , the following statements are
applications of Theorem 3.1.5 in Step 2:

• The OBD corresponding to Θ0 is stably equivalent to that of Θt1−ϵ.
• For k = 1, . . . ,K − 1 the OBD corresponding to Θtk+ϵ is stably equivalent to that of Θtk+1−ϵ.
• The OBD corresponding to ΘtK+ϵ is stably equivalent to that of Θ1.

It follows that the OBDs corresponding to Θ0 and Θ1 are stably equivalent. □

4. HOMOTOPIES OF PATTIES

The goal of this section is to prove Theorem 3.1.1. The argument rests on the study of 2-parameter
families of characteristic foliations on a hypersurface Σ, and the interpretation of retrogradients in terms of
bypass attachments. For convenience, we give an overview of the proof and organization of the section.

Overview of the proof. Recall that in Theorem 3.1.1, ξt, 0 ≤ t ≤ 1 is a family of contact structures on
Σ× [0, 1]s such that ξt is t-independent near the convex hypersurfaces Σ×{i} for i = 0, 1. We can assume
that for t = 0, 1, the hypersurfaces Σ × {s} ⊆ (Σ × [0, 1], ξt) are convex except at a finite number of
values of s, at which there is a retrogradient of the characteristic foliation. Each failure of convexity is
described by a bypass attachment. Our goal is to prove that the sequences of bypasses for (Σ × [0, 1], ξ0)
and (Σ × [0, 1], ξ1) are the same, up to far commutativity and addition (deletion) of trivial bypasses. Note
that the latter corresponds to positive (de)stabilization of the OBD of M = H0 ∪ (Σ× [0, 1]) ∪H1.

The proof involves two steps. First, we relate the sequences of retrogradients in (Σ × [0, 1], ξ0) and
(Σ× [0, 1], ξ1) Cerf-theoretically, which provides a finite list of 2-parametric local models for retrogradient
bifurcations. Second, we interpret each of these 2-parametric local models in terms of bypass attachments,
in particular showing that they amount to shuffling, adding, and deleting trivial bypasses.

Organization. The section is organized as follows.
• In Section 4.1, we perform 2-parametric Cerf theory on the retrogradients of the characteristic foli-

ation of Σ in order to generate a list of codimension-2 bifurcations that need to be analyzed in terms
of bypass attachments.
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• In Section 4.2, we prove Lemma 4.2.1, which describes how to perform a sequence of “parallel”
bypasses in succession.

• Finally, in Section 4.3 we prove Theorem 3.1.1. In particular, we use Lemma 4.2.1 from Section
4.2 to analyze the codimension-2 retrogradient bifurcations from Section 4.1 in terms of bypass
attachments.

4.1. Retrogradients in 2-parameter families. By Theorem 1.4.2 a 1-parameter family of hypersur-
faces Σ2n in a contact manifold is C0-generically convex except at a finite number of times. Each isolated
failure of convexity is given by a retrogradient trajectory of the characteristic foliation from a nondegenerate
negative index n singular point to a nondegenerate positive index n singular point. In this subsection we
study the failure of convexity in the 2-parameter case. In particular, let ξt, t ∈ [0, 1], be a family of contact
structures on Σ× [0, 1]s which is independent of t on Σ×{0, 1}. Let Σs,t denote the characteristic foliation
of Σs := Σ × {s} with respect to ξt. We investigate all possibilities for failure of convexity of Σs with
respect to ξt under suitably generic conditions.

First, we recall some basic facts about the stable and unstable manifolds of nondegenerate, birth-death,
and swallowtail singularities of smooth functions f : Σ → R [HW73] (here we are using the positive
gradient flow of f ).

• Let p be a nondegenerate critical point of index k. The stable manifold W s(p) is a disk of dimension
k and the unstable manifold W u(p) is a disk of dimension 2n−k. In particular, there is a coordinate
neighborhood of p and a choice of auxiliary metric such that p = 0 ∈ R2n,

f(x) = −x21 + · · ·+−x2k + x2k+1 + · · ·+ x22n,

and

W s(p) = Rk
x1,...,xk

× {0}xk+1,...,x2n ,

W u(p) = {0}x1,...,xk
× R2n−k

xk+1,...,x2n
.

• Let p be a birth-death singularity of index (k, k + 1), so that resulting nondegenerate critical points
in the universal unfolding have index k and k+1. The stable manifold W s(p) of p is a half-space of
dimension k+1, and the unstable manifold W u(p) is a half-space of dimension 2n−k. In particular,
there is a coordinate neighborhood of p and a choice of auxiliary metric such that p = 0 ∈ R2n,

f(x) = −x21 + · · ·+−x2k + x2k+1 + · · ·+ x22n−1 + x32n,

and

W s(p) = Rk
x1,...,xk

× {0}xk+1,...,x2n−1 × {x2n ≤ 0},

W u(p) = {0}x1,...,xk
× R2n−k−1

xk+1,...,x2n−1
× {x2n ≥ 0}.

• Let p be a swallowtail singularity of index k. The stable manifold W s(p) is a disk of dimension k
and the unstable manifold W u(p) is a disk of dimension 2n− k. In particular, there is a coordinate
neighborhood of p and a choice of auxiliary metric such that p = 0 ∈ R2n,

f(x) = −x21 + · · ·+−x2k−1 +−x4k + x2k+1 + · · ·+ x22n,

and

W s(p) = Rk
x1,...,xk

× {0}xk+1,...,x2n ,

W u(p) = {0}x1,...,xk
× R2n−k

xk+1,...,x2n
.
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Remark 4.1.1. Assume that Σ2n is Weinstein convex. If p is a positive birth-death singularity of index
(k, k + 1), it must be the case that 0 ≤ k ≤ n − 1, and if p is a negative birth-death singularity of index
(k, k + 1), it must be the case that n ≤ k ≤ 2n− 1.

Definition 4.1.2. A smooth function f : Σ → R is 0-Morse or simply Morse (resp. 1-Morse; 2-Morse)
if each critical point of f is nondegenerate (resp. nondegenerate or of birth-death type; nondegenerate, of
birth-death type, or of swallowtail type). For k = 0, 1, 2, a vector field X on Σ is k-Morse if X is gradient-
like for some k-Morse function f : Σ → R. More generally, we say that a j-parameter family of functions
ft : Σ → R with t ∈ Dj is k-Morse if the function ft is k-Morse for each t ∈ Dj . (Here Dj is the
j-dimensional unit disk.)

Remark 4.1.3. In general, a k-Morse vector field is the correct type of vector field that arises generically in
a k-parameter family. Indeed, it is a classical result due to work of Cerf and Hatcher-Wagoner [HW73] that
a generic 2-parameter family of vector fields Xs,t for (s, t) ∈ D2 is 2-Morse.

Proposition 4.1.4. Let ξt, t ∈ [0, 1], be a 1-parameter family of contact structures on Σ× [0, 1]s such that:

• Σ× {0, 1} are Weinstein convex for all t ∈ [0, 1],
• ξt is independent of t along Σ× {0, 1} and
• Theorem 1.4.2 holds for t = 0, 1.

Then:

(a) the characteristic foliations Σs,t can be made 2-Morse after contact isotopies which leave ∂(Σ ×
[0, 1]) fixed and

(b) the stable and unstable submanifolds can be made to intersect as transversely as possible in a family.

Idea of proof. This is just a 2-parametric version of the proof of Theorem 1.4.2 from [HHb, Section 9] and
we only provide a sketch. First we make all the singular points of Σs,t 2-Morse by C∞-small perturbations
of ξt rel boundary. Next, we can install/uninstall plugs locally (see the definition of a Y -shaped plug with
parameter ϵ > 0 in [HHb, Definition 7.1.1] and its construction with ϵ arbitrarily small when Y is a standard
Darboux ball in [HHb, Theorem 7.5.1]) so that all trajectories begin and end at singular points of 2-Morse
type and there are no cycles. Once the above blocking condition is met, one can adjust the characteristic
foliations on the nonsingular part by applying local perturbations of the form

U × {a} ⊂ Σ× {a}⇝ {s = f(x), x ∈ U},

where U ⊂ Σ is a small open set foliated by intervals of the characteristic foliation and f(x)−a is C∞-close
to zero with support in U , so that the stable and unstable submanifolds intersect as transversely as possible
in a family. □

Definition 4.1.5. For k = 0, 1, 2, a hypersurface Σ ⊂ (M, ξ) is k-Morse if Σξ is k-Morse. We say that Σ is
k-Morse+ if, in addition, there are no trajectories from a negative singularity of Σξ to a positive singularity
of Σξ.

Recall that a 1-Morse+ hypersurface is convex [HHb]. The proof there easily generalizes to the following
lemma:

Lemma 4.1.6. Let Σ ⊂ (M, ξ) be a 2-Morse+ hypersurface. Then Σ is convex.

Consequently, as in the 1-parameter case, convexity fails 2-parametrically only when there is a retrogra-
dient trajectory, i.e., one from a negative singularity to a positive singularity. The following proposition
describes all variants of this behavior.
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Proposition 4.1.7. Let Xs,t for (s, t) ∈ [0, 1] × [0, 1] be a generic 2-parameter family of 2-Morse charac-
teristic foliations on Σ2n, where (Σ, Xs,t) is 2-Morse+ and t-independent for s = 0, 1. Then there is an
almost-everywhere immersed 1-manifold-with-boundary L ⊂ [0, 1]×[0, 1] and a finite set P ⊂ (0, 1)×(0, 1)
such that, for (s, t) /∈ L ∪ P , the hypersurface (Σ, Xs,t) is 2-Morse+ and hence convex. Moreover, failure
of convexity along L ∪ P is described as follows:

(L) For (s, t) ∈ L \ P , failure of convexity is given by a single transversely cut out retrogradient
trajectory from a negative nondegenerate index n singularity to a positive nondegenerate index n
singularity.

(P) For each (s, t) ∈ P , failure of convexity is described by exactly one of the following:
(P1) There are two separate retrogradients from negative nondegenerate index n singularities to

positive nondegenerate index n singularities.
(P2) There is a single retrogradient from a negative nondegenerate index n singularity to a positive

nondegenerate index n singularity, but the respective unstable and stable manifolds are not
transverse.

(P3) There is a single retrogradient from a negative nondegenerate point of index n to a positive
birth-death point of index (n− 1, n).

(P3’) There is a single retrogradient from a negative birth-death point of index (n, n+1) to a positive
nondegenerate point of index n.

(P4) There is a single retrogradient from a negative nondegenerate point of index n to a positive
nondegenerate point of index n− 1.

(P4’) There is a single retrogradient from a negative nondegenerate point of index n+1 to a positive
nondegenerate point of index n.

(P5) There is a “broken” retrogradient of the form p−1 ⇝ p−2 ⇝ p+, where p−1 and p−2 are negative
nondegenerate points of index n and p+ is a positive nondegenerate point of index n.

(P5’) There is a “broken” retrogradient of the form p− ⇝ p+1 ⇝ p+2 , where p− is a negative nonde-
generate point of index n and p+1 and p+2 are positive nondegenerate points of index n.

Remark 4.1.8. When n = 1, the only possibilities in Proposition 4.1.7 are (L), (P1), (P3), (P3’), (P5), and
(P5’).

Proof. We analyze all potential retrogradients according to the type of critical points involved (nondegen-
erate, birth-death, and swallowtail). Throughout, the notation p± = p±s,t refers to a (family of) positive and
negative singularities, respectively, and W s(p) and W u(p) are the stable and unstable manifolds of p. Recall
that in a generic 2-parameter family, swallowtail singularities are a codimension 2 phenomenon (i.e., they
arise at isolated parameter values), and birth-death singularities are a codimension 1 phenomenon (i.e., they
arise in 1-dimensional families). Let Ebd, Esw ⊂ D2

s,t := [0, 1]s × [0, 1]t be the sets of parameter values
where Xs,t has birth-death and swallowtail singularities, respectively. By Proposition 4.1.4, the singularities
behave as in a generic 2-parameter family of Morse functions and the stable and unstable manifolds intersect
as transversely as possible in a generic 2-parameter family. Hence we may assume that Ebd is an immersed
1-manifold-with-boundary, Esw is a finite set of points, and:

(T1) There is a finite number of isolated parameter values where Xs,t has two birth-death singularities.
In particular, Ebd has a finite number of double points, and is otherwise properly embedded in D2

s,t.
(T2) There is a finite number of isolated parameter values where Xs,t has a single swallowtail singularity,

and at these moments Xs,t has no birth-death singularities. In particular, Ebd ∩ Esw = ∅.

Case I: Retrogradients involving exactly two nondegenerate points.
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s

t

(P2)

(P1) (P4)

(P1)

(P3)

FIGURE 4.1.1. An example 2-parameter space as described by Proposition 4.1.7. The
contact manifolds (Σ × [0, 1]s, ξi) for i = 0, 1 are both described by a sequence of 4
bypasses.

First we analyze the possibilities of retrogradients appearing between exactly two nondegenerate critical
points. We will do the transversality analysis carefully in this case. Let fs,t : Σ2n → R be a 2-parameter
family of Lyapunov functions for Xs,t. Since we are only concerned with nondegenerate critical points, we
may localize and assume that each fs,t is genuinely Morse. Let p±s,t be (families of) nondegenerate critical
points of index k±, where

(4.1.1) 0 ≤ k+ ≤ n ≤ k− ≤ 2n.

Because we are interested in existence of retrogradients, we may assume that there is a c0 ∈ R such that, for
all s, t,

fs,t(p
−
s,t) < c0 < fs,t(p

+
s,t)

and such that c0 is regular for each fs,t. Assume further that fs,t is (s, t)-independent along N2n−1 :=

f−1
s,t (c0) ⊂ Σ. Finally we may assume that the families of nondegenerate critical points are not part of

birth-death or swallowtail families, as these cases will be considered later.
We are interested in the intersection of the unstable and stable manifolds of p±s,t in N . To this end, we

introduce some notation. Let

W u := W u
s,t(p

−
s,t), W s := W s

s,t(p
+
s,t), W ∗

N := W ∗ ∩N,

W̃ ∗
N := { (s, t, x) | x ∈ W ∗

N } ⊆ D2
s,t ×N.

