CONVEX HYPERSURFACE THEORY IN CONTACT TOPOLOGY

KO HONDA AND YANG HUANG

ABSTRACT. We lay the foundations of convex hypersurface theory (CHT) in
contact topology, extending the work of Giroux in dimension three. Specifi-
cally, we prove that any closed hypersurface in a contact manifold can be C°-
approximated by a convex one. We also prove that a C*-generic family of mu-
tually disjoint closed hypersurfaces parametrized by ¢ € [0, 1] is convex except
at finitely many times ¢1,...,¢n, and that crossing each ¢; corresponds to a
bypass attachment. As applications of CHT, we prove the existence of compati-
ble (relative) open book decompositions for contact manifolds and an existence
h-principle for codimension 2 contact submanifolds.
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1. INTRODUCTION

1.1. Convex contact structures. Morse theory is a topologist’s favorite tool for
exploring the structure of manifolds. The significance of Morse theory — here
we mean the traditional finite-dimensional version, not Floer theory — in contact
and symplectic topology was advocated by Eliashberg and Gromov in [EGI1].
In particular, according to [EG91, Definition 3.5.A], a contact manifold (M, &) is
convex if there exists a Morse function, called a contact Morse function, which
admits a gradient-like vector field whose flow preserves £. Just as a manifold can
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be reconstructed from its Morse function by a sequence of handle attachments in
traditional Morse theory, a contact manifold can be reconstructed from a contact
Morse function by a sequence of contact handle attachments. The analogous theory
in symplectic topology is known as the theory of Weinstein manifolds.

Eliashberg and Gromov asked in [EG91] whether there exist non-convex contact
manifolds. Around 2000 Giroux gave a negative answer to the question by show-
ing that every closed contact manifold is convex; see [Gir02]. This can also be
formulated as his celebrated correspondence between contact structures and open
book decompositions. This is in sharp contrast to the theory of Weinstein mani-
folds, where it is relatively easy to see that any compatible Morse function cannot
have critical points of index greater than half of the dimension of the manifold.

Remark 1.1.1. It might be the case that “convexity” is one of the most abused
terminologies in mathematics. We will not use the term “convex contact manifold”
in the sense of Eliashberg and Gromov for the rest of the paper.

At this point, the question bifurcates into two:
Question 1.1.2. How do we establish Morse theory on contact manifolds?

Question 1.1.3. How do we use Morse theory to better understand contact mani-
folds?

Let us first address Question 1.1.2, which was first answered by Giroux in both
dimension 3 and in higher dimensions. Giroux used two completely different sets
of techniques to treat the 3-dimensional and higher-dimensional cases.

We first discuss the 3-dimensional case. In his thesis [Gir91], Giroux introduced
what is now known as convex surface theory into 3-dimensional contact topology.
It is an extremely powerful and efficient way of studying embedded surfaces in
contact 3-manifolds, and can recover most of the pioneering results of Bennequin
[Ben83] and Eliashberg [Eli92]. Using convex surface theory, Giroux showed that
for closed contact 3-manifolds, there is a one-to-one correspondence between iso-
topy classes of contact structures and compatible open book decompositions up to
positive stabilization.

Before moving onto higher dimensions, let us recall the definition of a convex
hypersurface following [Gir91]:

Definition 1.1.4. A hypersurface ¥ C (M, &) is convex if there exists a contact
vector field v, i.e., a vector field whose flow preserves &, which is transverse to %
everywhere.

Observe that regular level sets of a contact Morse function are convex hypersur-
faces.

The situation in dimensions > 3 is quite different. Besides the fact that con-
vex hypersurfaces can be defined in any dimension, until now there has been no
systematic convex hypersurface theory. Giroux’s proof [Gir02, Girl7] that ev-
ery closed contact manifold is convex involves a completely different technology,
i.e., Donaldson’s [Don96] technique of approximately holomorphic sections, trans-
planted into contact topology independently by Ibort, Martinez-Torres, and Presas
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[IMTPOO] and by Mohsen [Moh, Moh19]. Donaldson used the approximate holo-
morphic technology to construct real codimension 2 symplectic hypersurfaces of
a closed symplectic manifold as the zero locus of an approximately holomorphic
section of a complex line bundle, while [IMTP0OO] and [Moh, Moh19] constructed
certain codimension 2 contact submanifolds of a closed contact manifold. What
Giroux realized is that [Don96], [IMTPO0O], and [Moh, Moh19] could be used to
produce compatible open book decompositions. Roughly speaking, given a closed
contact manifold (M, ¢ = ker «), one considers the trivial line bundle C on M
equipped with a suitable Hermitian connection determined by «. Then there exists
a section s : M — C whose zero locus B := s~ 1(0) is a closed codimension 2
contact submanifold called the binding, and

S M\B— S

5]
is a smooth fibration defining the compatible open book decomposition of (M, ).
As a consequence of using the approximate holomorphic technology, the higher-
dimensional Giroux correspondence (see Corollary 1.3.1) is a much weaker state-
ment compared to its 3-dimensional counterpart.

1.2. Main results. The main goal of this paper is to systematically generalize
Giroux’s convex surface theory to all dimensions. The main results of convex hy-
persurface theory (CHT) are Theorems 1.2.3 and 1.2.5. In fact, even in dimension
3, our method (see Section 4) differs somewhat from Giroux’s original approach,
is simpler, and is consistent with our more general approach in higher dimensions.

We first introduce some more terminology describing the anatomy of a convex
hypersurface.

Definition 1.2.1. Ler ¥ C (M, = ker «) be a convex hypersurface with respect
to a transverse contact vector field v. Define the dividing set I'(X) = {a(v) = 0}
and Ry (Y) = {£a(v) > 0} as subsets of ¥.

It turns out that I'(X) C (M, &) is a codimension 2 contact submanifold, and
R4 (%) are (complete) Liouville manifolds with Liouville form given by a suitable
rescaling of g, (x), respectively. Moreover, the isotopy classes of I'(X), R4(%)
are independent of the choices of v and a.

In dimensions > 4, there exist Liouville manifolds that are not Weinstein by Mc-
Duff [McD91], Geiges [Gei94, Gei95], Mitsumatsu [Mit95], and Massot, Nieder-
kriiger, and Wendl [MNW13]. While these “exotic” Liouville manifolds are great
for constructing (counter-)examples, there currently is no systematic understand-
ing of such non-Weinstein Liouville manifolds, partially because of the lack of an
appropriate Morse theory on such manifolds. This is slowly starting to change: For
example it was recently shown in [EQY] that a stabilized Liouville manifold with
the homotopy type of a half-dimensional CW-complex is symplectomorphic to a
flexible Weinstein manifold and in [BC] that the stabilizations of Mitsumatsu’s Li-
ouville domains are Weinstein domains.' This motivates the following definition:

INote the latter involves Liouville domains, which is a much harder problem.
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Definition 1.2.2. A convex hypersurface ¥ is Weinstein (resp. 1-Weinstein) convex
if R4 (X) and R_(X) are Weinstein (resp. 1-Weinstein).

Here a Liouville domain that admits a Liouville vector field which is gradient-
like with respect to a “1-Morse” function which also admits critical points of birth-
death type) will be called a 1-Weinstein domain (instead of a generalized Weinstein
domain) in this paper.

Weinstein convex hypersurfaces admit a Morse-theoretic interpretation, given in
Proposition 2.3.3.

Now we are ready to state the foundational theorems of CHT.

Theorem 1.2.3. Any closed oriented hypersurface in a contact manifold can be
C-approximated by a Weinstein convex one.

Remark 1.2.4. The C*°-version of Theorem 1.2.3 remains open. Mori’s candidate
counterexample in [Mor] was shown by Breen [Bre21] to actually admit a C'*°-
small approximation by a convex one.

Theorem 1.2.5. Let & be a contact structure on Y. x [0, 1] such that the hypersur-
faces X2 x {0, 1} are Weinstein convex. Then, up to a boundary-relative contact
isotopy, there exists a finite sequence 0 < t; < --- < ty < 1 such that the
following hold:

o ¥ x {t} is 1-Weinstein convex if t # t; forany 1 < i < N.
e For each i, there exists a small € > 0 such that & restricted to 2 X [t; —
€,t; + €] is contactomorphic to a bypass attachment.

For an initial study of bypass attachments in higher dimensions the reader is
referred to [HH].

Remark 1.2.6. Theorem 1.2.5 was conjectured by Paolo Ghiggini in the afternoon
of April 10, 2015 in Paris.

1.3. Applications. As an immediate application of Theorems 1.2.3 and 1.2.5, we
can extend Giroux’s 3-dimensional approach to constructing compatible open book
decompositions to higher dimensions. This is the content of the following three
corollaries. Note, however, that we do not address the stabilization equivalence of
the compatible open book decompositions in this paper. We plan to investigate this
in future work.

Corollary 1.3.1 ([Gir02]). Any closed contact manifold admits a compatible open
book decomposition, all of whose pages are 1-Weinstein.

Corollary 1.3.2. Any compact contact manifold with convex boundary admits a
compatible partial open book decomposition, all of whose pages are 1-Weinstein
domains or 1-Weinstein cobordisms.