Given p±, our goal is to analyze

L(p−, p+) := { (s, t) | W u
N ∩W s

N ̸= ∅ } ⊆ D2
s,t

and then ultimately the union L of these sets over all pairs of positive and critical points. In words, L(p−, p+)
is the set of parameter values for which there exists a retrogradient flow line from p− to p+. Define

L̃(p−, p+) := { (s, t, x) | x ∈ W u
N ∩W s

N } ⊆ D2
s,t ×N
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and observe that π(L̃) = L, where π : D2
s,t ×N → D2

s,t is the projection onto the first factor. Also observe
that L̃(p−, p+) = W̃ u

N ∩ W̃ s
N .

For a fixed (s, t)-parameter value, we have W u
N

∼= S2n−k−−1 and W s
N

∼= Sk+−1. Therefore,

W̃ u
N = Im

(
D2
s,t × S2n−k−−1 ↪→ D2

s,t ×N
)
,

W̃ s
N = Im

(
D2
s,t × Sk+−1 ↪→ D2

s,t ×N
)
.

By transversality, it follows that L̃(p−, p+) ⊂ D2
s,t ×N2n−1 is a submanifold of dimension

(2n− k− − 1 + 2) + (k+ − 1 + 2)− (2n− 1 + 2) = k+ − k− + 1.

By (4.1.1), we have k+ − k− + 1 ≤ 1, with three possibilities to consider:

(Ia) (k+ = n and k− = n). In this case k+ − k− + 1 = 1 and so L̃ ⊆ D2
s,t ×N is a smooth 1-manifold

with boundary contained in [0, 1]s × {0, 1}t × N . The projection L = π(L̃) ⊆ D2
s,t, which we

may take to be generic, is an immersed curve except at a finite number of points, with the following
codimension-2 phenomena:
• Regular double points of L. At finitely many points of L, two transversely cut-out retrogradi-

ents exist simultaneously. This gives (P1).
• Cusp points of L. This happens when the projection map π : L̃ → L fails to be an immersion.

In particular, at such a point (s0, t0, x0) the differential dπ = 0 and so dimTx0W
u
N ∩Tx0W

s
N =

1. In particular, at a cusp of L, there is a single retrogradient between nondegenerate points of
index n, but it is not cut out transversely in Σ. This gives (P2).

(Ib) (k+ = n and k− = n+ 1). In this case k+ − k− + 1 = 0. Hence there is an isolated instance of a
retrogradient from a negative index n+1 singularity to a positive index n singularity. This describes
situation (P4’).

(Ic) (k+ = n− 1 and k− = n.) In this case k+ − k− + 1 = 0. Hence there is an isolated instance of a
retrogradient from a negative index n singularity to a positive index n−1 singularity. This describes
situation (P4).

Remark 4.1.9. Consider a retrogradient p−n ⇝ p+n−1 as described by (P4), occurring at an isolated moment
(s0, t0) in 2-parameter space. Suppose that p+n,1, . . . , p

+
n,N are positive nondegenerate index n points with

trajectories p+n−1 ⇝ p+n,j . By a gluing argument, near (s0, t0) in 2-parameter space there will be “normal”
retrogradient trajectories p−n ⇝ p+n,j . This is observation not necessary for the statement of the present
proposition, but is important in the proof of Theorem 3.1.1.

Case II: Retrogradients involving birth-death points.

According to (T1), there are three possibilities to consider. Here the transversality analysis is brief, as the
details are similar to (but simpler than) Case I.

(IIa) Both p− and p+ are birth-death points. Suppose p− and p+ are negative and positive birth-death
singularities of index (k−, k− + 1) and (k+, k+ + 1), respectively. By (T1) this situation occurs in
isolated instances. We have

dimW u(p−) = 2n− k−, dimW s(p+) = k+ + 1,

and so the expected dimension of their transverse intersection in a regular intermediate level set
N2n−1 is

(k+) + (2n− k− − 1)− (2n− 1) = k+ − k−.
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Since k+ + 1 ≤ n and k− ≥ n, we have k+ − k− < 0 and so generically there is no intersection.
Thus, there are no retrogradients between birth-death points.

(IIb) The point p− is of birth-death type and p+ is nondegenerate. Suppose p− is a negative birth-death
singularity of index (k−, k− + 1) and p+ is nondegenerate of index k+. Then

dimW u(p−) = 2n− k−, dimW s(p+) = k+.

Since p− arises in a 1-dimensional family, the expected dimension of the transverse intersection of
W u(p−) and W s(p+) in a regular intermediate level set N2n−1 is

(k+ − 1) + (2n− k− − 1)− (2n− 1) + (1) = k+ − k−.

Note that k+ ≤ n and k− ≥ n. Thus, when k− = k+ = n, we have an isolated retrogradient from
the negative index (n, n + 1) birth-death point p− to a positive index n nondegenerate singularity
p+. This gives (P3’).

(IIc) The point p− is nondegenerate, and p+ is of birth-death type. The dimension computation here is
slightly different to the previous case. Let k− = ind(p−) and let p+ be of index (k+, k++1). Then

dimW u(p−) = 2n− k−, dimW s(p+) = k+ + 1.

Again, this situation occurs in a 1-dimensional family, so the relevant transverse intersection in a
regular intermediate level set has dimension

(k+) + (2n− k− − 1)− (2n− 1) + (1) = k+ − k− + 1.

This time, we have the restriction k+ + 1 ≤ n and k− ≥ n, so k+ − k− + 1 ≤ 0 with equality
occurring when k+ = n − 1 and k− = n. This gives an isolated retrogradient trajectory from a
negative index n nondegenerate singularity to a positive birth-death singularity of index (n− 1, n),
which is (P3).

Case III: Retrogradients involving swallowtail points.

Let p− be a negative swallowtail singularity of index k− occurring at the parameter (s0, t0) and let and
let p+ be a positive singularity. By (T2), we may assume that p+ is nondegenerate in a neighborhood of
(s0, t0). Let k+ := ind(p+).

We have

dimW u(p−) = 2n− k−, dimW s(p+) = k+.

With N2n−1 a regular intermediate level set as before, the expected dimension of the transverse intersection
inside N is

(k+ − 1) + (2n− k− − 1)− (2n− 1) = k+ − k− − 1.

Since k+ ≤ k−, we have k+ − k− − 1 < 0. Thus, generically there are no retrogradients from negative
swallowtail points to positive nondegenerate points.

The case where p+ is an isolated positive swallowtail point of index k+ and p− is a (family of) negative
nondegenerate point(s) of index k− is similar. The dimension of the relevant stable and unstable manifold
intersection in a regular intermediate level set is

(k+ − 1) + (2n− k− − 1)− (2n− 1) = k+ − k− − 1.

This dimension count is identical to prior case, and so generically there are no retrogradients from a nonde-
generate point to a swallowtail point. Therefore, generically there are no retrogradients involving swallowtail
singularities at all.

Case IV: Retrogradients involving more than two critical points.
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There is one last situation to consider which, informally, is a consequence of the following fact: trans-
versely cut-out retrogradients between nondegenerate index n points occur in 1-dimensional families, and
positive-positive and negative-negative index n handleslides occur in 1-dimensional families. In a 2-para-
meter family, this allows for codimension-2 isolated instances of “broken” retrogradients involving either
two positive points and one negative point, or two negative points and one positive point.

More precisely, let p±i , i = 1, 2, denote (families of) nondegenerate positive (resp. negative) critical
points of index n. We proceed in the same way as in the beginning of Case I. Assume there are values
c−, c0, c+ ∈ R such that

f(p−1 ) < c− < f(p−2 ) < c0 < f(p+1 ) < c+ < f(p+2 ).

Let N2n−1
∗ := f−1(c∗) denote the corresponding regular level sets in Σ and let W ∗

N∗
(p∗i ) = W ∗(p∗i ) ∩N∗

denote the intersection of the corresponding (un)stable manifolds with these level sets. Let

L− :=
{
(s, t)

∣∣∣ W u
N−(p

−
1 ) ∩W s

N−(p
−
2 ) ̸= ∅

}
⊆ D2

s,t

L0 :=
{
(s, t)

∣∣ W u
N0

(p−2 ) ∩W s
N0

(p+1 ) ̸= ∅
}
⊆ D2

s,t

L+ :=
{
(s, t)

∣∣∣ W u
N+

(p+1 ) ∩W s
N+

(p+2 ) ̸= ∅
}
⊆ D2

s,t.

By the dimension counting analysis in Case I, in particular (Ia), L−, L0, and L+ are all immersed curves in
D2
s,t. The 0-dimensional intersection L− ∩ L0 then corresponds to broken retrogradients p−1 ⇝ p−2 ⇝ p+1 ,

which gives (P5), and the 0-dimensional intersection L0∩L+ likewise corresponds to broken retrogradients
p−2 ⇝ p+1 ⇝ p+2 , which gives (P5’). □

4.2. A parallel strands bypass lemma. In this subsection we state and prove the main lemma needed to
interpret all codimension-2 retrogradient bifurcations in terms of bypass attachments. Informally, the lemma
describes how to interpret a sequence of k “locally parallel” retrogradients as a single bypass attachment and
can be viewed as a higher-dimensional analog of a “bypass rotation” in dimension three. See Figure 4.2.1
for a heuristic picture and Figures 4.2.2 and 4.2.10 for a precise formulation; we will also use the notation
Y,G±,Γ0,Γ1 as indicated in the figures.

Lemma 4.2.1 (Parallel strands bypass lemma). Suppose (Σ2n× [0, 1]s, ξ), n ≥ 2 is a contact manifold such
that there are 0 < s1 < · · · < sk < 1 satisfying the following properties:

(i) For s ̸= sj , Σ× {s} is convex.
(ii) For s = sj , convexity fails because of a single retrogradient between nondegenerate critical points

of index n, and the sequence of retrogradients is described by the local retrogradient diagram on
the left side of Figure 4.2.2. In particular, each retrogradient is of the form p− ⇝ p+j′ where p− is
a single negative critical point and {p+1 , . . . , p

+
k′} is a set of positive critical points with k′ ≤ k. In

particular (Σ× [0, 1], ξ) is given by a sequence of corresponding bypass attachments B1, . . . , Bk.

Then, after isotopy of contact handles, the bypass sequence B1, . . . , Bk is equivalent to a sequence of
bypasses TB1, . . . , TBk−1, B̃, where TB1, . . . , TBk−1 are trivial bypasses and B̃ is the bypass attached
along (Λ±;D±) ⊂ Σ as indicated by the right side of Figure 4.2.2. Here (Λ−;D−) is given by the stable
disk of p− and (Λ+;D+) is the standard disk filling of the indicated unknot surrounding all the strands.

Proof of Lemma 4.2.1. We induct on the number of strands. In the following, p− always refers to the nonde-
generate negative critical point of index n which is the source of each retrogradient, and we abuse notation
and use ε, ε′, ε′′ to denote sufficiently small parameters which often vary from step to step. The precise
vertical placements of Legendrians are as indicated in the diagrams.
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k retrogradients
Y Y

G−G−

G+G+

Γ1Γ0 bypasses TB1, . . . , TBk−1, B̃

FIGURE 4.2.1. A heuristic depiction of Lemma 4.2.1. The second row contains the con-
vex hypersurfaces Σ × {i} for i = 0, 1. The upper two folded Weinstein hypersurfaces
depict a sequence of k = 3 retrogradients, obtained after shuffling the central cobordisms.
Lemma 4.2.1 describes this as a single bypass attachment B̃ together with a sequence of
trivial bypasses.

Base case k = 1. Suppose that the local retrogradient diagram has a single blue strand, corresponding
to the intersection of the stable manifold of a positive critical point p+ of index n with a minimal folding
locus Y . There is one bypass associated to the single retrogradient p− ⇝ p+. The bypass attachment data
(Λ+,Λ−;D+, D−) is such that (Λ±;D±) is given by the cocore and belt sphere of the Weinstein n-handle
in R± associated to p±. Let G+ ⊆ R+ ⊆ Σ × {0} be a regular contact level set such that the dividing set
Γ0 of Σ × {0} is obtained by (−1)-surgery along the attaching sphere of the handle associated to p+. By
Lemma 2.3.3, we may identify (Λ+;D+) as on the right side of Figure 4.2.2 with one blue strand. This
completes the base case.

Inductive step. Suppose the statement of the lemma holds for some k ≥ 1 and the local retrogradient
diagram in a minimal folding locus Y consists of k + 1 parallel strands as on the left side of Figure 4.2.2,
so that convexity of Σ× {s} fails for

0 < s1 < · · · < sk < sk+1 < 1.

Recall that some of the parallel strands may or may not be associated to the same Legendrian, and that
the proof does not require a distinction to be made. As before, let G+ ⊆ R+ ⊆ Σ × {0} be a regular
contact level set such that the dividing set Γ0 is obtained by (−1)-surgery along each parallel strand. By
the inductive hypothesis, the contact manifold (Σ × [0, sk + ε], ξ) is contactomorphic to a single bypass
attachment to (Σ× [0, ε], ξ) along (Λ±;D±) ⊂ Σ× {ε} as indicated on the left side of Figure 4.2.3.
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Local retrogradient diagram

Y

Y

Local bypass diagram

Γ0

G+

(−1)

(−1)

Λ+

Λ−

FIGURE 4.2.2. The statement of Lemma 4.2.1. On the left is a local (parametric) retro-
gradient diagram on a folded Weinstein hypersurface that describes k retrogradients, one
for each ξ-transverse intersection of the parametric red strand with the k blue strands. Note
that the blue strands may or may not be part of distinct Legendrians. On the right is the
nontrivial bypass diagram for B̃ provided by the lemma.

Γ0

G+

Λ+

Λ−

(−1)

(−1)

(−1)

Γsk+ε

G+

(−1)

(−1)

(−1)

(−1)

(+1)

Λ− ⊎ Λ+

Λε
−

FIGURE 4.2.3. Applying the inductive hypothesis in the proof of Lemma 4.2.1. In both
figures, there is a total of k + 1 parallel blue strands. On the left is the bypass diagram
furnished by the inductive step of the lemma applied to the first k retrogradients. On the
right is the result of attaching the bypass, interpreted as a pair of contact handles.