Corollary 1.3.3. Given a possibly disconnected closed Legendrian submanifold A
in a closed contact manifold, there exists a compatible open book decomposition
such that all the pages are 1-Weinstein and A is contained in a page.
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Remark 1.3.4. Although Corollary 1.3.3 does not appear in the literature, asymp-
totically holomorphic techniques in contact geometry from [IMTPOO] and [Moh,
Moh19] — more specifically the combination of Giroux’s existence theorem of
compatible open book decompositions (see Presas [Prel14] for a published proof)
and asymptotically holomorphic symplectic special position theorems for Lagran-
gians in symplectic manifolds [AMnPOS5] applied to the Lagrangianization of a
Legendrian in the symplectization gives the result.

This completes our exploration of Question 1.1.2 for the time being.

Next we turn to Question 1.1.3, which is a much harder question. For exam-
ple, we would like to obtain classification results for contact structures on higher-
dimensional manifolds (e.g., the spheres) besides the “flexible” ones due to Bor-
man, Eliashberg, and Murphy [BEM15]. Unfortunately, our current understanding
of contact Morse theory is not good enough for us to classify anything in higher di-
mensions. Instead, we will use the (mostly dynamical) techniques developed in this
paper to address the existence problems of contact manifolds and submanifolds.

The existence problems of contact manifolds and submanifolds were first ad-
dressed by Gromov [Gro86] using his magnificent zoo of h-principles. In partic-
ular, he proved a full h-principle for contact structures on open manifolds (see
[EMO02, 10.3.2]) and an existence h-principle for isocontact embeddings ¥ C
(M, &) under the assumptions that either Y has codimY > 4 or is open with
codimY = 2.

The existence problem turned out to be much harder for closed manifolds. In
dimension 3, an existence h-principle for contact structures was proved by Martinet
[Mar71] and Lutz [Lut77]. For overtwisted contact 3-manifolds, a full h-principle
was proved by Eliashberg [Eli89]. In dimension 5, there is a rich literature of
partial results: the existence of contact structures on certain classes of 5-manifolds
was established by Geiges [Gei91, Gei97], Geiges-Thomas [GT98, GT01], and
Bourgeois [Bou02]. Afterwards, a complete existence h-principle for contact 5-
manifolds was established by Casals, Pancholi, and Presas [CPP15] (there is also
the approach of of Etnyre [Etn], which currently has a gap). Finally, the existence
h-principle for contact manifolds of any dimension, as well as the full h-principle
for overtwisted contact manifolds of any dimension, was established by Borman,
Eliashberg, and Murphy [BEM15].

So far the story has mostly been about the contact manifolds themselves. Now
we turn to the existence problem of contact submanifolds or (iso-)contact embed-
dings. Results in this direction were surprisingly rare until recently. Besides
the aforementioned h-principle of Gromov, there exist constructions of contact
submanifolds by Ibort, Martinez-Torres, and Presas [IMTPO0O], mentioned earlier.
In low dimensions, there also exist works by Kasuya [Kas16], Etnyre-Furukawa
[EF17], and Etnyre-Lekili [EL] on embedding contact 3-manifolds into certain
contact 5-manifolds.

In the rest of the introduction we will explain the existence h-principle for codi-
mension 2 contact submanifolds. Since the case of open submanifolds has already
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been settled by Gromov, we may assume that all the submanifolds involved are
closed.

Definition 1.3.5. Ler (M, &) be a contact manifold. A submanifold Y C M is an
almost contact submanifold if there exists a homotopy (n:,wy), t € [0, 1], where
ne C T M|y is a codimension 1 distribution of T M along Y and wy is a conformal
symplectic structure on 1y, such that:

(1) no = &|y and wy is induced from £|y; and
(2) TY th ny and the normal bundle Ty M C 1y is wy-symplectic.

A straightforward calculation (see [BCS14, Lemma 2.17]) shows that any even-
codimensional submanifold with trivial normal bundle is almost contact.

Corollary 1.3.6. Any almost contact submanifold can be C°-approximated by a
genuine contact submanifold.

Corollary 1.3.7. Any (coorientable) contact submanifold can be C°-approximated
by another contact submanifold with the opposite orientation.

Remark 1.3.8. Around the same time as our paper, Casals-Pancholi-Presas [CPP]
proved the existence of iso-contact embeddings in codimension 2. Their work and
ours are equivalent via the work of Pancholi-Pandit [PP] on iso-contact embed-
dings.

Wrapping up the introduction, by combining Corollary 1.3.6 with Gromov’s
h-principle for contact structures on open manifolds, one can deduce the follow-
ing one-half of the groundbreaking(!) theorem of Borman-Eliashberg-Murphy
[BEM15] without too much difficulty:

Corollary 1.3.9 (Borman-Eliashberg-Murphy). The existence h-principle holds
for contact structures on closed odd-dimensional manifolds of dimension 4k + 1,
k € Z, i.e., there exists a genuine contact structure in the homotopy class of any
almost contact structure on M**+1,

Our proof of Corollary 1.3.9 follows from producing genuine contact structures
representing each homotopy class of almost contact structures on S2"~1, i.e., prov-
ing the existence h-principle for S2"~!. This is easy for S4*+1 (via connected sums
of Brieskorn manifolds) and is much more involved for S4*+3,

The proofs of Corollaries 1.3.6, 1.3.7, and 1.3.9 will be given in Section 11. We
note that the proof of [CPP] relies on [BEM15] and cannot be used to prove it.
Finally, note that in contrast to the contact structures constructed in [BEM15], the
contact submanifolds constructed by Corollary 1.3.6 are not a priori overtwisted.
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2. A CONVEXITY CRITERION

Let ¥ C (M?"F1 ¢) be a closed cooriented hypersurface. The goal of this
section is to give a sufficient condition for the characteristic foliation >¢ on X (see
Definition 2.1.1) which guarantees the Weinstein convexity of 3.

2.1. Characteristic foliations. Let o be a contact form for £. Let (—e¢,€) X X be
a tubular neighborhood of ¥ = {0} x ¥ C M. Fix an orientation on ¥ such that
the induced orientation on (—e¢, €) x ¥ agrees with the orientation determined by
a A (da)™. We now introduce the characteristic foliation ¥¢ on X.

Definition 2.1.1. The characteristic foliation X¢ is an oriented singular line field
on Y defined by

25 = ker dﬁ’kerﬁ’

where 3 == a|y, € QY(X). The orientation of 3¢ is determined by requiring that
the decomposition T = Y¢ @ Zé respect orientations, where the orthogonal

complement Eg, taken with respect to an auxiliary Riemannian metric on %, is
oriented by 3 A (dB)"* ’2?

Remark 2.1.2. The characteristic foliation depends only on the contact structure
and the orientation of >, and not on the choice of the contact form.

Note that z € X is a singular point of X¢ if T3 = £, as unoriented spaces. We
say x is positive (resp. negative) if 1,3 = +&, as oriented spaces, respectively.

The significance of the characteristic foliation in 3-dimensional contact topol-
ogy is that it uniquely determines the germ of contact structures on any embedded
surface. The corresponding statement for hypersurfaces in contact manifolds of
dimension > 3 is unlikely to hold, i.e., the characteristic foliation by itself is not
enough to determine the contact germ. Instead we have the following characteriza-
tion of contact germs on hypersurfaces in any dimension. The proof is a standard
application of the Moser technique and is omitted here.

Lemma 2.1.3. Suppose &; = kera;,7 = 0,1, are contact structures on M such
that By = gB1 € QLX) for some g : ¥ — Ry, where B; = «y|s. Then there
exists an isotopy ¢s : M = M,s € [0, 1], such that ¢po = idys, ¢s(X) = ¥ and
(¢1)«(&0) = &1 on a neighborhood of 3.
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Generally speaking, ¢ can be rather complicated, even when X is convex with
Liouville R4 (X). For our purposes of this paper, it is more convenient to regard
Y¢ as a vector field rather than an oriented line field. Of course there is no natural
way to specify the magnitude of X as a vector field, which motivates the following
definition: Two vector fields vy, v2 on X are conformally equivalent if there exists
a positive function A : 3 — R such that vy = hwvs. This is clearly an equivalence
relation among all vector fields, and we will not distinguish conformally equivalent
vector fields in the rest of the paper unless otherwise stated.

In order to state the convexity criterion, we need to prepare some generalities on
gradient-like vector fields in the following subsection. Our treatment on this sub-
ject will be kept to a minimum. The reader is referred to the classical works of Cerf
[Cer70] and Hatcher-Wagoner [HW73] for more thorough discussions. Indeed the
adaptation of the techniques of Cerf and Hatcher-Wagoner to CHT is carried out in
[BHH]. Note that similar techniques in symplectic topology have been developed
by Cieliebak-Eliashberg in [CE12].

2.2. Morse and 1-Morse vector fields. Let Y be a closed manifold of dimension
n. A smooth function f : Y — R is Morse if all the critical points of f (i.e., points
p € Y such that df (p) = 0) are nondegenerate, i.e., there exist local coordinates
x1, ..., Ty, about p such that locally f takes the form

(2.2.1) —r] = —aptahg o+ 2.

Here k is called the Morse index, or just the index, of the critical point p. We write
ind(p) = k.

A smooth function f : Y — R is 1-Morse if the critical points of f are either
nondegenerate or of birth-death type. Here a critical point p € Y of f is of birth-

death type (also called embryonic) if there exist local coordinates z1, . . ., x, about
p such that f takes the form
(2.2.2) e —af b ap oAt .

Similarly, k is defined to be the (Morse) index of p. The birth-death type critical
point fits into a 1-parameter family of 1-Morse functions

—a}— o —aptah e ad | e, 2,

such that for ¢ < 0, there exist two nondegenerate critical points of indices k and
k + 1; for t = 0, there exists a birth-death type critical point; and for ¢ > 0, there
are no critical points.

It is a well-known fact due to Morse that any smooth function can be C°-
approximated by a Morse function. Moreover, Cerf proved that any 1-parameter
family of smooth functions can be C'*°-approximated by a family of 1-Morse func-
tions, where the birth-death type critical points as above occur only at isolated
moments.

Given a 1-Morse function f : Y — R, we say a vector field v on Y is gradient-
like for f if the following two conditions are satisfied:

(GL1) Near each critical point of f, v = V f with respect to some Riemannian
metric; and
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(GL2) f is strictly increasing along (non-constant) flow lines of v.

Definition 2.2.1.

(1) Avector fieldvonY is Morse (resp. 1-Morse) if there exists a Morse (resp.
1-Morse) function f 1 Y — R such that v is gradient-like for f.

(2) A 1-parameter family of vector fields (vi)ic[o,1) is a 1-Morse family if each
vy is 1-Morse and there exist t; < --- < t € (0,1) such that the birth-
death type singularities occur only at t; and there is a single birth-death
type singularity at each t;.

We also make the slightly nonstandard definition:

Definition 2.2.2. A Liouville domain is 1-Weinstein if its Liouville vector field is
gradient-like with respect to a 1-Morse function.

Remark 2.2.3. 1-Morse functions will be sufficient for the purposes of this paper
since we will only encounter 1-parameter families of functions. In [BHH], we
will need to deal with generic 2-parameter families of functions (called 2-Morse
functions) where new singularities, i.e., the swallowtails, appear.

Convention 2.2.4. A flow line ¢ : (a,b) — Y of a vector field v on Y is assumed
to be a maximal oriented smooth trajectory R — Y that has been precomposed
with an orientation-preserving reparametrization (a,b) — R. A partial flow line
is the restriction of a flow line to a subinterval.

Definition 2.2.5. A broken flow line (resp. possibly broken flow line) of a vector
fieldv onY is a continuous map { : [a,b] — Y such that there exists an increasing
sequence a = ag < aj < -+ < ay = bwithm > 1 (resp. m > 1) such that {(a;),
j=20,...,m, are zeros of v and €|(aj7aj+1), 7 =0,...,m—1, are flow lines of v.
We may also replace [a, b] by half-open or open intervals.

In the rest of this subsection, we present a simple criterion for a vector field to be
Morse which will be useful for our later applications. The corresponding version
for 1-Morse vector fields is left to the reader as an exercise.

Proposition 2.2.6. A vector field v on a closed manifold Y is Morse (resp. 1-
Morse) if and only if the following conditions are satisfied:

(M1) For any point x € Y withv(x) = 0, there exists a neighborhood of x and a
locally defined function f of the form given by Eq. (2.2.1) (resp. Eq. (2.2.1)
or Eq. (2.2.2)) such that v = V f.

(M2) For any point x € Y with v(x) # 0, the flow line of v passing through x
converges to zeros of v in both forward and backward time.

(M3) There exist no possibly broken loops, i.e., a possibly broken flow line ¢ :
[0,1] = Y such that £(0) = £(1).

Proof. The “only if” direction is obvious. To prove the “if” direction, let Z(v) =
{z1,...,x} be the finite set of zeros of v, where the finiteness is guaranteed by
(M1) and the compactness of Y. Then we define a partial order on Z(v) such that
x; < x; if there exists a flow line of v from x; to x;. The fact that < is a partial
order follows from (M3).
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We then construct a handle decomposition of Y starting from the minimal ele-
ments Zg of Z(v) (note that a minimal element of Z(v) has index 0 by (M2)) and
inductively attaching handles as follows: Starting with a standard neighborhood of
Z, suppose we have already attached the handles corresponding to Z;. Then we
attach the handles corresponding to the minimal elements of Z(v) — Z;, and then
let Z;1 be the union of Z; and the minimal elements of Z(v) — Z;. O

2.3. A convexity criterion. The goal of this subsection is to give a sufficient con-
dition for a hypersurface to be Weinstein convex. To this end, we introduce the
notions of Morse and Morse™ hypersurfaces whose characteristic foliations have
particularly simple dynamics.

Definition 2.3.1.

(1) A hypersurface ¥ C (M, &) is Morse (resp. 1-Morse) if there exists a rep-
resentative v in the conformal equivalence class of ¢ which is a Morse
(resp. 1-Morse) vector field on X. We say Y. is Morse™ (resp. 1-Morse™) if.
in addition, there exist no flow trajectories from a negative singular point
of v to a positive one.

(2) A 1-parameter family of hypersurfaces (Et)te[o,l] is a 1-Morse family, if
((3t)¢)ie(o,1) is represented by a 1-Morse family.

Lemma 2.3.2. If 3 is a Morse hypersurface, then a C*°-small perturbation of %
is Morse™.

Proof. Choose a contact form £ = ker a.. It suffices to observe that da|s; is non-
degenerate on a neighborhood of the singular points of Y¢. It is a standard fact (see
e.g. [CE12, Proposition 11.9]) that the Morse index ind(z) < n if z is a positive
singular point of ¢, and ind(x) > n if x is negative. The claim therefore follows
from the usual transversality argument. ([

The following proposition gives a sufficient condition for convexity:

Proposition 2.3.3.

(1) A 1-Morse™ hypersurface X is convex.
(2) A hypersurface 3 is Weinstein convex if and only if it is Morse™.

Proof. (1) is a straightforward generalization of the usual proof for surfaces due to
Giroux that 3 is convex if it has a Morse™ characteristic foliation.

Letx = {z1,...,Zm} (resp. y = {y1,...,ye¢}) be the positive (resp. negative)
singular points of ¥¢. Then d/3 is nondegenerate on a small open neighborhood
U(x) of x, where 5 := a|x. Let W, be the stable manifold of x; with respect to
the gradient of the 1-Morse function and let the ith skeleton Sk; be the closure of
Wiy U -+ - UWy,. We order the points of x so that Wy, , intersects the boundary
of a small open neighborhood of Sk; along a sphere if x;4; is a Morse critical
point and along a disk if z;1; is an embryonic point. In particular we necessarily
have ind(x1) = 0, but we do not require ind(x;) > ind(z;) for ¢ > j. Such an
arrangement is possible thanks to the assumption that there is no flow line of X¢
going from y to x.
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There exists a conformal modification 8 ~» g3, where g is a positive function, so
that it becomes Liouville on a tubular neighborhood U (Sk;,,) of Sk, and OU (Sk,,)
is contact: Arguing by induction, suppose that (3 is Liouville on U (Sk;) such that
OU (Sk;) is contact. During the induction we will often reset notation, i.e., modify
B ~» gf and call the result the new 3. We will explain the case where x; 1 is
Morse and W, , N OU(Sk;) is a Legendrian sphere A C 0U(Sk;); the other
cases are similar. Using the flow of ¢, we may identify a tubular neighborhood of
Wain \ (U(Sk;) UU(z441)) with [0,1], x Y, where Y is an open neighborhood
of the 0-section in J!(A) such that:

e {0} xY C OU(Sk;);
e {1} xY C 9U(wit1); and
e O, is identified with X¢.

It follows that one can write 5 = g\ on [0, 1] x Y, where A is a contact form on Y’
and ¢ is a positive function on [0, 1] x Y. Note that

dp = Oprgdr ANX+dyg AN X+ gdA

is symplectic if 9,¢g > 0. By assumption we have 0,.g > 0 when r is close to O or 1.
Rescaling 3|y (,,, ) by a large constant K >> 0, we can extend 3|y (sk,)ut (z;,,) tO
a Liouville form on U (Sk;1). Moreover, we can assume OU (Sk;1) is transverse
to 3¢ by slightly shrinking U (Sk;41). Hence by induction we can arrange so that
B is a Liouville form on U (Sk,).

The treatment of the negative singular points of ¥ is similar. Let Skj be the
closure of the union of the unstable manifolds of y. Then by the same argument we
can assume that /3 is a Liouville form on —U (Sk;), where the minus sign indicates
the opposite orientation.

Using the flow of ¢, we can identify 3\ (U (Sk,,) UU (Skp)) with I' x [—1, 1],
such that:

o I' x {—1} is identified with OU (Sk,,);
e I' x {1} is identified with QU (Sk}); and
o R(0;) = X¢.