Attaching the R−-centric bypass using Theorem 2.4.2 produces the diagram on the right side of Fig-
ure 4.2.3. In particular, there is a contact n-handle attached along Λ− ⊎ Λ+ and a contact (n + 1)-handle
with equator Λε

−.
Next we identify the bypass attachment data (Λ′

±;D
′
±) for the bypass corresponding to crossing the

bottom-most strand:
• The negative data (Λ′

−;D
′
−) is given by the cocore and belt sphere of the Weinstein n-handle at-

tached to R− along Λ− ⊎ Λ+. By Lemma 2.3.3, we may diagrammatically witness this as an
appropriately decorated small negative Reeb shift of Λ− ⊎ Λ+ as on the left side of Figure 4.2.4.

• The positive data (Λ′
+;D

′
+) is given by the cocore and belt sphere of the Weinstein n-handle in R+

associated to the (−1)-surgery along the lowest strand, drawn in the diagram by Lemma 2.3.3 as a
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Γsk+ε

G+Λ′
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Λ′
−
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Γ1

G+

(−1)

(−1)

(−1)

(−1)

(+1)

Λ′
− ⊎ Λ′

+

(−1)

(+1)
(Λ′

−)
ε

FIGURE 4.2.4. The second bypass in the inductive step of the proof of Lemma 4.2.1. On
the left is the bypass attachment data. On the right is the result of attaching the bypass as a
pair of contact handles.

standard Legendrian knot linked once with the strand in question. In contrast to the base case, we
position the cusps below the strand as on the left side of Figure 4.2.4.

As before, attaching the R−-centric bypass via a pair of contact handles produces the decorated diagram on
the right side of Figure 4.2.4.

The rest of the proof proceeds by performing (decorated) Legendrian Kirby moves on the diagram on the
right side of Figure 4.2.4 (or equivalently on the left side of Figure 4.2.5) to identify a trivial bypass and
erase it from the diagram. In the process, the manipulations will result in the gray and pink Legendrians
producing the desired final diagram, completing the induction.

Remark 4.2.2 (Erasing surgeries vs. erasing decorated surgeries). If decorations are ignored, then on the
left side of Figure 4.2.5 we may cancel the (+1)-surgery along the black Legendrian Λ− ⊎ Λ+ and the
(+1)-surgery along the pink Legendrian Λ′

− = (Λ− ⊎ Λ+)
−ε. This would leave us with an undecorated

surgery diagram that matches the conclusion of Figure 4.2.2. In fact, by Lemma 2.5.3, the contact n-handle

Γ1

G+

(−1)

(−1)

(−1)

(−1)

(+1)

(−1)

(+1)

Γ1

G+

(−1)

(−1)

(−1)

(−1)

(+1)

(−1)

(+1)

FIGURE 4.2.5. Step 1 of the inductive step in the proof of Lemma 4.2.1: Sliding the red
down over the black.

associated to Λ− ⊎ Λ+ and the contact (n+ 1)-handle with equator Λ′
− do form a trivial bypass. However,
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these two handles cannot be erased from the diagram because the (n + 1)-handle with red equator Λε
−

intersects the black handle, as indicated by the decorations. This is the point of the rest of the proof. Instead
of erasing the black and pink, we will perform Legendrian Kirby moves to separate the interaction of the
two bypasses, ultimately erasing the black and red (the bypass coming from the inductive hypothesis) as a
trivial bypass.

We describe the relevant decorated Legendrian Kirby moves in four steps.

Step 1: Slide red down over black.

The sequence of Kirby moves begins with the diagram on the left side of Figure 4.2.5, which is equivalent
to the right side of Figure 4.2.4 by two Kirby moves. We then use Lemma 2.3.1 to slide the red Legendrian
Λε
− down over the contact n-handle attached along the black Legendrian Λ−⊎Λ+. In effect, this step simply

changes the bypass in Figure 4.2.3 from an R−-centric model to an R+-centric model, though we need to
exercise caution with the other Legendrians and Lagrangians in the diagram.

First we analyze the effect on the Legendrian. After a sequence of omitted Kirby moves, we obtain the
red Legendrian on the right side of Figure 4.2.5. (As a sanity check, were it not for the presence of the pink
Legendrian we could simply compute that sliding Λε

− down over Λ− ⊎ Λ+ produces

((Λ− ⊎ Λ+) ⊎ Λ−)
−ε ∼= Λ−ε

+ .

To understand the any potential linking behavior with the pink Legendrian, the Kirby moves are necessary.)
Next we analyze the effect on the Lagrangian disks on the right side of Figure 4.2.5. By Theorem 2.4.2,

the new negative red disk is isotopic to any of the following:
(1) (K ⊎b D−)

−ε, where K is the negative core of the Weinstein n-handle attached to R− along the
black Legendrian;

(2) (K ′)−ε′ ⊎b D
−ε
− , where K ′ is the cocore of the same Weinstein n-handle and ε′ > 0 is chosen so

that (K ′)−ε′ and D−ε
− intersect “contact transversely” at a point;

(3) K∥ ⊎b D
+ε
− , where ∥ indicates a non-intersecting pushoff.

By Theorem 2.4.2 and the inductive hypothesis, the positive red disk is the disk D+ provided by the state-
ment of the lemma, i.e.,

D+
∼= K1 ⊎b · · · ⊎b Kk,

where Kj is isotopic to the unstable manifold of the positive critical point p+j′ associated to the jth strand,
counted from top to bottom.

The n = 1 case of Step 1 is given by the left and middle diagrams in Figure 4.2.6.

Step 2: Slide pink up over red.

Next we slide the pink Legendrian up over the red, this time using Lemma 2.3.2 (via the bigon located
between strands k and k+1). Another sequence of omitted Kirby moves produces the new pink Legendrian
on the right of Figure 4.2.7.

We analyze the effect of the handleslide on the Lagrangian disks. Before the slide, the negative pink disk
is a Reeb down-shift (K ′)−ε′′ of the cocore K ′. The negative red disk on the left side of Figure 4.2.7 is
isotopic to K∥ ⊎b D

+ε
− by Step 1. After the slide, by Lemma 2.3.2, the negative pink disk is isotopic to

(K∥ ⊎b D
+ε
− )∥ ⊎b (K

′)−ε′′ ≃ (D+ε
− )∥ ⊎b (K

∥ ⊎b (K
′)−ε′′).

Since (K∥ ⊎b (K
′)−ε′′) ≃ (K ′)∥ we have

(K∥ ⊎b D
+ε
− )∥ ⊎b (K

′)−ε′′ ≃ (D+ε
− )∥ ⊎b (K

′)∥,
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FIGURE 4.2.6. The n = 1 cases of Step 1, given by the left and middle frames, and Step
2, given by the middle and right frames. In the left frame, a Weinstein 1-handle is attached
to R−, with the boundary orientation indicated by the arrows, along the black Legendrian
dots in the original dividing set. The pink arc is a Reeb down-shift of the cocore of the
handle and the red arc is a Legendrian-Lagrangian pair. In the middle frame, the red pair is
slid down across the handle and then a neighborhood of the resulting arc is removed; this
corresponds to the right side of Figure 4.2.5. In going from the middle frame to the right,
the pink pair is slid up across the handle removal along the red pair.
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(−1)

(−1)
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(−1)
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FIGURE 4.2.7. Step 2 of the inductive step in the proof of Lemma 4.2.1: Sliding the pink
up over the red.

which is a non-intersecting pushoff of (D+ε
− )∥. Note that the new negative pink disk is isotopic to D− if we

delete the handle corresponding to the black Legendrian. See Figure 4.2.6 for the n = 1 case of Step 2.
The positive pink disk, before the slide, arises from sliding the positive Weinstein cocore of the n-handle

associated to the (−1)-surgery along the lowest blue strand up over the contact n-handle attached along
the gray Legendrian; indeed, the disk comes from the bypass data D′

+ = Kk+1 in Figure 4.2.4. By
Lemma 2.3.2, sliding over the positive red disk D+ gives a new positive pink disk isotopic to

D+ ⊎b Kk+1
∼= K1 ⊎b · · · ⊎b Kk ⊎b Kk+1,

followed by a slide up over the gray handle.

Step 3: Slide black down over pink.
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Now we slide the black down over the pink, again using Lemma 2.3.2. At the Legendrian level, the result
— after Kirby moves — is the black Legendrian on the right side of Figure 4.2.8.

Γ1

G+

(−1)

(−1)

(−1)

(−1)
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(−1)

(+1)

Γ1
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(−1)

(−1)

(+1)

(−1)

(+1)

FIGURE 4.2.8. Step 3 of the inductive step in the proof of Lemma 4.2.1: Sliding the black
down over the pink.

The only Lagrangian disk affected by this slide is the negative red disk, which nontrivially intersects the
black handle and is isotopic to (K ′)−ε′⊎bD

−ε
− by Step 1, where K ′ is the cocore of the negative Weinstein n-

handle attached along the black Legendrian. We claim that the effect of this step is that the new negative red
disk is a Reeb down-shift (K ′′)−ε′′ of the cocore K ′′ of the handle attached along the new black Legendrian:
Indeed, the new negative red disk is obtained by sliding (K ′)−ε′ and D−ε

− separately and then taking their
boundary connected sum. This gives (K ′′)−ε′′ ⊎b (D

−ε
− ⊎b (D

−ε
− )∥), once we recall from Step 2 that the

negative pink disk is isotopic to D−ε
− . This then simplifies to

(K ′′)−ε′′ ⊎b D
′ ≃ (K ′′)−ε′′ ,

where D′ is a standard Lagrangian disk filling of a Legendrian unknot. See Figure 4.2.9 for the n = 1 case
of Step 3.

Step 4: Identify the black and red as a trivial bypass and erase.

By Step 3 the negative red disk is a downshift of the negative cocore of the black handle. Thus, by
Lemma 2.5.3, the black and red decorated Legendrians form a trivial bypass and can be erased from the
diagram. We are left with the gray and pink decorated Legendrians, which describe a contact n-handle and
(n+1)-handle respectively. Note that these handles correspond to an R−-centric bypass with attaching data
described by the conclusion of the lemma in question; see Figure 4.2.2. Indeed, the negative pink disk is
isotopic to D−, and the positive pink disk is isotopic to K1 ⊎b · · · ⊎b Kk+1 after a slide across the gray
handle. This completes the induction and the proof of the lemma. □

Remark 4.2.3. There is a dual version of Lemma 4.2.1 that describes a positive strand moving up across a
sequence of locally parallel negative strands as a single bypass attachment; see Figure 4.2.10. The details of
the statement and proof, omitted here, are completely analogous to those of Lemma 4.2.1.

4.3. Bypasses in 2-parameter families. Armed with Lemma 4.2.1, we prove Theorem 3.1.1.

Proof of Theorem 3.1.1. It suffices to consider each local codimension-2 retrogradient bifurcation described
by Proposition 4.1.7 in terms of bypasses. In particular, for each (Px) in the proposition, we assume that
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FIGURE 4.2.9. The n = 1 version of the maneuver in Step 3, a continuation of Fig-
ure 4.2.6. A neighborhood of the pink arc (a Lagrangian disk in R−) has been removed,
corresponding to the (+1)-surgery of the dividing curve along the pink Legendrian S0 in
Figure 4.2.8. We slide the handle attached along the black Legendrian S0 down over this
(+1)-surgery, the motion being indicated by the dashed arrow on the left. After the slide,
the red arc (a Lagrangian disk) is isotopic to the cocore of the (slid) black handle. In partic-
ular, the black handle attachment is canceled by the red arc removal.

Local retrogradient diagram

Y

Y

Local bypass diagram

Γ0

G−

(−1)

(−1)

Λ+

Λ−

FIGURE 4.2.10. The dual version of Lemma 4.2.1.

(Σ×[0, 1]s, ξt) is a contact manifold which locally models (Px), and we prove that the sequences of bypasses
for (Σ×[0, 1], ξi) with i = 0, 1 are the same up to shuffling, adding, and deleting trivial bypasses. We remind
the reader that the only situations to analyze when n = 1 are (P1), (P3),(P3’), (P5), and (P5’).

(P1). This situation concerns the moment when there are two separate retrogradients occurring simultane-
ously, both between nondegenerate critical points of index n. In the (s, t)-parameter space, this corresponds
to two regular strands of the 1-manifold L crossing; see the top right of Figure 4.3.1.

If the two simultaneous retrogradients connect two distinct sets of positive and negative critical points,
there is nothing to prove; this reverses the order of two unrelated bypass attachments and corresponds to
far commutativity. There is more to analyze when the simultaneous retrogradients involve either the same
positive and/or negative critical point.
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Γ
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(−1)

(−1)

Γ
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(−1)
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(local bypass diagrams)

(local retrogradient diagram) (2-parameter space)

(Λ−;D−) (Λ′
−;D

′
−)

FIGURE 4.3.1. The analysis of (P1) in terms of bypasses. The top left is the local ret-
rogradient diagram and to its right is the corresponding (s, t)-parameter space identifying
the existence of retrogradients. The regular double point in green precisely (P1). On the
bottom are the corresponding bypass diagrams corresponding to the left and right sides of
the parameter space, after an application of Lemma 4.2.1.

The case n > 1. With a specific choice of local model, we can use Lemma 4.2.1. Assume that the two
retrogradients involve the same positive point p+; we allow for either one negative point or two distinct neg-
ative points. The remaining case is identical. We may normalize the situation so that it is given by the local
retrogradient model given at the top left of Figure 4.3.1. This is possible because the neighborhood of the
stable disk of p+, together with the two retrogradients to p+ can be normalized so that the retrogradients are
close together. In the top left frame, the vertical arrows correspond to increasing s and the horizontal arrows
correspond to increasing t. Here we make no assumption about whether the two red Legendrian strands are
associated with the same negative point or distinct points. We apply the dual version of Lemma 4.2.1 for
t = 0, 1 to witness each sequence of bypasses as a single bypass with the indicated negative data, namely
(Λ−;D−) for t = 0 and (Λ′

−;D
′
−) for t = 1. By the lemma, (Λ−;D−) and (Λ′

−;D
′
−) are both standard

fillings of isotopic knots, and hence the resulting bypass data is Hamiltonian isotopic.
The case n = 1. In low dimensions we must consider two situations. Note that in the n > 1 case, our

local model deals with the following two cases at the same time because it does not matter from which
critical point(s) the red strands originate.