We can write § = hn near I' x {—1,1}, where 7 is a contact form on I" and
h = h(s) is a positive function such that h’(s) > O near I" x {—1} and A/(s) < 0
near I' x {1}. Extend h to a positive function I" x [—1, 1] — R such that 4'(s) > 0
fors < 0, A'(0) = 0,and /(s) < Ofors > 0. Let f = f(s): T x [-1,1] = R
be a nonincreasing function of s such that f(—1) = 1, f(0) = 0, f(1) = —1,
f'(0) < 0,and ™ (—=1) =0 = f™)(1) for all n > 1. Then define p = fdt + hn
onR; xT'x [~1,1], p = dt+ S on R x U(Sky,), and p = —dt+ 3 on R x U (Sky,).
We leave it to the reader to check that p is contact and that p| o) 5 agrees with ax,
up to an overall positive function. (1) now follows from Lemma 2.1.3.

(2) The “if” direction follows from the proof of (1) and the “only if” direction is
clear. ]
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3. CONSTRUCTION OF MUSHROOMS IN DIMENSION 3

In order to make a hypersurface ¥ C (M, ) Weinstein convex, we would like
to modify the characteristic foliation YJ¢ so it is directed by a Morse vector field
and then apply Proposition 2.3.3. (Note that going from Morse to Morse™ is a
C**°-generic operation which can always be done by Lemma 2.3.2.) This will be
achieved by certain C°-small perturbations of ¥ which we call mushrooms. The
mushrooms are most easily described in dimension 3 and the general case will be
constructed in Section 5 using 3-dimensional mushrooms. It turns out that mush-
rooms alone are enough to make any ¢ Morse if dim> = 2. If dimX > 2,
then mushrooms are not quite sufficient and we will need an additional technical
construction in Section 7.

The standard model of a mushroom will be constructed in a Darboux chart

(RS, 6 =kera), o=dz+edt.

2,8,0)

Let ¥ = {z = 0} be the surface under consideration with normal orientation 0,
and characteristic foliation ¥ directed by J,. The goal of this section is to “fold”
. to obtain another surface Z which coincides with ¥ outside of a compact set,
and analyze the change in the dynamics of the characteristic foliations.

In §3.1 we construct a piecewise linear (PL) model Zpy, and then in §3.2 we
round the corners of Zpry, to obtain a suitably generic smooth surface Z such that
the characteristic foliation Z¢ has the desired properties.

Remark 3.0.1. In an earlier version of the paper we constructed a mushroom whose
base was smaller than the cap and discussed “mushroom packing ratios”. In the
current version they approximately have the same size and can be packed tightly.

3.1. Construction of Zp;,. Choose a rectangle O = [0, so] x [0, tp] C X, where
S0, to > 0. We define Zpy, to coincide with X outside of [1.

Remark 3.1.1. The more general case [s_1, So] X [t—1,to] can be computed analo-
gously. In what follows we can replace 1 — e~%° by e™*~! — ¢7°0 and the s-width
(Zpr,) becomes sp — S_1.

Choose zy > 0. We construct three rectangles Py, P>, P4 and two parallelo-
grams Py, P3 in R3, which, together with Rit \ [, glue to give Zpy,, i.e., we define

o Py:=[0,50] X [—e%0/22y, —e=%0/225 + tg] C {z = 2};
e Pi = 1,...,4, are the faces (# Py,[J) of the convex hull of Py U]
(which is a parallelepiped), ordered counterclockwise so that P; C {s =

0}.
Definition 3.1.2. We define the PL surface
Zp1, = (E \ D) @] (U0§i§4f)i).

The rectangle 1 C X (resp. Py) is called the base (resp. cap) of the PL mushroom
and Ug<;<4P; is called the PL mushroom. We refer to the modification ¥ ~~ Zpy,
as “growing a PL mushroom”.
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t

FIGURE 3.1.1. The PL model Zpy,. Here Fj is the top face; P;
and P are the front and back faces, respectively; P» and P, are the
right and left faces, respectively; and [ is the bottom face which
is not part of Zpr..

Observe that, away from the corners, the characteristic foliation (Zpr,)¢ on Zpr,
satisfies
o (Zpr)e = R(0s) on ¥\ O and Py;
e on P (resp. Py), (ZpL)¢ is directed by Js (resp. —0s) for s € [0, %), is
singular along s = 3, and is directed by —0; (resp. J;) for s € (%, so};
o (Zp1,)¢ is the linear foliation on P; and P3 with “slopes” —1 and —e ™,
respectively, where “slope” refers to the value of dt/dz = —e™*. See
Figure 3.1.2.
We refer to the singular line segments on P, and Py by . and ./ indicating
their signs.

FIGURE 3.1.2. The linear characteristic foliations on P; (left)
and Ps (right) where Zpy, is sufficiently thin.

We now analyze the dynamics of the PL flow on Zpy,. Note that the flow lines are
not necessarily uniquely determined by the initial conditions due to the presence
of corners.

We begin by introducing a few quantities which characterize the various sizes
of the mushrooms.

Definition 3.1.3. Given Zpy, as above, its z-height, s-width, and t-width are given
by:
f/’f(ZpL) = 20, y(ZPL) = S8, y(ZpL) = to.
The following lemma characterizes a key feature of (Zpr, )¢ when the parameters
of the mushrooms are appropriately adjusted.

Lemma 3.1.4. Fix sg,z9 > 0. If tg < (1 — e7%0)z, then
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(1) the unique flow line of (Zp1,)¢ passing through (—1,a) € Rit, where
a € (0,tp), either hits Py N Py or converges to ./ in forward time;
(2) the unique flow line of (Zp1,)¢ passing through (so + 1,a),a € (0,tp),
either hits Py N Py or converges to %y in backward time; and
(3) all the flow lines of (Zp1,)¢ passing through (—1,a), a & [0,1o], or (so +
1,a), a & [0, to], are unaffected.
Proof. (1) Since ty — zo(1 — e~*9) < 0, it follows that the unique flow line passing
through the point (—1, a) € ¥ with a € (0, tg) does one of three things in forward
time:
e travels over Py, enters P, and ends at ._;

e travels over P into Py N P» (this happens with only one flow line); or
e travels over Py, P;, P in that order, enters P;, and ends at .%_.

See Figure 3.1.3. (2) is similar and (3) is clear. O

74
7,

FIGURE 3.1.3. Flow lines of (Zpr,)¢ limiting to . in red (the
generic case) and one flow line limiting to Py N P».

3.2. Smoothing of Zp1,. In this subsection we construct a smoothing of Zpr..

Construction of the smoothing Z. Choose a small smoothing parameter § > 0 and
a smooth “profile function” ¢ : [0, zp] — [, d] such that ¢(0) = 0, ¢(z09) = —0
and has “derivative —oo™ at z = 0, 2.

For each 2’ € (0, 29), the slices R,/ := Zpy, N {z = 2’} are rectangles. When
2 = 0or zg, we take R,y = O(Zp, N {z = 2'}). For each §' € R with |¢’| small,
let Rg; C {z = 2’} be the rectangle concentric to R,/ and whose side lengths are
¢’ larger. Then let ﬁgi C {z = 2’} be a smoothing of Rg; contained in the closure

of the region between Rii and Rii*‘s, which:

(R1) agrees with Rg: on the complement of the open J-neighborhoods of the
edges of Rg: parallel to ¢t = const;
(R2) has nonzero curvature on these d-neighborhoods and is tangent to Rg; pre-
cisely at the midpoints of the edges of Rg (i.e., when s = s0/2); and
(R3) is smoothly varying with 2’ and ¢&'.
The ¢-smoothing Z of Zpr, with smoothing parameter § > 0 and profile function
¢ is obtained by modifying Zpy, as follows:
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(1) replace R, by Ef,(zl) for z € (0, 20);
(2) remove the bounded component of {z = 0} \ }733)(0); and
(3) adjoin the closure of the bounded component of {z = zp} \ Efo(m)_

The base of the mushroom 0 C X of Z is the closure of & \ Z and the mushroom

is the closure of Z \ . By construction [J converges to [J when all the parameters
tend to zero.

The following proposition describes the key dynamical properties of Z.

Proposition 3.2.1. Given Zpy, with parameters s, 2o, to, € satisfying to < (1 —
e~%0) 20, there exists a smoothing Z of Zpy, with small smoothing parameter § >
0 and profile function ¢ : [0, z)) — [—0,06] whose vector field Z¢ satisfies the
following properties:

(TZ0) Zg is gradient-like with respect to a Morse function f, : Z — R which
agrees with s outside of 0.

(TZ1) Z¢ has four nondegenerate singularities: a positive source e and a posi-
tive saddle h near the midpoint of Rit N Py, and a negative sink e_ and
a negative saddle h_ near the midpoint of Rg’t N Ps.

(TZ2) There is a unique flow line each from e to hy, from ey to h_, from h
to e_, and from h_ to e_, and the four flow lines bound a quadrilateral
whose interior consists of flow lines from e to e_.

(TZ3) There exist k1 > Ko > K3 > 0 > Kg > K5 > kg such that all k; — 0 as
0 — 0 and the following hold:

(1) the stable manifold of hy (resp. h_) intersects the line {s = —1} at
(=L to + o) (resp. (—1, 51)),

(2) the unstable manifold of hy (resp. h_) intersects the line {s = so+1}
at (so + 1,to + k3) (resp. (so + 1, K5)),

(3) any flow line passing through (—1,a), a € (K4, to+ K2), converges to
e_ in forward time,

(4) any flow line passing through (so+1,a), a € (ks, to+ K3), converges
to e, in backward time,

(5) a flow line passes through (—1,a), a & [ke,to + k1], if and only if it
passes through (so + 1,a), a & [ke, to + K1,

(6) a flow line passes through (—1,a), a € (tg + k2, to + k1), if and only
if it passes through (so + 1,d’), a’ € (to + K3,t0 + K1),

(7) aflow line passes through (—1,a), a € (kg, k4) if and only if it passes
through (so + 1,d’), @’ € (kg, K5).