• One positive point and two negative points. Assume that there are two retrogradients involving one
positive point and two distinct negative points. We can model this with the far left folded Weinstein
surface of Figure 4.3.2. We may then identify the data for the corresponding bypass attachments
according to the bypass-bifurcation correspondence given by Proposition 2.9.1. This gives the local
model for bypass attachment data as described by the far right diagram of Figure 4.3.2. In particular,
two possible bypass arcs are produced by shifting the blue arc in either (but not both) of the indicated
directions until it intersects with either the top or bottom red arc.
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before the bypasses identify data

Folded Weinstein Convex

FIGURE 4.3.2. Identifying bypass data in the n = 1 version of (P1) when there is one
positive point and two negative points.

We may then verify that the two bypass attachments commute. This computation is given by
Figure 4.3.3.

top bypass

bottom bypass

bottom
bypass

top
bypass

FIGURE 4.3.3. The n = 1 version of (P1) when there is one positive point and two negative
points. The data for the two commuting bypasses is identified on the left and comes from
Figure 4.3.2.

The case of one negative point and two positive points is identical.
• One positive point and one negative point. Here we assume there are two retrogradients, both

connecting the same negative point to the same positive point. The analysis is similar to the previous
case. In Figure 4.3.4 we model this double retrogradient with the folded Weinstein surface on the far
left. The light blue lines are identified. We again use Proposition 2.9.1 to identify the bypass data
corresponding to each retrogradient. After isotopy, this gives us a local model for the two bypass
attachments as described by the far right diagram of Figure 4.3.4.

We then verify that the two bypasses commute in Figure 4.3.5.

(P2). We model (P2) with the local retrogradient diagram in Figure 4.3.6. The retrogradient occurring at the
cusp of the red Legendrian in the local retrogradient diagram is precisely the moment when the stable and
unstable manifolds of the critical points are not transverse; this is easily seen in the Lagrangian projection.
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before the bypasses identify data

Folded Weinstein Convex

FIGURE 4.3.4. Identifying bypass data in the n = 1 version of (P1) when there is one
positive point and one negative point. In all diagrams the light blue lines are identified.

top bypass

bottom bypass

bottom bypass

top bypass

FIGURE 4.3.5. The n = 1 version of (P1) when there is one positive point and one negative
point. The data for the two commuting bypasses is identified on the left and comes from
Figure 4.3.4. The second column to to the third column is an isotopy of the dividing set and
the red arc for the sake of simplifying the picture.

For t = 1, there are no retrogradients and hence no bypasses. In particular, (Σ× [0, 1], ξ1) is a vertically
invariant contact structure. We therefore need to show that the two retrogradients for t = 0 correspond
to bypass attachments that yield a vertically invariant contact structure. By Lemma 4.2.1, the sequence of
bypass attachments is equivalent to a single bypass with data given by the lower left diagram of Figure 4.3.6.
After isotopy, the negative data is a standard Lagrangian disk filling of the standard unknot positioned above
the positive data, and hence the resulting bypass is trivial.

There are other occurrences of (P2) that correspond to reflecting the retrogradient diagram in Figure 4.3.6
across the vertical axis, and also by reflecting across the horizontal axis together with a change in the role
of positive and negative data. The analysis for each of these is completely analogous with appropriate
applications of Lemma 4.2.1 and its dual.
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FIGURE 4.3.6. The analysis of (P2) in terms of bypasses. Lemma 4.2.1 provides the bot-
tom left figure and the bottom right is obtained by isotoping the negative data.

(P3) and (P3’). We analyze (P3) explicitly; (P3’) is completely analogous. Suppose there is a single
retrogradient from a negative nondegenerate point p− of index n to a positive birth-death point of index
(n − 1, n). Because of the birth-death point we may assume that for t = 0 there are no retrogradients, and
hence (Σ × [0, 1], ξ0) is s-invariant and that for t = 1 there is a single retrogradient between p− and the
birthed positive index n point p+. We prove that this retrogradient corresponds to a trivial bypass.

The case n > 1. The idea is the same as the proof of Lemma 4.2.1. The positive data of the corresponding
bypass attachment is the belt sphere and cocore (Λ+;D+) of the positive Weinstein n-handle associated to
p+. As in Lemma 2.3.3, we isotop this pair to disconnect it from the handle. Since p+ and the birthed posi-
tive point of index n−1 cancel, their corresponding handles can be canceled, leaving a standard Legendrian
unknot with a standard Lagrangian disk as the positive bypass data. We can further assume after isotopy that
it is positioned below the negative data. Thus, the bypass is trivial, as desired. See Figure 4.3.7.

The case n = 1. The low-dimensional case is described by Figure 4.3.8. The 2-parameter family of folded
Weinstein diagrams in the gray box depicts the positive birth-death point in the second column and the pair
of canceling critical points in the third column. As in Figures 4.3.2 and 4.3.4, using Proposition 2.9.1 we use
the lower right folded Weinstein diagram to identify the bypass data corresponding to the bypass described
by moving up the third column. Observe that the resulting positive blue arc is a standard arc that sits below
the red arc, and hence the bypass is trivial.

(P4) and (P4’). We analyze (P4) explicitly; (P4’) is completely analogous. Assume that there is a single
retrogradient from a negative nondegenerate point p−n of index n to a positive nondegenerate point p+n−1 of
index n − 1. On either side of this retrogradient in 2-parameter space, there may be nearby retrogradients
from p−n to other positive critical points of index n, and this is the behavior that needs to be analyzed in
terms of bypass attachments.

Indeed, let p+n,1, . . . , p
+
n,K be the positive critical points of index n such there are (possibly multiple)

trajectories p+n−1 ⇝ p+n,k for each 1 ≤ k ≤ K. Let G+ ⊆ R+ be a regular contact level set below p+n−1 and
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FIGURE 4.3.7. The analysis of (P3) in terms of bypasses. On the left, the (−1)-surgered
gray arc and the light blue circles represent a canceling pair of n- and (n − 1)-handles,
and the decorated blue Legendrian represents the cocore of the gray handle. On the right is
the 2-parameter space. The dashed gray line indicates the presence of a birth-death point.
Above represents the region where the canceling points live, and below is the region where
they die.

identify
bypass
data

Folded Weinstein Convex

FIGURE 4.3.8. The n = 1 version of (P3). The resulting bypass arc described by the top
right figure gives a trivial bypass.

p+n,1, . . . , p
+
n,K . We can then view and model this assumption in a Legendrian surgery diagram as follows:

The attaching region of the Weinstein (n − 1)-handle associated to p+n−1 is given by the light blue disk in
the diagrams in Figure 4.3.9, again with the spinning convention of [CM19]. The attaching spheres of the
Weinstein n-handles associated to p+n,1, . . . , p

+
n,K are given by the K̃ blue strands. The assumption that there

are trajectories p+n−1 ⇝ p+n,k means that the blue strands intersect and pass through the attaching region of
the (n − 1)-handle. We allow K̃ ≥ K to account for the possibility that there are multiple trajectories
p+n−1 ⇝ p+n,k for a fixed k, and after localizing we may assume there are K0 strands on the left and K1 on
the right, so that K̃ = K0 +K1.
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FIGURE 4.3.9. The analysis of (P4) in terms of bypasses. In the top middle frame, the
(downward) vertical arrows correspond to increasing s and the horizontal arrows correspond
to increasing t.

By a gluing argument, the (P4) retrogradient p+n−1 ⇝ p+n,k forms broken flow lines p+n−1 ⇝ p+n,k ⇝ p+n,k
that may be perturbed into genuine flow lines. This is witnessed by the local retrogradient diagram in
Figure 4.3.9. On either side of the (P4) retrogradient p+n−1 ⇝ p+n,k, the sequences of bypasses is given as
a single bypass by Lemma 4.2.1, yielding the two local bypass diagrams in the bottom row of Figure 4.3.9
with isotopic data. This shows that both sequences of bypasses for t = 0, 1 are equivalent, completing the
analysis of (P4) and the proof of Theorem 3.1.1.

(P5) and (P5’). Finally we analyze (P5) and (P5’), which consider broken retrogradients of the form p−1 ⇝
p−2 ⇝ p+ and p− ⇝ p+1 ⇝ p+2 , where all critical points are of index n.

The case n > 1. For the high-dimensional case we consider (P5’). As usual, the case of (P5) is identical.
We thus assume there is a broken retrogradient p− ⇝ p+1 ⇝ p+2 as in the top left diagram of Figure 4.3.10.
A generic perturbation of this broken retrogradient is depicted by the top middle diagram in the figure,
which is based in Y and presents Y ′′. There are two vertical axes of local spin symmetry in the front, which
coincide with the maximum and minimum height of the light blue Legendrian. The retrogradient p− ⇝ p+1
occurs when the Legendrian Λ−, the ascending sphere of p− in Y , intersects Λ+,1, the attaching sphere
of p+1 in Y . The trajectory p+1 ⇝ p+2 corresponds to the handleslide of Λ+,2, the attaching sphere of p+2 ,
up over the surgered Λ+,1. In the 2-parametric family, the arrow indicating the motion of Λ− occurring
in Y corresponds to increasing s, and the arrow indicating the handleslide, corresponds to increasing t.
Consequently, for t = 0, before the handleslide, there is one retrogradient and hence one bypass, while for
t = 1 there are two retrogradients and hence two bypasses.
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The corresponding bypass diagrams in the bottom row are furnished by Lemma 4.2.1, as usual. After
sliding Λ+,2 over Λ+,1 on the left, the bypass diagrams become equal, hence the bypass sequences are the
same up to an additional trivial bypass on the left.
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Λ+,1

FIGURE 4.3.10. The analysis of (P5’) in terms of bypasses. In the top middle frame, the
red arrow corresponds to increasing s and the blue arrow corresponds to increasing t.

The case n = 1. For the low-dimensional case we instead analyze (P5). The situation is summarized by
Figure 4.3.11, which is more complicated but analogous to, for instance, Figure 4.3.8. The gray box in the
center of Figure 4.3.11 depicts the generic local model of a (P5) broken retrogradient in the folded Weinstein
setting; this is given by the diagram surrounded by the light blue box. Surrounding this light blue box is the
generic 2-parameter perturbation, where from left to right we perturb the p−1 ⇝ p−2 negative trajectory and
from bottom to top we perturb the p−2 ⇝ p+ retrogradient trajectory. Note that, as a result, the left side of
the family exhibits one retrogradient from bottom to top, and the right side exhibits two. As in Figure 4.3.8
we identify the initial bypass data for each family in the lower row and compute the correspond bypass
attachments. It follows that the left and right bypass sequences are the same, up to the addition of a trivial
bypass on the left. Note that this can be viewed as an instance of bypass rotation. □

5. WRINKLING LEGENDRIANS VIA BYPASSES

In this section we prove Theorem 3.1.7 and Theorem 3.1.8.

5.1. Wrinkled Legendrian spheres. First we prove Theorem 3.1.7. We remind the reader that L is a
standard Legendrian sphere, L′ is a wrinkled Legendrian sphere, and that we have standard neighborhoods
N(L′) ⊂ N(L).
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identify bypass dataidentify bypass data

Folded Weinstein Convex

Convex

FIGURE 4.3.11. The n = 1 version of (P5).

Proof of Theorem 3.1.7(1). To prove (1) we describe N(L) and N(L′) as contact handlebodies. The de-
scription of N(L) as a contact handlebody over W as in Theorem 3.1.7(1) is standard, so the rest of the
proof is devoted to describing N(L′) as a contact handlebody over W ′ as on the left side of Figure 3.1.2.

Note that L′ is the union of two (topological) n-disks, one being the middle sheet of the wrinkle bounded
by the piecewise smooth sphere Sn−1 with the cusp edge Sn−2, and the other its complement. So our
starting point is to first describe N(L′) as N(D1) ∪N(D2) where:

• The n-disk D1 is a smooth, small extension of the middle sheet depicted by the red disk on the left
side of Figure 5.1.1.

• The n-disk D2 is a slight retraction of the complement of the middle sheet, whose boundary is the
green sphere on the right side of Figure 5.1.1.

We can then interpret N(D2) as a contact n-handle attached to the Darboux ball N(D1) along the green
Sn−1 = ∂D2, hence giving a contact handlebody description of N(L′). The rest of the proof proceeds
by giving a careful local description of N(D1) ∪ N(D2), and then using this local description to identify
∂D2 ⊂ ∂N(D1) as the Legendrian on the left side of Figure 3.1.2.

D1 ∂D2

FIGURE 5.1.1. The disks D1 and D2.

Description of N(D1).

Let D1 be a Legendrian n-disk. For ϵ > 0 small, there is a contact handlebody neighborhood

(N(D1) ≃ D∗D1 × [−ϵ, ϵ]t, α = dt+ β)
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where β is a Liouville form on D∗D1 that will be described shortly. After smoothing, N(D1) has convex
boundary with dividing set

Γ := Γ∂N(D1) = ∂(D∗D1)× {0} = (S∗D1 ∪ D∗D1|∂D1)× {0}.

Here S∗ (resp. D∗) denotes the unit sphere (resp. unit disk) cotangent bundle. We refer to S∗D1 as the
horizontal boundary and D∗D1|∂D1 as the vertical boundary of D∗D1.

Next we describe the Liouville form β near ∂D∗D1. Let x1, . . . , xn−1 be local coordinates for ∂D1

and x′ be a strictly increasing function of the radial coordinate for D1 such that ∂D1 = {x′ = 0}. Let
y1, . . . , yn−1, y

′ be dual coordinates of x1, . . . , xn−1, x
′ in T ∗D1 so that x1, . . . , xn−1, y1, . . . , yn−1 are

coordinates on T ∗(∂D1). Choose ϵ0 > 0 small and a nondecreasing smooth function ϕ : (−∞, 0] → [0, ϵ0)
such that |ϕ′| ≤ 2ϵ0, ϕ(−√

ϵ0) = 0, and ϕ(0) = ϵ0. We then choose the Liouville form on D∗D1 to be

β := −
∑n−1

i=1 yi dxi − y′ dx′ + ϕ(x′) dy′.