(TZ4) The flow lines described in (TZ2) and (TZ3) are all the flow lines that
nontrivially intersect the mushroom.

In words, Z¢ blocks all flow lines that pass through an open interval that is close
to {—1}x (0, ¢g), slightly bends unblocked flow lines that pass through points close
to (—1,0) and (—1,%p) (with bending — 0 as the smoothing parameter § — 0),
and leaves all other flow lines passing through s = —1 untouched.
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See Figure 3.2.1 for an illustration of the effect of a mushroom on the charac-
teristic foliation and also the values of ¢ where certain flow lines in (TZ3) intersect

s=—lors=sg+ 1.
to+ k1 to+ K3
Voo

mushroom
——T T T T

to + K: éo + K2
FIGURE 3.2.1. The characteristic foliations before and after a
mushroom. The numbers ¢y + x4 etc. are the ¢-coordinates where
the indicated flow lines intersect s = —1 or s = sg + 1; see (TZ3).

Proof. Let Z be the smoothing of Zp;, from above.
(TZ1) We determine the singular points of Z¢ as follows: The first requirement

for £ to be tangent to Z is for Z to be tangent to Js. Since ég; is tangent to O
exactly at two points by (R2), i.e., when s = sy/2, the singular points lie on the
restriction of Z to the slice s = so/2.

We now choose ¢ such that ¢/ < 0 on (0,¢p) and (c1,29) and ¢’ > 0 on
(co,c1), where 0 < ¢y < ¢1 < zp. By the choice of ¢, there are four points where
Z N{s = sp/2} is tangent to { N {s = s¢/2}. They occur as described in (TZ1)
since ¢’ = 0 at z = ¢y, c1, which are both close to z = 0.

(TZ0), (TZ2)—(TZ5) then follow from Lemma 3.1.4. The conditions xo > k3
and x4 > k5 are required since the surface Z was obtained from X by pushing in
the positive z-direction. ([

The following remark will also be very useful later:

Remark 3.2.2. Proposition 3.2.1 also holds with (TZ1) replaced by:

(TZ1’) Z, has two singularities: a positive birth-death singularity near the mid-
point of Rgvt N P, and a negative birth-death singularity near the midpoint
of Rit N Ps.

Moreover, there is a foliated 1-parameter family of surfaces from {z = 0} to a

slight upward translate of Z (i.e., in the z-direction) whose characteristic foliations

have no singularities except for Z. For this Z we take ¢ such that ¢’ < 0 for z # ¢
and ¢'(cg) = 0. Note that the singularities vanish if we take ¢ such that ¢/ < 0 for

all z.

Convention 3.2.3. In view of Proposition 3.2.1, from now on we assume that all
mushrooms satisfy to < (1 —e™0)z.
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4. CONVEX SURFACE THEORY REVISITED

The goal of this section is to give elementary, Morse-theoretic proofs of The-
orems 1.2.3 and 1.2.5 in dimension 3 using the folding techniques developed in
Section 3. In dimension 3, Theorem 1.2.3 was proved by Giroux in [Gir91] in a
stronger form where C is replaced by C'*°. Theorem 1.2.5 can be inferred from
Giroux’s work on bifurcations [Gir00] and the bypass-bifurcation correspondence.
The technical heart of Giroux’s work is based on the study of dynamical systems of
vector fields on surfaces, a.k.a., Poincaré-Bendixson theory. In particular, one in-
vokes a deep theorem of Peixoto [Pei62] to prove the C'°°-version of Theorem 1.2.3
and much more work to establish Theorem 1.2.5.

Our proof strategy is the following: First apply a C'°°-small perturbation of
¥ C (M3, €) such that the singularities of Y¢ become Morse. There exists a finite
collection of pairwise disjoint transverse arcs 7;,¢ € I, in X such that any flow
line of X¢ passes through some ;. In §4.1 we will construct a 3-dimensional plug
supported on a small flow box B; = [0, 5;] X [0, t;], where v; = {5} x (¢, t;—¢) and
e > 0 is small, such that no flow line that enters through {0} x (e, t; — €) can leave
through {so} x [0, ¢;], i.e., they all necessarily converge to singularities in the plug.
Each plug consists of a large number of mushrooms constructed in Section 3. This
proves Theorem 1.2.3. To prove Theorem 1.2.5, we slice ¥ x [0, 1] into thin layers
using X; = X X {ﬁ}, 0 <7 < N, for large N such that the difference between
(X4)¢ and (X;41)¢ is small. (By “small” we mean the vector fields in question are
CP-close to each other. The global dynamics of (X;)¢ may still drastically differ
from that of (¥;41)¢.) Within each layer we insert plugs on 3; as in the case of
a single surface so that the isotopy from >; to ¥; 1 is through a 1-Morse family
of surfaces, i.e., (Et)f is a 1-Morse family for all % <t < % For technical
reasons, it is desirable to eliminate the plugs created on >; when we reach ;. 1,
replacing them by new plugs on ;4 1, so that one can inductively run from 7 = 0
to ¢+ = IV and make all intermediate surfaces 1-Morse. Then the only obstructions
to convexity occur at finitely many instances where the surface is 1-Morse but not
1-Morse™, corresponding to bypass attachments.

This section is organized as follows: In §4.1 we describe 3-dimensional plugs
and in §4.4 we explain how to “install” and “uninstall” plugs. The higher-dimen-
sional plugs will be described in Section 7. We then use this technology to prove
Theorem 1.2.3 in §4.3 and Theorem 1.2.5 in §4.5.

4.1. 3-dimensional plugs. The construction of a plug is local. Consider M =
[—20, 20] X [0, 0] % [0, ¢o] with coordinates (z, s,t), contact form o = dz + e*dt,
and contact structure £ = ker a. Here zg, sg,tg > 0 are arbitrary, but for most of
our applications, we should think of 2y, sg as being much smaller than ¢y. In other
words, the condition ¢y < (1 — e™%)zg in Proposition 3.2.1 will not be satisfied.
Consider the surface B = {0} x [0, so] x [0, o] with B¢ = R(0s). We will refer
to (M, «) as a standard contact neighborhood of B with parameters s, lo, zo. Let
0_-B = {0} x {0} x [0,t0] and O+ B = {0} x {so} x [0, to]. Pick a large integer
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N such that N = 3mod 4. Let L ; C B be boxes defined by

20—-1 2] 4k +21—1 4k+20+2
[55”’550] 8 [ N TN
where 0 < k < | N/4]|,1 = 1,2. See Figure 4.1.1. In words, since the mushrooms
can be packed “tightly”, it suffices to arrange two rows of mushrooms.

st

Ok, ==

)

tU)

FIGURE 4.1.1. Bases of the mushrooms on B. Here N = 15.

Applying Proposition 3.2.1, we install pairwise disjoint mushrooms Zj; on B
such that the base of each Zj; approximately equals L ;. The key property of the
dynamics of the resulting Bg’ is as follows: Suppose € > 0 is small and we choose
N> 1/e. Letx = (2(x), s(z),t(z)) € 0_B.

(1) If t(x) € (e,top — €), then the maximal possibly broken flow line of Bg/
passing through x converges to a sink in forward time.

(2) If a flow line passes through x and does not converge to sink, then it exits
alongy € 01 B and |t(y) — t(z)| < e.

4.2. Barricades. In this subsection only, let 3. be a manifold of dimension m and
v a vector field on ¥ with only Morse singularities. We also fix a Riemannian
metric on X.

Definition 4.2.1. A flow box is an embedded cylinder B = [0, so] x D™ C &
with coordinates (s, x) over the disk D™ such that v|g = 0.

Given € > 0 small, let B¢ = [e, s9 — €] x D™ ! be a slightly smaller flow box
(called a shrinkage of B), where D™~1 C D™~! is a disk such that every point
x € D™=1\ D1 has metric distance < € from 9D~ ! and 9D™ !,

Definition 4.2.2 (Barricade). A collection By = {B; = [0,s;] x D™ '}icr of
pairwise disjoint flow boxes for 3 is a barricade for v if for each B; there exist a
small constant ¢; > 0 and a shrinkage B;* and the following hold:

(*) each flow line of v intersects some B} and for any x € Y which neither
is a singularity of v nor is contained in any B, the flow line of v passing
through x enters some B or limits to some Morse singularity in forward
time (resp. in backward time).

(**) By is locally finite, i.e., each compact subset of Y. intersects only a finite
number of B;.

The following theorem of Wilson [Wil66, Theorem A], slightly adapted to our
situation, guarantees the existence of barricades:
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Theorem 4.2.3 (Wilson). A vector field v on a manifold 3 with only Morse singu-
larities has a barricade Bj.

The following lemma on taking refinements is immediate:

Lemma 4.2.4 (Refinement). Given a flow box B = [0, 5] x D™, a properly
embedded submanifold Z of D™, and €, 5 > 0 small, there exists a finite disjoint
collection A of flow boxes B1j, j = 1,...,k1, and Boj, j = 1,..., ko, such that:

(1) Blj (@ (0, 80/2) x D™ 1 and ng C (80/2,80) X Dmfl,‘

(2) Tpm—1 (U;‘llelj) does not intersect Z and wpm-1 (U?;ng) is contained
in a §-neighborhood of Z; and

(3) A is a barricade for the shrinkage B€.

Here Tpm-1 : B — D™ is the projection onto the second factor:

4.3. Proof of Theorem 1.2.3 in dimension 3. Given any closed surface > C
(M,¢), it is well-known (see e.g. [Gei08, Section 4.6]) that, after a C'*°-small
perturbation, we can assume that ¢ has only Morse type singularities. By Theo-
rem 4.2.3, a barricade By = {B; = [0, s;] x [0, ;] }icr exists for ¥¢; moreover [
can be taken to be finite since X is closed. Each B; has a standard contact neighbor-
hood with parameters s;, t;, z;, where z; > 0 is small and we construct a CY-small
modification 3V of X by replacing every B; by the plug B,’. The characteristic
foliation EZ satisfies Conditions (M1)—(M3) of Proposition 2.2.6 and is Morse.

After a further C'°°-small perturbation if necessary, ¥V can be made Morse™:
If there exists a “retrogradient” flow line £ from a negative index 1 singularity to a
positive index 1 singularity, we take a flow box B = {0} x [0, so] x [0,%0] C ¥V
such that ¢ intersects B exactly once and B has a standard contact neighborhood
with parameters sg, to, 9. The retrogradient flow line can be eliminated by taking
a small nonnegative function h : B — R>q with support on B¢/2 and replacing
B by z = h(s,t); the modification has the effect of pushing the holonomy from
s = 0 to s = sg in the negative t-direction.

Since ¥V is now Morse™, it is Weinstein convex by Proposition 2.3.3.

4.4. Installing and uninstalling plugs. The construction of a plug B" was suffi-
cient to prove Theorem 1.2.3 in dimension 3. In order to prove Theorem 1.2.5, we
also need to interpolate between B and B" with some control of the intermediate
dynamics. We now explain this procedure.

Let (M = [—z0,20] X [0, s0] x [0,%0],& = ker(dz + e°dt)) be as before and
let B, = {2z} x [0,s0] x [0,%0]. Replace B, /, by a plug B;/O/z such that its
analogously defined z-height satisfies 2 (B;/O /2) < 2 and in particular B;/O /o i
still contained in M.

For the moment consider the PL. model of the plug B;/O /20 1.e., each mushroom
Z involved in the construction is replaced by the corresponding Zpy,. It is fairly
straightforward to foliate the regions bounded between By and BZVO /2 and between
Bzv0 /2 and B, by a family of PL surfaces; see Figure 4.4.1 for a schematic picture.
Then one can apply the smoothing scheme from §3.2 to smooth the corners of the
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FIGURE 4.4.1. The interpolation between By, BZV0 /o and B, ; the
z-height of B} /o Mot drawn to scale.

leaves 51multaneously and obtain the desired foliation M = Up<q<z, Ba, where
BO = By, Bz0 = B,,, and BZ0 /2 1s the smoothed version of BZ /20

To analyze the dynamics of (Bg) ¢ foreach a € [0, 2], we introduce the partially
defined and possibly multiple-valued holonomy map pq : 90— B, --» 8+§a, where
8+B (resp. o0_ Ba) is the side s = sg (resp. s = 0) of E as before: Given
x € 0_ By, if there exists a possibly broken partial flow line of (B )¢ starting from
2 and ending at y € 94 By, then y € py(z). Note that such y may not be unique.
If there is no such flow line, then p, () is not defined.

Define the internal discrepancy

lpall =" sup_[t(x) —t(pa(x))],
r€D_Bqy

where ¢(z) refers to the ¢-coordinate of the point x; |[t(z) — t(pa(z))| = 0 if pa(x)
is not defined; and the supremum is taken over all possible p, () if p, is not single-

valued at z.
The following lemma will be important for our applications.

Lemma 4.4.1. The internal discrepancies supy<,<,,||pall = 0 as N — oc.

Proof. The lemma is not a statement about blocking and is rather a statement about
the ¢-widths of the mushrooms Zj,;: We will treat the case where a € [0, 3]. If a
flow line enters a box [, ; along the bottom and exits from the top, the maximum it
is moved in the ¢-direction is the width 3% of the box. Since a flow line or broken
| < . O

We call the foliation from Eo = By to EZO /2 installing a plug and the foliation
from EZO /2 to EZO = B,, uninstalling a plug. Then Lemma 4.4.1 basically says
that neither installing nor uninstalling a plug affects the local holonomy by much.
For the rest of Section 4, we assume that /N > 0 without further mention.

The following is based on the construction of mushrooms in §3.2 and its slight
generalization to 1-parameter families:

Lemma 4.4.2. (B, )e> a € [0, zo), is gradient-like with respect to a 1-Morse func-
tion f, : B — R which agrees with s on aB
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4.5. Proof of Theorem 1.2.5 in dimension 3. Consider a contact structure £ on
¥ x [0,1] such that ¥ x {0, 1} is Morse™ in the sense of Definition 2.3.1. The goal
is to show that up to an isotopy relative to the boundary, ((2¢)¢)¢efo,1] is @ 1-Morse
family, where 3, := ¥ x {t}.

Define L := Uycpp{z € Xt | & = T2X¢}. Up to a C°°-small perturbation of
&, we can assume that L satisfies the following:

(S1) L is a properly embedded 1-submanifold;

(S2) the singularities of (¥;)¢ are 1-Morse for all ¢; and

(S3) the restricted coordinate function ¢|;, : L — [0,1] is Morse and all its
critical points have distinct critical values.

Suppose 0 < aj < - -+ < a,, < 1 are the critical values of ¢|7,, which we assume
to be irrational. For each ¢ € [0, 1] there exists a barricade Bj: for 3;; moreover
By is a barricade for any vector field that is sufficiently close to (3;)¢. By the

compactness of [0, 1], there exists an integer K > 0 such that, fori = 0,1,..., K,
By, I; = I'/¥  is a barricade for all ¥, t € [2L, T N [0, 1]. Note that, for each

a;, there exist unique j, j— such that j; = j_ + 1 and ‘77’ <a; < %

Let 7w : ¥ x [0, 1] — X be the projection onto the first factor.

We claim that for each i = 0, ..., K — 1 there are refinements of By, and By, ,
(by abuse of notation we keep the same notation for the refinements) such that

4.5.1) TF(B]iJrl)ﬂ?T(B[i):@,

and moreover we may choose the refinement so that the new By, , remains a barri-

/ ) i+1
cade forall 5y, ¢ € [, 2]N[0, 1]. The claim follows from viewing By, and By, ,,
as thin neighborhoods of collections ~; and ~;11 of arcs, taking their intersection
Z = ~; N ;41 which we may take to be transverse, and applying Lemma 4.2.4.

We divide the proof into several steps.

STEP 1. From % to ZY/(N,K) where N' > 0 is a large integer

Consider a flow box B; = [0, so] x [0,t0] of By,. Let 04 B; = {so} x [0, to]
and 8_Bi = {0} X [O,to].

For each positive integer r, define the external holonomy p; , : 0+ B; --+ 0_B;
— amultiple-valued, partially defined, rth return map from 04 B; to 0_ B; of (¥)¢
— as follows: For any x € 04 B;, apointy € 0_B; is in the image p; () if there
exists a possibly broken flow line ¢ : [0, 1] — X such that ¢(0) = z, ¢(1) = y, and
c passes through int(B;) (r — 1) times. Of course p; .- is not necessarily defined on
all of 04 B; and when it is defined, it is not necessarily single-valued.

Since (X¢)¢ is Morse by assumption, (A) there exists 0 > 0 such that

= Inf - Ai'r ,
Zelgo—Bi’t(x) t(pv (.’L’))| >0

||ﬁi,r
where we are taking ¢(p; (z)) = oo if p;,(x) does not exist. Otherwise, there
is a sequence of points z; € 04 B; such that |t(x;) — t(pi,(x;))| — 0 and the
compactness of the sequence of broken flow lines gives us zo, € d4 B; such that
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|t(Too) — t(Pir(2o0))| = 0, which contradicts (M3) from Proposition 2.2.6. More-
over, the Morse condition implies that (B) there exists rg > 0 finite such that
|Bio |l = o0 forall i € I.

We then install plugs B}g on Bj, as described in §4.1 and §4.4 and obtain a
foliation between Xy and XJ. As long as we take N > 0, i.e., the individual
mushrooms are very small, the internal discrepancies are << ¢ by Lemma 4.4.1.
Together with (A) and (B), it follows that all the leaves of the foliation are Morse.

For convenience we assume that ¥ agrees with 3o on the complement of By,
and that the difference is contained in a small invariant neighborhood of By,. Also,
below we construct 1-parameter families of embedded surfaces that are disjoint
away from a subset on which they all agree; the perturbation into a family of
disjoint embedded surfaces is done by flowing in the transverse direction for a
short time and will not be done explicitly.