Note that the Liouville vector field

Xβ =
∑n−1

i=1 yi ∂yi +
y′ ∂y′+ϕ(x′)∂x′

1+ϕ′(x′)

does not point transversely out of the vertical boundary D∗D1|∂D1 = D∗(∂D1)× [−1, 1]y′ unless we add a
term such as ϕ(x′) dy′.

Description of the attaching sphere of D2.

Next we describe the sphere ∂D2 ⊂ Γ along which we will glue D2. First, we introduce some auxiliary
data Λ2,+ and Λ2,− in ∂N(D1) but slightly off of Γ, and then we will flow this data to Γ to describe ∂D2.
Namely, we let Λ2,± ≃ Dn−1 be Legendrian disks in S∗D1 × {±ϵ/2}, such that, under the projection map
π : T ∗D1 × [−ϵ, ϵ] → D1, their images are given by Figure 5.1.2.

Λ2,+

Λ2,−

FIGURE 5.1.2. The solid (resp. dotted) line indicates that D2 approaches D1 from the
t > 0 side (resp. from the t < 0 side). The arrows indicate the normal orientations of
TΛ2,+ and TΛ2,− or, equivalently, the Reeb vector fields along TΛ2,+ and TΛ2,−.

More precisely, the projections are π(Λ2,±) = D′
±, where ∂D1 = D+ ∪ D− is the decomposition of

∂D1 into the upper and lower hemispheres and D′
± are pushoffs of D± into D1 so that D± ∩ D′

± = ∅,
∂D′

± ⊂ ∂D1, and ∂x′ ∈ TD′
±|∂D′

±
. By this last requirement, ∂Λ2,+ and ∂Λ2,− lie on {y′ = 0}.

Next, flow Λ2,± to Γ using the characteristic foliation of Γ × [−ϵ, ϵ]; this is directed by ∂t − RΓ, where
RΓ is the Reeb vector field of β|Γ. Note that the result of the flow, which we denote by (Λ2,±)

♯, lie in the
horizontal component S∗D1 × {0} of Γ.
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We then take D2 to have Legendrian boundary sphere

Λ2 := (Λ2,+)
♯ ∪ (Λ2,0)

♯ ∪ (Λ2,−)
♯ ⊂ Γ,

where (Λ2,0)
♯ ≃ Sn−2×[−1, 1] is a cylindrical component in the vertical boundary component D∗D1|∂D1×

{0}. In order to identify the wrinkled sphere L′ and the resulting handlebody structure, we need to (more)
carefully describe each of the three pieces of ∂D2, as well as the disk D2 itself near ∂D2.

Local model of D2 near interior points of Λ2,±.
Let p be an interior point of Λ2,+. We can choose a neighborhood N(p) ≃ D∗Dn−1 ×D∗D1 × [−ϵ, ϵ] of

p in N(D1) with slightly adjusted coordinates

(x1, . . . , xn−1, y1, . . . , yn−1), (x
′′, y′′), t

such that:
(a) the contact form is α = dt−

∑n−1
i=1 yi dxi − y′′ dx′′;

(b) N(p) ∩D1 = {y1 = · · · = yn−1 = y′′ = t = 0};
(c) N(p) ∩ Λ2,+ = {y1 = · · · = yn−1 = x′′ = 0, y′′ = 1, t = ϵ/2}; and
(d) we are viewing the sphere cotangent bundle S∗Dn as (S∗Dn−1 ×D∗D1)∪ (D∗Dn−1 × S∗D1), and

hence N(p) ∩ Λ2,+ ⊂ S∗Dn × {ϵ/2}.
Note that the front projection of N(p) is given by the coordinates (x1, . . . , xn−1, x

′′, t) and that the dual
y-coordinates describe the slopes of the contact structure with respect to the x-coordinates.

Letting Op(·) be an unspecified open enlargement as usual, we then take D2 ∩ Op(N(p)) — or more
precisely, the version of D2 before isotoping Λ2,+ to (Λ2,+)

♯ — to be

{(x1, . . . , xn−1, y1, . . . , yn−1) | y1 = · · · = yn−1 = 0} × C+,

where C+ ⊂ Op(D∗D1 × [−ϵ, ϵ]) is the curve such that:
(i) (dt− y′′ dx′′)|C+ = 0;

(ii) C+ is a subset of {x′′ ≥ 0} with an endpoint at (x′′, y′′, t) = (0, 1, ϵ/2); and
(iii) y′′|C+ is a smooth function of x′′ with y′′(0) = 1 and positive derivative at x′′ = 0.

See Figure 5.1.3.

x′′

N(D1)

D1

D2

t

Λ2,+

FIGURE 5.1.3. Local pictures of projections of N(D1), D1, and D2 (before isotoping
Λ2,+ to (Λ2,+)

♯) to the tx′′-plane. Here D1 and D2 are products of {(x, y) | y = 0} and the
purple arcs shown.

The situation for an interior point of Λ2,− is analogous, with (c), (ii), (iii) replaced by:
(c’) N(p) ∩ Λ2,− = {y1 = · · · = yn−1 = x′′ = 0, y′′ = 1, t = −ϵ/2};
(ii’) C− is a subset of {x′′ ≤ 0} with an endpoint at (x′′, y′′, t) = (0, 1,−ϵ/2); and

(iii’) y′′|C− is a smooth function of x′′ with y′′(0) = 1 and negative derivative at x′′ = 0.
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Local model near ∂Λ2,±.

We consider a neighborhood N(∂Λ2,+) ≃ D∗Sn−2 × D∗D2 × [−ϵ, ϵ] of ∂Λ2,+ ≃ Sn−2 in N(D1) with
coordinates

(x1, . . . , xn−2, y1, . . . , yn−2), (x
′, x′′, y′, y′′), t.

Here ∂x′ points out of D1, ∂x′′ is transverse to Λ2,+ in D1 (and is consistent with ∂x′′ used above),

∂Λ2,+ = Sn−2
0 × {(x′, y′, x′′, y′′, t) = (0, 0, 0, 1, ϵ/2)},

where Sn−2
0 is the zero section Sn−2

0 of D∗Sn−2, and Γ restricts to D∗Sn−2×{(x′, x′′, y′, y′′) | x′ = 0}×{0}.
The contact form on N(∂Λ2,+) is

dt−
(∑n−2

i=1 yi dxi

)
− y′ dx′ + ϕ(x′) dy′ − y′′ dx′′,

where ϕ(x′) is as before. Assuming that ∂Λ2,+ and ∂Λ2,− are sufficiently close, we may take

∂Λ2,− = Sn−1
0 × {(x′, y′, x′′, y′′, t) = (0, 0,−ϵ1, 1,−ϵ/2)}

where ϵ1 > 0 is small but satisfies ϵ1 ≫ ϵ; this is possible since we can reduce the thickness of the contact
handlebody N(D1).

In these coordinates, the characteristic foliation along Γ × [−ϵ, ϵ] is directed by ∂t − Rβ = ∂t − 1
ϵ0
∂y′ .

Thus, flowing Λ2,± to Γ to get (Λ2,±)
♯ gives

∂(Λ2,+)
♯ = Sn−1

0 × (0, ϵ
2ϵ0

, 0, 1, 0)

∂(Λ2,−)
♯ = Sn−1

0 × (0,− ϵ
2ϵ0

,−ϵ1, 1, 0)

Here we can further shrink ϵ so that ϵ
2ϵ0

≪ ϵ1 (basically we may assume that ϵ
2ϵ0

= 0). Finally, the
Legendrian cylinder (Λ2,0)

♯ which connects ∂(Λ2,+)
♯ to ∂(Λ2,−)

♯ is given by

(Λ2,0)
♯ = Sn−1

0 × C ′

where C ′ is a “minimally twisting” Legendrian arc with respect to the contact form ϕ(0) dy′ − y′′ dx′′

connecting the points (y′, x′′, y′′) = ( ϵ
2ϵ0

, 0, 1) and (− ϵ
2ϵ0

,−ϵ1, 1) and isotopic to the straight line between
them.

Identification of ∂D2.

We now identify the resulting Legendrian ∂D2. The n = 2 and n > 2 cases are slightly different:

Case n = 2. Each of ∂(Λ2,+)
♯ and ∂(Λ2,−)

♯ has two components and ∂D2 is the tb = −3, rot = 0 unknot
obtained by isotoping each corresponding pair of endpoints of ∂Λ2,+ and ∂Λ2,− and converting it into a
cusp.

Case n > 2. There is only one component and ∂D2 is a loose Legendrian unknot since Sn−1 × C ′ is a
standard model for a stabilization.

The above description of N(L′) as a contact handlebody completes the proof of Theorem 3.1.7(1). □

Proof of Theorem 3.1.7(2). Next we show that N(L) is obtained from a bypass attachment B to N(L′) and
that the resulting POBD is a stabilization of (W,∅). The bypass data is given at the top left of Figure 5.1.4.
Namely, (Λ+;D+) is a positive Reeb shift of the cocore of the positive Weinstein n-handle attached along
the loose Legendrian and (Λ−;D−) is a standard Legendrian unknot/Lagrangian disk pair. At the top left of
Figure 5.1.4 we attach the resulting R+-centric bypass. The diagram below it is obtained by an isotopy of
the gray Legendrian. Then, by Lemma 2.5.3, the gray and blue handles form a trivial bypass, i.e., a positive
stabilization, and can be erased. This yields a contact handlebody over W as desired. □
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Λ−
Λ− ⊎ Λ+

Λ+

(−1)

(−1)

(+1)

(−1)

(−1)

(+1)

(−1)

(−1)

(Bypass data B) (Attach B)

Γ′ Γ

Γ Γ

FIGURE 5.1.4. The proof of Theorem 3.1.7(2).

5.2. The general case. Now we consider more generally how to wrinkle the core disks of n-handles.

Proof of Theorem 3.1.8. The argument is similar to the case of a wrinkled sphere with only a few modifica-
tions. As in the statement of the theorem, let Li denote the core disk of the Weinstein n-handle hi and L′

i
the wrinkled stabilization of Li; see the diagram on the left side of Figure 5.2.1. Note that ∂L′

i = ∂Li.
To prove Theorem 3.1.8(1), we will decompose each wrinkled core disk L′

i into three pieces, doing so in
two steps. First, in analogy with Theorem 3.1.7(1), we identify two pieces:

• a Lagrangian disk D1,i ≃ Dn, highlighted in red in the middle diagram of Figure 5.2.1, and
• a Lagrangian annulus Ai ≃ Sn−1 × [0, 1], where one boundary component Sn−1 × {0} = ∂L′

i

is attached along a neighborhood W (n−1) of the (n − 1)-skeleton of W and the other boundary
component Sn−1 × {1} is attached to D∗D1,i along the stabilized Legendrian, which we denote by
Λi, from the proof of Theorem 3.1.7(1).

Next we decompose the annulus Ai into two pieces:
• a neighborhood of an arc ci = {p} × [0, 1] ⊂ Sn−1 × [0, 1], drawn in purple in the diagram on the

right side of Figure 5.2.1, and
• a Lagrangian disk D2,i whose boundary is drawn in light green in the same diagram.

We can then describe the attachment of the wrinkled disk L′
i as follows. First, the attachment of ci is

a contact 1-handle operation that glues the standard Weinstein ball D∗D1,i to a neighborhood of W (n−1).
Note that this can be viewed as birthing a canceling pair of Weinstein 0- and 1-handles. Finally, attaching
the rest of L′

i amounts to attaching D2,i along the connected sum Λi#∂Li, which is contact isotopic to the
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wrinkled core L′
i

∂D2,i

ci

Sn−1 × {0}

Λi = Sn−1 × {1}

D1,i

FIGURE 5.2.1. In the middle diagram the wrinkled disk L′
i is decomposed into two pieces:

the red disk D1,i and the annulus Ai with dark green boundary components. In the right
diagram, we decompose the annulus Ai into two more pieces: a neighborhood of the arc ci
and a disk D2,i with the indicated light green boundary.

stabilization of ∂Li. Thus, the handles h′i in the statement of Theorem 3.1.8(1) are exactly neighborhoods
of the disks D2,i. This completes the proof of (1).

The proof of Theorem 3.1.8(2) is identical to that of Theorem 3.1.7(2) and is given by Figure 5.2.2. Up
to the presence of the 1-handle the bypass computation is the same as in Figure 5.1.4. □

(−1)

FIGURE 5.2.2. The bypass data (blue and red) for Theorem 3.1.8(2); compare with Fig-
ure 5.1.4. Note that the pair of purple balls represents a 1-handle, not an (n− 1)-handle.

6. BIRTH-DEATH HOMOTOPIES

In this section we prove Theorem 3.1.9. We remind the reader that we have identified buns Hi,t0±ϵ for
eventual θ-decompositions Θt0±ϵ such that

Hi,t0+ϵ = Hi,t0−ϵ ∪N(Li)

where L0 is a Legendrian approximation of the core of the smooth n-handle and L1 is a Legendrian ap-
proximation of the cocore of the canceling smooth (n + 1)-handle; see again Figure 3.1.5. To prove The-
orem 3.1.9 it remains to exhibit bypass decompositions of the corresponding patties so that the resulting
OBDs at t = t0 ± ϵ are stably equivalent.

Writing Σ± := Σt0±ϵ = ∂H0,t0±ϵ, we have the following lemma:
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Lemma 6.0.1. There exist bypass decompositions ∆t0±ϵ of the patties Σ± × [0, 1] such that:
(1) The contact handlebodies H̃0,t0−ϵ and H̃0,t0+ϵ obtained by attaching all of the n-handles of the

bypasses from ∆t0±ϵ to H0,t0±ϵ are the same.
(2) The contact handlebodies H̃1,t0−ϵ and H̃1,t0+ϵ obtained by attaching all of the (n + 1)-handles of

the bypasses (viewed as upside-down n-handles) from ∆t0±ϵ to H1,t0±ϵ are the same.

Theorem 3.1.9 follows immediately from the lemma, together with Theorem 3.1.1 from Step 3 of Sec-
tion 3. Indeed, using the lemma we can build θ-decompositions (different from Θt0±ϵ) on either side of
t = t0 with identical buns; the OBDs are then related by a homotopy of patties and are thus stably equivalent.
The rest of the section is dedicated to proving Lemma 6.0.1. In §6.1 we construct the bypass decompositions
∆t0−ϵ and ∆t0+ϵ, and then in §6.2 we prove the lemma.

6.1. Construction of the bypass decompositions. To construct the bypass decompositions ∆t0±ϵ we
introduce a new cast of characters. Let D0 be a smooth (n+ 1)-dimensional half-disk corresponding to the
canceling (n + 1)-handle such that ∂D0 = L0 ∪ L′

0, where L′
0 ⊂ ∂H0,t0−ϵ is not necessarily Legendrian,

and let D1 be a smooth (n + 1)-dimensional half-disk corresponding to the upside down (n + 1)-handle
such that ∂D1 = L1 ∪ L′

1, where L′
1 ⊂ ∂H1,t0−ϵ is also not necessarily Legendrian. After isotopy we may

take the intersection D0 ∩D1 to be an embedded arc γ : [0, 1] → M such that γ(0) ∈ L1, γ(1) ∈ L0, γ is
isotropic, and γ is a sufficiently stabilized Legendrian when n = 1. See Figure 6.1.1.

L0 D0

L1
D1

γ

∂H0,t0−ϵL′
0

L′
1

FIGURE 6.1.1. The “linked” Legendrian disks L0 and L1. Here ∂H1,t0−ϵ is not shown.

The point is that when constructing the bypass decompositions ∆t0−ϵ and ∆t0+ϵ we can localize all of
the differences between the two to a standard neighborhood of γ.

The bypass decomposition of Σ− × [0, 1].

We describe a sequence of disjoint embedded hypersurfaces

Σ−,0, . . . ,Σ−,6 ⊂ Σ− × [0, 1]

with Σ−,0 = Σ− × {0} and Σ−,6 = Σ− × {1}.
For i = 0, 1, let N(Li) be a standard neighborhood of Li, let L̊i be Li with a small disk centered at

Li ∩ γ removed, and let N(L̊i) = π−1(L̊i) where π : N(Li) → Li is the standard projection. Let N(γ)

be a standard neighborhood of γ such that ∂N(L̊i) and ∂N(γ) intersect only along their boundary and
N(L̊i) ∪ N(γ) forms a standard neighborhood of Li ∪ γ. Finally let N(Di) be a tubular neighborhood of
Di whose radius is one order of magnitude smaller than those of N(γ) and N(Li). Then:

(1) Σ−,1 is the boundary of H0,t0−ϵ ∪N(L̊0),
(2) Σ−,2 is the boundary of H0,t0−ϵ ∪N(L̊0) ∪ (N(D0) \N(γ)),
(3) Σ−,3 is the boundary of H0,t0−ϵ ∪N(L0) ∪N(D0),
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(4) Σ−,4 is the (negative) boundary of H1,t0−ϵ ∪N(L̊1) ∪ (N(D1) \N(γ)),
(5) Σ−,5 is the (negative) boundary of H1,t0−ϵ ∪N(L̊1),

which we assume have been made disjoint after pushing off in a straightforward manner; see the left side of
Figure 6.1.2.

Σ−,1

Σ−,2

Σ−,3

Σ−,4

Σ+,1

Σ+,2

Σ+,3

Σ+,4

FIGURE 6.1.2. Some of the hypersurfaces that sweep through Σ− × [0, 1] at t = t0 − ϵ on
the left and the corresponding hypersurfaces for Σ+ × [0, 1] at t = t0 + ϵ on the right. In
all figures the light blue arc is γ.

Then, construct a codimension one foliation of Σ− × [0, 1] by hypersurfaces isotopic to Σ− × {i} such
that the Σ0,j , j = 0, . . . , 6, are leaves and consider the corresponding bypass decomposition ∆t0−ϵ. Some
preliminary observations about this bypass decomposition:

(I) We may take the leaves of the foliation between Σ−,0 and Σ−,1 to all be convex, so that this layer
contains no bypass attachments. Indeed, note that N(L̊0) can be interpreted as a contact n-handle
with a small neighborhood of the cocore deleted. Thus, there is a contact vector field that extends in
a nonvanishing way from H0,t0−ϵ to H0,t0−ϵ ∪N(L̊0).

The same can be said of the region between Σ−,5 and Σ−,6.
(II) The region between Σ−,1 and Σ−,2 (and likewise between Σ−,4 and Σ−,5) may involve bypass

attachments, but we do not need to describe them explicitly.
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(III) The region between Σ−,2 and Σ−,3, i.e., the neighborhood of γ, is given by a sequence of bypass
attachments that we will describe explicitly in the next subsection.

The bypass decomposition of Σ+ × [0, 1].

We construct analogs Σ+,j , j = 1, . . . , 5, of Σ−,j , where Σ+,1 := Σ+ × {0} and Σ+,5 := Σ+ × {1}, as
follows. Let N(Li), N(Di), and N(γ) be as before.

(2) Σ+,2 is the boundary of H0,t0+ϵ ∪ (N(D0) \N(γ)),
(3) Σ+,3 is the boundary of H0,t0+ϵ ∪ (N(D0) \N(L1)),
(4) Σ+,4 is the (negative) boundary of H1,t0+ϵ ∪ (N(D1) \N(γ)).

See the right side of Figure 6.1.2.

6.2. Proof of Lemma 6.0.1. The hypersurfaces Σ± × {i} described above localize everything to a
neighborhood of the arc γ. Thus, we first identify a normal form for the neighborhood of γ. Here there is a
difference in the low-dimensional (n = 1) and high-dimensional (n > 1) cases, since γ is Legendrian in the
former and subcritically isotropic in the latter.

The low-dimensional case is standard.

Lemma 6.2.1 (Neighborhood of γ when n = 1.). We may assume that N(γ) is a standard neighborhood
of γ such that N ′(γ) := N(γ) ∩D0 is a convex strip with Legendrian boundary subdivided by Legendrian
arcs δ1, . . . , δm−1 into convex disks R1, . . . , Rm with tb(∂Ri) = −1, arranged in order so that R1 is
adjacent to L0 and Rm contains L1 ∩ D0. See Figure 6.2.1. Moreover, Σ−,2 can be adjusted so that
Σ−,2 ∩N ′(γ) = ∂N ′(γ) \ intL0 and the intersection is transverse.

γ

L0

L1

R1 R2

R3

δ1
δ2

FIGURE 6.2.1. The intersection N ′(γ) = D0 ∩N(γ) in the 3-dimensional case with m =
3. The red arcs are the dividing curves, the black dot is the intersection L1 ∩ D0, and the
black arc is Σ−,2 ∩N ′(γ).

To state the higher-dimensional version we introduce some notation. We use sub- and super-scripts dim3,
for example as in Ndim3(γ), N ′

dim3(γ), and Ldim3
1 , to indicate the low-dimensional objects described in the

n = 1 case by Lemma 6.2.1. Recall that the isotropic arc γ : [0, 1] → M parametrizing D0 ∩D1 satisfies
γ(0) ∈ L1 and γ(1) ∈ L0.

Lemma 6.2.2 (Neighborhood of γ when n > 1.). After an isotopy of D0 relative to ∂D0, there is a neighbor-
hood N(γ) ⊂ (M, ξ) of the form Ndim3(γ)×U ⊂ Ndim3(γ)×T ∗Rn−1, where U is a tubular neighborhood
of the zero section Rn−1

0 in T ∗Rn−1, such that:
(i) the contact structure on Ndim3(γ)×T ∗Rn−1 is ker(α+β), where α is a contact form on Ndim3(γ)

and β is the standard Liouville form on T ∗Rn−1;
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(ii) N ′(γ) := N(γ) ∩D0 = N ′
dim3(γ)× Rn−1

0 ;
(iii) Tγ(0)L1 is Tγ(0)L

dim3
1 times a fiber of T ∗Rn−1; and

(iv) tb(∂N ′
dim3(γ)) = −1.

Proof. We explain the n = 2 case, leaving the n > 2 case to the reader. We abuse notation and isotop D0

and γ relative to their boundaries in stages without changing their names. Let vt := γ̇(t). Also let ⊥ denote
the symplectic orthogonal complement with respect to the symplectic structure ωξ on ξ and J an almost
complex structure on ξ compatible with ωξ. We also write R for any tangent vector on M transverse to ξ
(not just the Reeb vector field).

Since every point in (M, ξ) has a standard neighborhood by the Pfaff-Darboux theorem, there exist an
isotopy of γ rel boundary and a neighborhood of the resulting γ([1 − ϵ, 1]) with ϵ > 0 small on which (i)
and (ii) hold.

Next we isotop γ rel boundary so that Tγ(0)L1 = R⟨Jv0, Jw0⟩, where v0 = γ̇(0) and w0 ∈ R⟨v0, Jv0⟩⊥.
We further isotop D0 rel boundary so that Tγ(0)D0 = R⟨R, v0, w0⟩; this is possible since the original
Tγ(0)D0 and R⟨R, v0, w0⟩ can be connected by a 1-parameter family of 3-planes transverse to Tγ(0)L1 and
containing v0. We then take a neighborhood of γ([0, ϵ]) on which (i)–(iii) hold; here R, v0, Jv0 span the
R3-direction and w0, Jw0 span the T ∗R1-direction.

Finally we consider the neighborhood of γ([ϵ, 1−ϵ]). It is easy to perturb D0 such that, for all t ∈ [ϵ, 1−ϵ],
Tγ(t)D0 = R⟨R, vt, wt⟩, ξ(γ(t)) = R⟨vt, Jvt⟩ ⊕ R⟨vt, Jvt⟩⊥, and wt ∈ R⟨Jvt⟩ ⊕ R⟨vt, Jvt⟩⊥. We then
homotop wt, t ∈ [ϵ, 1 − ϵ], inside (R⟨Jvt⟩ ⊕ R⟨vt, Jvt⟩⊥) \ {0} (which is homotopic to S2) relative to its
endpoints so that wt agrees with the desired model. Once we have aligned N(γ) with the desired model on
the linear level, the lemma follows. □

When n = 1, note that each convex disk R1, . . . , Rm in Lemma 6.2.1 is a bypass half-disk. When n > 1,
(iv) in Lemma 6.2.2 means that we may treat the latter as an analogue of the former but always with m = 1.
In particular, we have:

Claim 6.2.3. When n > 1, N(γ) can be interpreted as a single bypass.

We can see this as follows. First, consider the n = 1 case with m = 1, so that N ′
dim 3(γ) = Rm. Observe

that:
(1) ∂N ′

dim 3(γ) is the union of Legendrian arcs L′ := Ldim 3
0 ∩ N ′

dim 3(γ) and L′′ ⊂ ∂Σdim 3
−,2 , in gray

and black respectively in Figure 6.2.2, that intersect at two points, and L′′ in turn is the union of two
Legendrian arcs a+1 and a−1 that meet at a point p;

(2) int(N ′
dim 3(γ)) is foliated by a 1-parameter family of Legendrian arcs at, t ∈ [−1,+1], from a−1

to a+1 that start at p and end on L′ such that a0 intersects Ldim 3
1 .

We thus have that N ′
dim 3(γ) is a bypass half-disk with attaching arc L′′ = a−1 ∪ a+1. The arcs a±1 are the

positive and negative attaching data, respectively, and the gray arc L′ is the core of the (n = 1)-handle for
the bypass. A standard model for N ′

dim 3(γ) in the front projection is a standard 1-dimensional Legendrian
unknot with two cusps p, q, where:

(1) the cusp q is at the center of the Legendrian arc L′ and
(2) the cusp p is the initial point of the family at, t ∈ [−1,+1].

See the left side of Figure 6.2.2.
By Lemma 6.2.2, when n > 1, in the front projection N ′(γ) = N(γ) ∩D0 has the form

N ′
dim 3(γ)×Dn−1.

See the middle of Figure 6.2.2. The claim now is that there is an extension of N ′(γ) to Ñ ′(γ) (i.e., a
capping off) so that in the front projection Ñ ′(γ) is the standard n-dimensional Legendrian unknot with one
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L′

D+

pq

a+1

a−1

Ldim 3
1

N ′
dim 3(γ)

N ′(γ) Ñ ′(γ)

FIGURE 6.2.2. The left disk is a front projection model of a bypass half-disk when n = 1;
the colors agree with Figure 6.2.1. The middle and right diagrams are front projections
when n = 2. On the far right, the boundary of the positive data D+ of the bypass is
outlined in blue.

cusp edge ≃ Sn−1, together with a foliated (on int(Ñ ′(γ))) 1-parameter family of Legendrian n-disks with
boundary Sn−1 and going from a retraction D− of the bottom sheet to a retraction D+ of the top sheet;
see the right side of Figure 6.2.2. This is not completely trivial as there is a “size issue”: we need enough
space in the cotangent direction of T ∗Dn−1 in order to damp out N ′(γ) to Ñ ′(γ). However, N ′

dim 3(γ) can
be made small by retracting to the disk ∪t∈[−ϵ,+ϵ]at, while preserving the size in the cotangent direction of
T ∗Dn−1. We can then interpret the retracted Ñ ′(γ) as a bypass with positive and negative data D±. Note
that this involves initially choosing Σ−,2 with some more care.

Now we prove our main lemma.

Proof of Lemma 6.0.1. We will prove (1). By the symmetry of the bypass decompositions ∆t0±ϵ of Σ± ×
[0, 1], (2) is given by the exact same (upside-down) argument. We write H̃±,i for the contact handlebodies
obtained by attaching all of the n-handles of the bypasses below Σ±,i to H0,t0±ϵ. Thus our goal is to show
that the contact handlebodies H̃−,5 and H̃+,5 are the same.