In order to interpolate between X and EY/( N'K) for a large integer N/ > 0

which we take to be odd, we use By, satisfying Eq. (4.5.1). If N’ > 0, then there
is a 1-parameter family of embedded surfaces F; C ¥ x [0, 77, s € [0, 1], such
that Fy = S\ N (By,), FiNE1/(vixe) O N(Br) x{ 5 }» 0Fs = ON(By,) x {0}
forall s € [0, 1], the interiors of F are disjoint, and the (F})¢, s € [0, 1], are e-close
to one other so that By, is a barricade for all (N (By,) x {0}) U Fj; in particular,
no new singularities are introduced in this process. The barricading condition can
be guaranteed by having chosen N’ >> 0. See the upper-left corner of Figure 4.5.1
for an illustration of this procedure. By the barricading condition the surfaces
(N(By,) x {0})¥ U Fy are Morse for all s € [0, 1], where (N(By,) x {0})" is
N(Bj,) x {0} with By installed.

FIGURE 4.5.1. Interpolation between ¥ and XY/ J(N'K) by Morse
surfaces. The blue parts represent By,,7 = 0, 1.

Next we install a plug on By, X {57z} C (N(By,) x {0})¥ U F, uninstall the
plug on BIVO, and lift the resulting surface up to ¥y ('), as shown in the upper-
right, lower-right, and lower-left corners of Figure 4.5.1, respectively. Moreover
all the intermediate surfaces are Morse by analogous reasons. This finishes our
construction of the foliation from X to 2\1/ SN
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STEP 2. From ZY/(N/K) to EY_/K, where 1_ /K < a; < 14/K.

Switching back and forth between Bj, and By, we similarly construct the
Morse foliation from ZY/(N,K) to E;//(N,K), from ZQV/(N,K) to Zg/(N’K)’ and so
on as in Step 1, until we get to E\l//K. Between 2\1//1( and E;//K we use By, and
By, Continuing in this manner we get to Xy .

STEP 3. From EY,/K to ZL/K'

The only modification needed in this step is due to the fact that the vector fields
(31_/K)e and (X1 /k )¢ are not C>°-close to each other in the usual sense. Rather,
one observes either the birth or the death of a pair of nearby Morse singularities as
we go from (X;_ /)¢ to (31, /i )e- In either case, we slightly modify the notion
of barricades By, _ sothat the unique (short) flow line connecting the pair of Morse
singularities is the only flow line that does not pass through By, , . Similar remarks
applytoall a;, 1 <17 < m.

STEP 4. From Z(VK_l)/K to 1.

In this final step, the only new ingredient is to uninstall the plugs as we go from
Y to X1. By assumption ¥ is Morse and in fact convex. Hence by the same
holonomy bound as in Step 1, all the intermediate surfaces are Morse.

Finally we have foliated ¥ x [0, 1] by surfaces of the form 3; which are all
Morse. The only obstruction to convexity occurs when (3;)¢ is Morse but not
Morse™ and this corresponds to a bypass attachment (see Proposition 8.3.2). This
concludes the proof of Theorem 1.2.5 in dimension 3.

4.6. Further remarks. Compared to earlier groundbreaking works of Bennequin
[Ben83] and Eliashberg [Eli92], convex surface theory is a more systematic frame-
work for studying embedded surfaces in contact 3-manifolds. It is sufficiently
powerful that basically all known classification results of contact structures or Leg-
endrian knots in this dimension follow from this theory.

The only “drawback™ of convex surface theory, at least in its original form
[Gir91, Gir00], is that the monster of dynamical systems on surfaces is always
lurking behind the story. More precisely, if one just wants to classify contact struc-
tures or Legendrian knots up to isotopy, then the problem often reduces to a com-
binatorial one by combining Giroux’s theory with, say, the bypass approach of
[HonOO]. However, if one wants to obtain higher homotopical information of the
space of contact structures (say 7, for n > 1), then some serious work on higher
codimensional degenerations of Morse-Smale flows seems inevitable.

As an example, in [Eli92] Eliashberg outlined the proof that the space of tight
contact structures on S® is homotopy equivalent to S2. This particular result is
based on the study of characteristic foliations on S? C S3, which is particularly
simple since we never have periodic orbits. In more general contact manifolds
such as 72, one cannot necessarily rule out periodic orbits from characteristic fo-
liations, and hence the bifurcation theory quickly becomes unwieldy (the work



CONVEX HYPERSURFACE THEORY IN CONTACT TOPOLOGY 25

[Ngo] probably comes close to the limit of what one can do). However, in light
of our reinterpretation/simplification of Giroux’s theory, it suffices to understand
the space of Morse gradient vector fields, instead of general Morse-Smale vector
fields.

We hope our techniques can be applied to future studies of homotopy types of
the space of contact structures. This topic however will not be pursued any further
in this paper.

5. CONSTRUCTION OF MUSHROOMS IN DIMENSION > 3

The goal of this section is to generalize the construction of mushrooms in di-
mension 3 in Section 3 to higher dimensions.

Notation. Throughout this section, we will write Z2 C R3 for the mushroom
constructed in Section 3 and write Z for the higher-dimensional mushroom to be
constructed.

5.1. Introduction. We first introduce some notation which will be used through-
out this paper.

Definition 5.1.1 (Contact handlebodies and generalized contact handlebodies).

(1) A contact handlebody over a Weinstein domain (X, p) is a contact mani-
fold contactomorphic to

([0, C)¢ x X, ker(dt 4+ p)),

where C' > 0 is the thickness of the handlebody.
(2) A generalized contact handlebody over a Weinstein domain (X, ) is a
contact manifold contactomorphic to

{(t,z) ] folz) <t < fi(x)} C (Ry x X, ker(dt + p)),

where there exists a 1-parameter family f; : X — R, t € [0, 1], of smooth
functions such that f;(x) < fy(z) forallt < t', x € X and the graphs
{t = fi,(x)} are Weinstein for all ty € [0, 1].

A contact handlebody is a compact contact manifold with a contact form such
that all its Reeb orbits are chords of the same length and a generalized contact
handlebody is one such that that all the Reeb orbits are chords but they need not
have the same length.

Let (W, \) be a complete Weinstein manifold of dimension 2n — 2 > 0 and
R; x W be the contactization of W with contact form 8 = dt + A. Let W¢ C W
be a compact subdomain such that W = WU ([0,00), x I'), I := 0W¢ is the
contact boundary, and [0, c0), x I'is the positive half-symplectization of I". Let
n := Alr be the contact form on I'; then A|jg o)« = €7n. For 7/ > 0 we also
define

(5.1.1) WS := WeuU ([0,7'] x I).
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The ambient contact manifold of a mushroom is
(M =R, , xW,E=kera), a=dz+ep.

The hypersurface on which we construct the mushroom is ¥ = {z = 0} ¢ M
with characteristic foliation ¥¢ = 0.

Remark 5.1.2. For ease of notation, we will not distinguish between the charac-

teristic foliation, which is an oriented singular line field, and a trivializing vector
field.

A mushroom Z with contact handlebody profile H = ([0,to] x W, dt 4+ )),
7o > 0, is constructed by first taking the product hypersurface Z3 x W€, where
Z3}; has base [0, so] x [0, ], and then damping out the Z3-factor on W5, — W*.
Roughly speaking, the goal is to fold 3 using Z, so that the resulting characteristic

foliation cannot pass through a region which approximates H.

Remark 5.1.3. One can think of the constructions in Section 3 as a special case
where W is a point and H = [0, o] is equipped with the contact form dt.

5.2. Product hypersurface. Recall that in Section 3 we constructed the mush-
room
Z3 c (Ris’t, ker(dz + e®dt))

which agrees with RZ, outside of a rectangle 0 = [0, so] x [0, 7o]. Let Z¢ be the
characteristic foliation on Z3.

We will compute the characteristic foliation Zé on the product hypersurface
Z'=2Z3xWe¢C M.

Choose vector fields v on Z3, defined away from the singularities of ZE’, such

that |3 (v) = 1 and w on W€, defined away from the zero set of A, such that
AMw) = 1.

Lemma 5.2.1. Away from the zeros of |z and ), the characteristic foliation Zé
is given by
(5.2.1) Z{ =R(Z} 4 dz Nds(ZE,v)X),
where X is the Liouville vector field of .
Proof. One can easily check that
T(Z° x W) NE=R(Z,w — e*v,ker \).
Basically the calculation of Zé is reduced to computing the kernel K = a X +

bY + c¢Z of the 3-dimensional vector space R(X,Y, Z) with a maximally nonde-
generate alternating 2-form (-, -). One can easily verify that

K=Y, 2)X +(Z,X)Y + (X,Y)Z

works. We have e *da = dsAdt+dsAX+dA, and if we write (-, ) := e *da(-, )
andZé =aX +bY +cZ + dA, where X = Zg’,Y = X), Z = w — e’v, and
A € ker A and is not parallel to X, then d = 0 since otherwise there exists
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B € ker A such that (A, B) # 0 and (w, B) = 0. The remaining/relevant part of
the pairing is given as follows:

(Z¢, X)) =0,
<Z§” w — eSv) = ds(Zg’) —e’ds A\ dt(Zg’, v),
(Xn,w—e’v) =1.