Step 1: The layers between Σ±,1 and Σ±,2.

Note that Σ−,1 and Σ+,1 only differ in a small neighborhood N(L0) ∩ N(γ). So given a sequence of
bypasses inductively attached to Σ−,1 (by which we mean that the first bypass B1 is attached to Σ−,1 but the
next one B2 is attached to the boundary of a thickening of Σ−,1 ∪ B1, not necessarily to Σ−,1) in the layer
from Σ−,1 to Σ−,2, we can inductively attach the exact same bypasses to Σ+,1 to obtain Σ+,2.

Step 2: The layers between Σ±,2 and Σ±,3.

In the case n = 1 we refer to Lemma 6.2.1. As remarked above, each of the convex disks R1, . . . , Rm

are bypass half-disks. Therefore the layer between Σ−,2 and Σ−,3 is given by attaching the bypasses corre-
sponding to Rm, Rm−1, . . . , R1, in that order. To the corresponding Σ+,2 we attach R1, . . . , Rm−1 in that
(reversed) order. The arcs δ1, . . . , δm−1 appear in both H̃−,3 and H̃+,3 even though the order of attachment
of the bypasses was reversed.

The case n > 1 is simpler because of Lemma 6.2.2 and Claim 6.2.3. To go from Σ−,2 to Σ−,3, the
claim tells us that we fill in the rest of N(γ) with a single bypass attachment, which we also refer to
as Rm (with m = 1) for consistency. In particular, the n-handle of the bypass attachment is a small
standard neighborhood of L0 near γ(1) and the (n+ 1)-handle of the bypass attachment is a small standard
neighborhood of L1 near γ(0). Likewise, the corresponding layer between Σ+,2 and Σ+,3 does not involve
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any bypasses because the aforementioned n- and (n + 1)-handles are, by construction, already distributed
onto the upper and lower handlebodies.

Step 3: The handlebodies H̃±,3.

Before considering the rest of the layers we make an observation. At this point, the handlebodies H̃−,3

and H̃+,3, i.e., those obtained by attaching all of the n-handles from Step 1 and Step 2 above to H0,t0−ϵ and
H0,t0+ϵ, are the same. Indeed, all of the bypasses up through Σ±,2 and all of the bypasses R1, . . . , Rm−1

are the same. Finally, the n-handle from the bypass Rm in H̃−,3, the only one as of yet not accounted for,
is present in H̃+,3 from the beginning by construction of the Legendrian arch that forms the lower bun of
Θt0+ϵ.

Step 4: The rest of the layers.

By Step 3 it suffices to prove that the rest of the bypasses inductively attached to Σ−,3 to reach Σ−,5 can
likewise be inductively attached to Σ+,3 to reach Σ+,5. These are just upside-down versions of Step 1 and
Step 2.

This completes the proof of the lemma. □

7. WEINSTEIN LEFSCHETZ FIBRATIONS

In this section we prove Corollaries 1.3.1 and 1.3.3, which we restate below as Theorem 7.0.1 for the
convenience of the reader. First we recall the relevant language from Section 1. An abstract WLF, henceforth
abbreviated AWLF, is the data

((W ♭, λ♭, ϕ♭); L = (L1, . . . , Lm)),

abbreviated (W ♭;L), where (W ♭, λ♭, ϕ♭) is a (2n−2)-dimensional Weinstein domain and L1, . . . , Lm ⊂ W ♭

are exact parametrized Lagrangian spheres. We say that two AWLFs are move equivalent if they are related
to a common AWLF by sequences of the four moves (deformation, cyclic permutation, Hurwitz move,
and stabilization) described in Section 1. A consecutive sequence of stabilization moves will be called a
multistabilization. We will work strictly with AWLFs and refer to [GP17] for more details on how to pass
between AWLFs and WLFs in the sense of Definition 1.3.2.

Corollaries 1.3.1 and 1.3.3 can be rephrased as follows:

Theorem 7.0.1 (Weinstein-AWLF correspondence).
(1) Let (W,λ, ϕ) be a Weinstein domain. Then there is an AWLF (W ♭;L) such that the total space

|W ♭;L| is 1-Weinstein homotopic to (W,λ, ϕ).
(2) Let (W ♭

i ;Li), i = 0, 1, be AWLFs. Then the total spaces |W ♭
i ;Li|, i = 0, 1, are 1-Weinstein

homotopic if and only if (W ♭
i ;Li), i = 0, 1, are move equivalent.

The notion of the total space of an AWLF, i.e., the association of a Weinstein structure to an AWLF,
will be reviewed in Section 7.1. In Section 7.2 we discuss the other direction of associating an AWLF to
a Weinstein structure. In particular, we prove Theorem 7.0.1(1), i.e., Corollary 1.3.1, and discuss some
subtleties. Finally in Section 7.3 we prove Theorem 7.0.1(2), i.e., Corollary 1.3.3.

7.1. From AWLF to Weinstein. Given an AWLF (W ♭;L), its total space, denoted |W ♭;L|, is a
Weinstein domain obtained by:

(1) first forming the 2n-dimensional Weinstein structure

(W ♭ ×D2, λ♭ + λst, ϕ
♭ + ϕst),
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where (D2, λst, ϕst) is the standard Weinstein structure on the disk with radial Liouville vector field,
and then

(2) attaching critical Weinstein handles along

L̃ := L̃1 ∪ · · · ∪ L̃m ⊂ W ♭ × ∂D2,

where L̃j is a Legendrian lift of Lj that projects to a small interval centered at 2πj
m ∈ S1 = ∂D2.

By rescaling the Weinstein structure on D2 if necessary we further require each of the small intervals in (2)
to be pairwise disjoint. Also, the precise locations 2πj

m ∈ S1 are not important, just their ordering around
S1. We refer to [GP17, Definition 6.3] for a more detailed description of the total space of an AWLF.

For convenience we adopt the following language:

Definition 7.1.1. Let (W 2n, λt, ϕt), t ∈ [0, 1], be a 1-Weinstein homotopy. We say that the homotopy is
• critically strict if there are no handleslides of index n handles and no birth-death type points of index
(n− 1, n);

• a critical handleslide homotopy if at t = 1
2 there is a single handleslide of n-handles, and is other-

wise critically strict; and
• a critical birth-death homotopy at t = 1

2 if there is a single birth-death type point of index (n−1, n),
and is otherwise critically strict.

In this section we drop the “critical” adjective and will refer to homotopies of the above type as strict,
handleslide, and birth-death homotopies, respectively.

Remark 7.1.2. Let (W ♭;L) be an AWLF. The total space |W ♭;L| is well-defined up to strict Weinstein
homotopy supported away from a neighborhood of the (n − 1)-skeleton. That is, the total space is well-
defined up to isotoping (but not handlesliding) the attaching spheres that lift the Lagrangian vanishing cycles.

7.2. From Weinstein to AWLF. Here we prove Theorem 7.0.1(1), i.e., Corollary 1.3.1. Afterwards, we
introduce a new definition (Definition 7.2.1) motivated by the proof and discuss some of its subtleties. We
remind the reader that “OBD” always means “strongly Weinstein OBD.”

Proof of Theorem 7.0.1(1). Let (W 2n, λ, ϕ) be a Weinstein domain. By [Cie], there is a neighborhood
W (n−1) of the (n− 1)-skeleton of (W,λ, ϕ) such that (W (n−1), λ, ϕ) is 1-Weinstein homotopic to

(W ♭ ×D2, λ♭ + λst, ϕ♭ + ϕst),

where (W ♭, λ♭, ϕ♭) is a Weinstein domain of dimension 2n − 2. Note that this 1-Weinstein homotopy will
in general not be strict when n = 3; see [CE12, p. 292].

Next we identify three OBDs of ∂(W ♭ ×D2).
• First, ∂(W ♭×D2) admits the trivial compatible OBD (B, π) with page W ♭ and identity monodromy.

This is the OBD induced by the AWLF (W ♭;∅).
• Secondly, let Λ = Λ1 ∪ · · · ∪ Λm ⊂ ∂W (n−1) be the collection of attaching Legendrian (n − 1)-

spheres with respect to ϕ and let Λ̃ = Λ̃1 ∪ · · · ∪ Λ̃m ⊂ ∂(W ♭ × D2) denote its image under the
1-Weinstein homotopy furnished by [Cie]. By [HHb, Corollary 1.3.3], there exists an OBD (B′, π′)

of ∂(W ♭ ×D2) such that Λ̃ is contained in a page.
• Finally, by Theorem 1.1.8, there exist sequences of stabilizations applied to (B, π) and (B′, π′) such

that they become strongly Weinstein homotopic to a common (B′′, π′′).
Observe that each OBD stabilization of the trivial OBD (B, π) of ∂(W ♭ × D2) is induced by an AWLF
stabilization of (W ♭;∅). Thus there is an AWLF (W ♮;L′) such that

• (W ♮;L′) is an AWLF multistabilization of (W ♭;∅) and hence |W ♮;L′| is 1-Weinstein homotopic
to W ♭ ×D2, and
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• the OBD of ∂(W ♭ ×D2) induced by (W ♮;L′) is strongly Weinstein homotopic to (B′′, π′′).

Using this strong Weinstein homotopy of OBDs we may Legendrian isotop Λ̃ to

L̃′′ = L̃′′
1 ∪ · · · ∪ L̃′′

m ⊂ W ♭ × ∂D2

such that L̃′′ lies on a page of the OBD induced by (W ♮;L′). Then L̃′′ projects to a set of Lagrangian
vanishing cycles L′′ = (L′′

1, . . . , L
′′
m) ⊂ W ♮ and the AWLF

(W ♮;L := L′ ∪ L′′),

where L′∪L′′ is the ordered union of all vanishing cycles in L′ and L′′, has a total space which is 1-Weinstein
homotopic to (W,λ, ϕ). □

As described in §7.1, given an AWLF one builds a Weinstein domain which is well-defined up to strict
Weinstein homotopy. In the opposite direction, the association of an AWLF to a given Weinstein structure
(W,λ, ϕ) is more delicate because the total space of the AWLF (W ♮;L) produced by the proof of Theo-
rem 7.0.1(1) is in general not strictly Weinstein homotopic to (W,λ, ϕ). In order to navigate the proof of
Theorem 7.0.1(2) carefully, we need to be more precise about the type of AWLF produced by the proof of
Theorem 7.0.1(1) as it relates to the input Weinstein structure. This motivates Definition 7.2.1.

Definition 7.2.1. Let (W 2n, λ, ϕ) be a Weinstein domain. An AWLF (W ♮;L) is compatible with (W,λ, ϕ)
if there is an ordered decomposition L = L′ ∪ L′′ such that:

(a) the total space |W ♮;L′| is 1-Weinstein homotopic to (W (n−1), λ, ϕ), where W (n−1) is a neighbor-
hood of the (n− 1)-skeleton of (W,λ, ϕ);

(b) the 1-Weinstein homotopy in (a) extends via a strict Weinstein homotopy to a 1-Weinstein homotopy
from |W ♮;L| to (W,λ, ϕ); and

(c) under the homotopy in (b), the Legendrian lifts L̃′′ ⊂ W ♭ × ∂D2 of the vanishing cycles L′′ are
identified with the attaching spheres of the n-handles of ϕ on ∂W (n−1).

We use the notation (W ♮;L′,L′′) to indicate a preferred ordered decomposition (W ♮;L = L′∪L′′), and we
say that (W ♮;L′,L′′) is compatible with (W,λ, ϕ) if (W ♮;L) is compatible with (W,λ, ϕ) via the indicated
preferred decomposition.

Less precisely, an AWLF (W ♮;L′,L′′) is compatible with (W,λ, ϕ) if |W ♮;L′| gives a (stabilized) neigh-
borhood of the (n− 1)-skeleton and if L′′ lifts to the n-handles of ϕ. See Figure 7.2.1.

Remark 7.2.2. Here we collect some observations about compatibility.

(1) Let (W ♭;L) be an AWLF. Then (W ♭;∅,L) is compatible with |W ♭;L|.
(2) Let (W ♮;L) be an AWLF that admits an ordered decomposition L = L′∪L′′ such that (W ♮;L′) is a

multistabilization of (W ♭;∅). If L′ is nonempty, then (W ♮;L′,L′′) is not compatible with |W ♮;L|,
even though (W ♮;L′) is a multistabilization. Indeed, the n-handles of the total space |W ♮;L|, by
definition, are attached along Legendrian lifts of all of the vanishing cycles in L = L′∪L′′. However,
compatibility with a prescribed Weinstein structure requires the n-handles of the latter to correspond
to L′′.

(3) The notion of compatibility via a fixed decomposition L = L′∪L′′ is not necessarily preserved under
1-Weinstein homotopy. Indeed, let (W ♮;L′,L′′) be compatible with (W,λ, ϕ). Let (W,λt, ϕt), t ∈
[0, 1], be either a handleslide or birth-death homotopy as in Definition 7.1.1 with (λ0, ϕ0) = (λ, ϕ).
Then (W ♮;L′,L′′) is not compatible with (W,λ1, ϕ1). However, the compatibility of (W ♮;L) may
be preserved with a different choice of ordered decomposition of L; see the proof of Lemma 7.3.3
below.



THE GIROUX CORRESPONDENCE IN ARBITRARY DIMENSIONS 63

L′
1

L′
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L′′
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L′′
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3

D2

FIGURE 7.2.1. A heuristic picture of an AWLF
(
W ♮; L′ = (L′

1, L
′
2), L′′ = (L′′

1, L
′′
2, L

′′
3)
)

compatible with a Weinstein structure (W,λ, ϕ) where ϕ has three n-handles. More pre-
cisely, the figure depicts a WLF p : W → D2 induced by the AWLF. The blue dot is the
image of the distinguished fiber W ♮, the black singular values and Lagrangian thimbles in
the smaller gray disk correspond to the bi-stabilization (W ♮;L′), and the red singular values
and thimbles correspond to the cycles (L′′

1, L
′′
2, L

′′
3) that lift to the attaching spheres of the

three n-handles of ϕ.

Given the Weinstein domain (W,λ, ϕ), the AWLF produced by the proof of Theorem 7.0.1(1) is compat-
ible with (W,λ, ϕ) — this is the key point of the definition of compatibility. In fact, the result of the proof
of Theorem 7.0.1(1) may be rephrased and strengthened as follows:

Lemma 7.2.3 (Existence of compatible AWLFs). Let (W,λ, ϕ) be a Weinstein domain and let Λ ⊂ ∂W
be a possibly disconnected Legendrian submanifold. Then there exists an AWLF (W ♮;L = L′ ∪ L′′) and a
Lagrangian submanifold L ⊂ W ♮ such that

• (W ♮;L′,L′′) is compatible with (W,λ, ϕ), and
• there is a Legendrian lift of L in W ♮ × ∂D2 that lies on a single page and is identified with Λ under

the 1-Weinstein homotopy from |W ♮;L| to (W,λ, ϕ).

Informally, the lemma says that given a Weinstein domain W we may produce a compatible AWLF and
moreover given a Legendrian Λ ⊂ ∂W we may further require Λ to sit on a single page of the OBD induced
by the AWLF, even if Λ has multiple components.

7.3. Proof of move equivalence. Here we prove Theorem 7.0.1(2). The “if” direction is clear and was
already observed by [GP17], so it remains to prove the “only if” direction, i.e., Corollary 1.3.3. The strategy
is identical to the proof of Theorem 1.1.8 in that we slice up a generic 1-Weinstein homotopy into the three
types from Definition 7.1.1 and analyze the compatible AWLFs on each end.

The key part of the proof consists of the following two lemmas: Lemmas 7.3.1 and 7.3.3.

Lemma 7.3.1 (Move equivalence over strict homotopies). Let (W,λt, ϕt), t ∈ [0, 1], be a strict Weinstein
homotopy and suppose that (W ♮

i ;L′
i,L′′

i ), i = 0, 1, are AWLFs that are compatible with (W,λi, ϕi), i = 0, 1,
respectively. Then (W ♮

0 ;L′
0,L′′

0) and (W ♮
1 ;L′

1,L′′
1) are move equivalent. In particular, any two AWLFs

compatible with the same Weinstein structure are move equivalent.
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Proof. For each i = 0, 1, since (W ♮
i ;L′

i,L′′
i ) is compatible with (W,λi, ϕi) we have that (W ♮

i ;L′
i) is a mul-

tistabilization of (W ♭
i ,∅) for some Weinstein domain W ♭

i . Moreover, |W ♭
i ;∅| = W ♭

i ×D2 is 1-Weinstein
homotopic to a neighborhood W

(n−1)
i of the (n−1)-skeleton of (W,λi, ϕi). Since the homotopy (W,λt, ϕt),

t ∈ [0, 1], is strict, there is a deformation move that takes W ♭
0 to W ♭

1 . Thus, after this move we can assume
that (W ♮

0 ;L′
0) and (W ♮

1 ;L′
1) are both multistabilizations of a common (W ♭,∅).

We then have the following claim:

Claim 7.3.2 (Move equivalence of multistabilizations). Let (W ♮
i ;Li), i = 0, 1, be multistabilizations of

(W ♭;∅). Then (W ♮
i ;Li), i = 0, 1, are move equivalent.

Proof of Claim 7.3.2. Write
W ♮

i = W ♭ ∪ hi,1 ∪ · · · ∪ hi,ki ,

where ki is the number of vanishing cycles in Li and hi,j are the (n− 1)-handles used in the multistabiliza-
tions. Up to Weinstein homotopy of each W ♮

i , we may assume that the attaching loci of both sets of handles
together

h0,1, . . . , h0,k0 , h1,1, . . . , h1,k1

are pairwise disjoint and lie in ∂W ♭. This means that the Weinstein domains

W ♮
0 ∪ h1,1 ∪ · · · ∪ h1,k1

W ♮
1 ∪ h0,1 ∪ · · · ∪ h0,k0

are the same Weinstein domain, which we name W ♯.
Then (W ♯;L1,L0) is a multistabilization (after the initial deformation move) of (W ♭

0 ;L0), and likewise
(W ♯;L0,L1) is a multistabilization (and deformation) of (W ♭

1 ;L1). After permutation, it follows that both
of the initial AWLFs are move equivalent to (W ♯;L0,L1). □

We now finish the proof of Lemma 7.3.1. By Claim 7.3.2, there is a common multistabilization (and
deformation)

(W ♯;L′
0,L′

1)

of both (W ♭
0 ;L′

0) and (W ♭
1 ;L′

1).
Consider the following AWLF moves, where we use ∼ to denote move equivalence. First, applied to

(W ♭
1 ;L′

1,L′′
1) we have

(W ♭
1 ;L′

1,L′′
1) ∼ (W ♯;L′

0,L′
1,L′′

1)

by the above multistabilization (and deformation). Next, applied to (W ♭
0 ;L′

0,L′′
0) we have

(W ♭
0 ;L′

0,L′′
0) ∼ (W ♭

0 ;L′′
0,L′

0)

∼ (W ♯;L′
1,L′′

0,L′
0)

∼ (W ♯;L′
0,L′

1,L′′
0).

The first and third lines are permutation moves, while the second line is the aforementioned multistabiliza-
tion. Finally, since both initial AWLFs are compatible with strictly homotopic Weinstein structures, we can
relate L′′

i , i = 0, 1, by a further deformation. This completes the proof. □

Lemma 7.3.3 (Move equivalence over non-strict homotopies). Let (W,λt, ϕt), t ∈ [0, 1], be either
(1) a handleslide homotopy, or
(2) a birth-death homotopy.
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Suppose that (W ♮
i ;L′

i,L′′
i ), i = 0, 1, are AWLFs that are compatible with (W,λi, ϕi), i = 0, 1, respectively.

Then (W ♮
0 ;L′

0,L′′
0) and (W ♮

1 ;L′
1,L′′

1) are move equivalent.

Proof. Since all AWLFs compatible with the same structure are move equivalent by Lemma 7.3.1, we may
discard the given AWLFs in the statement of the lemma and instead construct AWLFs, which we may also
name (W ♭

i ;L′
i,L′′

i ), i = 0, 1, that are compatible with (W,λi, ϕi), i = 0, 1, respectively, and show that they
are move equivalent. The statement of the lemma then follows.

Case (1): A handleslide homotopy.

First we construct a compatible AWLF at t = 0. Let W (n−1) denote a neighborhood of the (n − 1)-
skeleton of (W,λ0, ϕ0). We may assume without loss of generality that there are Legendrian spheres
Λ−,Λ+ ⊂ ∂W (n−1) such that:

• Λ− and Λ+ intersect ξ-transversally at a single point, where ξ is the induced contact structure on
∂W (n−1);

• ϕ0 has two n-handles attached along Legendrians Λ−ε
− and Λ+, where Λ−ε

− is a time −ε pushoff in
the Reeb direction;

• ϕ1 has two n-handles attached along (Λ− ⊎ Λ+)
ε and Λ+, i.e., we have slid the n-handle attached

along Λ−ε
− up over the n-handle attached along Λ+.

By Lemma 7.2.3, there is a compatible AWLF (W ♮;L′,∅) of W (n−1) and cycles L−, L+, L⊎ ⊂ W ♮ such
that

• L− lifts to Λ−ε
− ⊂ ∂W (n−1),

• L+ lifts to Λ+ ⊂ ∂W (n−1),
• L⊎ lifts to (Λ− ⊎ Λ+)

ε ⊂ ∂W (n−1),
• L− and L+ intersect transversally in W ♮ at a single point and L⊎ = τL+L−.

Then (W ♮;L′, (L−, L+)) and (W ♮;L′, (L+, τL+L−)) are AWLFs compatible with (W,λi, ϕi), i = 0, 1,
respectively. They are move equivalent by a Hurwitz move.

Case (2): A birth-death homotopy.

Assume that the birth-death type point is a birth point (the case of a death point is identical), so that
(W,λ1, ϕ1) is obtained from (W,λ0, ϕ0) by attaching a canceling pair of (n − 1)- and n-handles. Let
(W ♭

0 ;L) be compatible with (W,λ0, ϕ0). We will construct an AWLF of the form(
W̃ ♯

1 ; L̃ ∪ L ∪ L
)

that is compatible with (W,λ1, ϕ1) and is move equivalent to (W ♭
0 ;L). This will be done in a number of

stages and we refer to Figure 7.3.1 to keep track of the intermediary Weinstein domains.
First, after strict Weinstein homotopy of (W,λ1, ϕ1), we may assume that

(W,λ1, ϕ1) = |W ♭
1 := W ♭

0 ∪ hn−1; L| ∪ hn

where hn−1 is a (2n− 2)-dimensional (n− 1)-handle and hn is a 2n-dimensional n-handle attached along
Λ ⊂ ∂(W ♭

1 × D2). We may further assume that Λ = Λ0 ∪ Λ1 with ∂Λ0 = ∂Λ1, where Λ1 is the core of
hn−1 on the fiber W ♭

1 × {θ = 0}. See Figure 7.3.1.
Next, we wish to attach a neighborhood N(Λ0) of Λ0 to W ♭

0×{θ = 0} as a Weinstein handle, but int(Λ0)
may intersect nontrivially with this fiber in a way that a generic perturbation cannot undo. However, it is
possible to isotop intersections away as follows. Note that by transversality and a dimension count, via a
generic isotopy rel ∂Λ0 we may assume that int(Λ0) ∩ Skel(W ♭

0 × {θ = 0}) = ∅. We then use the locally
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W ♭
0

W ♯
0

W̃ ♯
0

W ♭
1

W ♯
1

W̃ ♯
0

N(Λ̊0)

hn−1

Λ1

Λ0

multistabilize multistabilize

FIGURE 7.3.1. The various Weinstein domains involved in the birth-death case of
Lemma 7.3.3. The small gray handles represent stabilizations.

defined contact vector field θ ∂θ + XW ♭
0

near {θ = 0}, where XW ♭
0

is the Liouville vector field of W ♭
0 , to

push the intersection Λ0 ∩ (W ♭
0 × {θ = 0}) out through ∂W ♭

0 × {θ = 0}. Then we can further adjust
W0 ×{θ = 0} near ∂Λ0 so that Λ0 = Λ̃0 ∪ Λ̊0, where Λ̊0 is disjoint from W ♭

0 ×{θ = 0} except along ∂Λ̊0,
∂Λ̊0 ⊂ ∂W ♭

0 × {θ = 0}, and Λ̃0 ≃ Sn−2 × [−1, 1] is a cylindrical component that lies in W ♭
0 × {θ = 0}

between ∂Λ1 and ∂Λ̊0; see Figure 7.3.2.

∂W ♭
0 × {0}

Λ1

Λ0 Λ̊0

Λ̃0

FIGURE 7.3.2. Adjusting Λ0 with respect to W ♭
0×{θ = 0}. The black vector field is XW ♭

0
.

From the first to the second frame we push out the intersection Λ0 ∩ (W ♭
0 × {θ = 0}) and

from the second to the third frame we adjust the Weinstein hypersurface so that it contains
a cylindrical component (in pink) of Λ0.
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Now, we define two embedded Weinstein domains in ∂(W ♭
1 ×D2):

W ♯
0 := (W ♭

0 × {θ = 0}) ∪N(Λ̊0),

W ♯
1 := (W ♭

1 × {θ = 0}) ∪N(Λ̊0).

See the second row of Figure 7.3.1.
By the proof of [HHb, Corollary 1.3.3], there is a supporting OBD of ∂(W ♭

0×D2) such that the Weinstein
hypersurface W ♯

0 constructed above is a sublevel set of a page, the latter of which we denote W̃ ♯
0 . By the

same argument using Theorem 1.1.8 as in the proof of Lemma 7.2.3, we can witness this OBD by an AWLF
multistabilization (W̃ ♯

0 ; L̃) of (W ♭
0 ;∅). Finally, we let W̃ ♯

1 := W̃ ♯
0 ∪ hn−1. See the top row of Figure 7.3.1.

Now, let L ⊂ W̃ ♯
1 be the Lagrangian corresponding to Λ = Λ0 ∪Λ1. We claim that the AWLF (W̃ ♯

1 ; L̃ ∪
L ∪ L) is compatible with (W,λ1, ϕ1) and is move equivalent to (W ♭;L).

• Compatibility. Let L = L′ ∪ L′′ be the decomposition so that (W ♭
0 ;L′,L′′) is compatible with

(W,λ0, ϕ0). Then (W̃ ♯
1 ; L̃ ∪ L′) is a multistabilization of (W ♭

1 ;L′) and hence gives a neighborhood
of the (n− 1)-skeleton of (W,λ1, ϕ1). The cycles L′′ ∪ L give the n-handles of (W,λ1, ϕ1). Thus,(

W̃ ♯
1 ; L̃ ∪ L′, L′′ ∪ L

)
=

(
W̃ ♯

1 ; L̃ ∪ L ∪ L
)

is compatible with (W,λ1, ϕ1).
• Move equivalence. Applying a permutation move gives (W̃ ♯

1 ; L ∪ L̃ ∪ L). This is a stabilization of
(W̃ ♯

0 ; L̃ ∪ L), which is a multistabilization of (W ♭;L).
This completes the proof of Lemma 7.3.3. □

Finally, we prove Theorem 7.0.1(2), which is more or less automatic from Lemmas 7.3.1 and 7.3.3.

Proof of Theorem 7.0.1(2). Let (W ♭
i ;Li), i = 0, 1, be AWLFs such that the total spaces |W ♭

i ;Li|, i = 0, 1,
are 1-Weinstein homotopic. By Remark 7.2.2, (W ♭

i ;∅,Li), i = 0, 1, are compatible with |W ♭
i ;Li|, i = 0, 1,

respectively.
By genericity, the 1-Weinstein homotopy connecting |W ♭

i ;Li|, i = 0, 1, can be sliced into a concatenation
of (rescaled) strict, handleslide, and birth-death homotopies. By Lemma 7.2.3, there are compatible AWLFs
at each slicing point, and by Lemmas 7.3.1 and 7.3.3 each AWLF is move equivalent to the next. Hence the
original AWLFs are move equivalent, as desired. □
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