Hence Z; = K = Zg’ - (ds(Zg‘) —e®ds A dt(Z?, v)) X ).
Finally, since o — (dz + e®dt) = 0 when evaluated on vectors on Z3 and hence

(ds Na+dz Nds—e’ds A dt)(Zg,v) =0,
it follows that Z; = Z? +dz A ds(Zg, v) X O

At the zeros of a|zs and A\, Eq. (5.2.1) can be interpreted as saying that Zé

contains the limit of the right-hand side as the points on Z2 x W¢ approach the
zero.

Remark 5.2.2. Lemma 5.2.1 is rather general and holds for Z? replaced by any

o TR3
surface in R ;.

5.3. Dynamics of Z;. We now investigate the dynamics of Z{.
Let us first consider the PL case Z }3 =24 f’; . X We.

Lemma 5.3.1. The flow lines of (Zp; )¢ passing through {—1}s x (0,t9); x W¢
eventually limit to a negative singularity of (Zp; )¢ and in particular do not leave
AN

Proof. The lemma follows from two observations: (i) Since dz A ds((Z3; )¢, v)
is positive on P, negative on P», and vanishes on Py U P; U Ps, the term dz A
ds((Z}})e,v) X in Eq. (5.2.1) is a positive multiple of X on Pj, a negative
multiple of X\ on P, and zero on PyUP;UPs. [Sample sign calculation on P (it is
useful to refer to Figure 3.1.2): (Z3, )¢ = —0; and v, which we take to be parallel
to the zt-plane, has positive 9,-component. Hence dz Ads((Z3,) )¢, v) > 0on Py.]
(ii) By Lemma 3.1.4, if a flow line of (Z}, )¢ passes through {—1},x (0, tg), x W€,
then its projection to Z }”, 7, only passes through Py, Py, P», and Ps. ([

Next we describe the smoothed version Zé. We identify the singular points of

Zé: Recall from Lemma 3.1.4 that Zg’ has four singular points e, ht. By the sign
calculations of dz A ds((Z%} )¢, v) from the proof of Lemma 5.3.1 and continuity,
dz A ds(Zg’, v) > 0 on neighborhoods of e, hy and < 0 on neighborhoods of
e_, h_. Hence for each singular point x € W€ of the Liouville vector field X,
there exist four singular points e , h% of Z é whose Morse indices are given by:
ind(e¥ ) = indw (), ind(h%) = indw (z) + 1,
ind(e” ) = 2n — indw (), ind(h*) = 2n — 1 — indw (),
where indyy () is the Morse index of x € W¢ C W and we recall that dim W =
2n — 2.
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See the top left figure in Figure 5.3.1 for Z, ? and the regions indicating the signs
of dzAds(Z,v). The red (resp. blue, white) region indicates where dzAds(Z¢,v)
or dz A ds(Sr¢,v) is positive (resp. negative, zero).

Remark 5.3.2. In view of Remark 3.2.2, we may replace the nondegenerate sin-
gular points by birth-death singularities as in the top right of Figure 5.3.1. The
advantage of the birth-death singularities is that Lemma 5.3.3 still holds but the
singular points can be immediately eliminated; this will be useful for example
when damping out in Section 5.4.

————————

i

________

FIGURE 5.3.1. The top leftis Z ? and the top right is an alternate
perturbation of Z ;’, L& corresponding to 7 = 0. The top right,
bottom right, and bottom left are S, ¢ for some as 7 goes from 0
to 1p.

Let Sk(T) be the isotropic skeleton of W€ with respect to X . Let k1 > kg >
k3 > 0 > k4 > k5 > kg with all k; small as in Proposition 3.2.1, and let ¢ > 0 be
small. We define

I, == {—1} X [Ka,t0 + K2 —a] C ]Rit,
Ij_ :={so+ 1} x [k5 —a,to + k3] C Rg,t’
so that I;" (resp. [, a“ ) is the maximal interval with the property that any flow line of
Zg passing through the interval converges to a singularity of Zg’ in forward (resp.

backward) time.
We now give a description of all the flow lines passing through Z3 x W¢:

Lemma 5.3.3 ( Description of all flow lines passing through Z3 x W¢). There exist
functions o, UO+ : W€ — R>q, which vanish exactly on Sk(W) such that:
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(1) each flow line of Zé passing through I, x Sk(W) (resp. I§ x Sk(W))
converges to a singularity of Zé in forward (resp. backward) time;
(2) for x € W€\ Sk(W), each flow line passing through I;, () {z} (resp.
0

+
I%+(

time;

(3) for x € We\ Sk(W), each flow line passing through (I, \ IU_S (ﬁ)) x {x}
(resp. (I \I:+(z)) x{x}) exits Z2 x W€ along Z3 x OW € in finite forward
(resp. backwa?*d ) time;

(4) for x € W€, each flow line passing through {—1} X (to+ ka2, to+ k1] x {x}
(resp. {so+ 1} X [ke, k5) X {x}) exits from either {so+ 1} X (to+ k3, to +
k1] x W€ (resp. {—1} x [kg, k) x W€) or Z3 x OW€ in finite forward
(resp. backward) time; in the former case, the W ¢-coordinate x' of the exit
point of the flow line is on the time > 0 flow line of X starting at x;

(5) for x € W€, each flow line passing through {—1} X [kg, k4) X {z} (resp.
{s0+ 1} x (to + K3, to + k1] x {x}) exits from {so + 1} X [k¢, k5) x W€
(resp. {—1} x (to + K2, to + k1] x W€) in finite forward (resp. backward)
time; the W¢-coordinate x' of the exit point of the flow line is on the time
< 0 flow line of X starting at x;

(6) each flow line outside of Ry X [kg,to + k1] X W€ has trivial holonomy;

(7) all other flow lines are (i) flow lines between singularities, (ii) flow lines
from a singularity to Z3 x OWE, or (iii) flow lines from Z3 x OW¢ to a
singularity.

Moreover, as Z* — Z3,, all k; — 0 and |oi |co — 0.

2) x {x}) converges to a singularity of Z é in forward (resp. backward)

Proof. This is an immediate consequence of Lemmas 5.2.1 and 5.3.1, taking the
limit Z3 — Z ?3 1» and a case-by-case analysis of the various regions of the top left
figure of Figure 5.3.1.

Suppose the flow line passes through the red region times W¢. Then either the
flow line exits from Z3 x OW¢ or escapes to the white region times W ¢. Once in
the white region, the flow line either reaches s = sg + 1 or enters the blue region
times W and reaches a negative singularity.

Suppose the flow line passes through the white region (e.g., passes through s =
—1). Then the flow line reaches s = sg + 1, enters the blue region times W€ (and
hence reaches a negative singularity), or enters the red region times W (already
considered).

All k; — 0 and |05 |co — 0 as Z3 — Z3,; by construction. O

Technically, the functions 03[ account for the speed of convergence of flow lines

of (Z3)¢ towards its singularities and those of X, in W¢ towards Sk(W).

5.4. Damping. In order for the mushroom to be the image of a continuous map
% — M, one must damp out the Z>-fiber over W¢ \ int(W¢) = [0,70] x I"as 7
grows. Recall the notation from Section 5.1.

The damping procedure amounts to choosing an isotopy of surfaces S;, 7 €
[0,70], in RZ  ; from Sy = Z* to the flat S, = R2,. We take Sy = Z* to have
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birth-death type singular points as in Figure 5.3.1; see Remark 5.3.2. In practice
we also take 79 > 0 to be arbitrarily small. We then set

o = Uogren (Sr x {7}) CRZ 4
and the actual hypersurface in M will be %y x T.

The PL model of S; is obtained by replacing Py by the rectangle [0, so] X
[—e=%0/22 —e=50/25 4 t] as in Section 3.1, where the parameter z ranges from
zp to 0 as 7 goes from 0 to 7y (in other words, we are pushing the top face of the
parallelepiped into the parallelepiped); its smoothing for 7 > 0 will use a profile
function ¢ such that ¢/ < 0 everywhere so that there are no singularities of the
characteristic foliation. We have

TS = R<TST7 Or + wa>,

where wy = 0, — K0, is parallel to P, and P4 and f < 0 is a 7-dependent smooth
function on Rg’ 5.+ Which vanishes when 7 is close to {0, 79} or z = 0.

We are now ready to compute the characteristic foliation (%) x I')¢. Let S, ¢ be
the characteristic foliation on S, i.e., a|gs(Sr¢) = 0, and let v be a vector field
on S, defined away from the singularities of Sy ¢, such that «|gs(v) = 1.

Lemma 5.4.1. The characteristic foliation (I x I')¢ is given by
(54.1)
(So x )¢ = Sre +dz Nds(Sre,v)(0- + fwo) + f (ds(Sre)v — ds(v)Sre)
+e T f(=ds Ndt(Sre,v) + Kodz A ds(Sr¢,v)) Ry,
on the subset of %y x I where v is defined. Here R, is the Reeb vector field of ).
Proof. This is similar to the calculation of Lemma 5.2.1. We compute
T(FoxTD)NE =R(Sr¢, €™ v—R,, 0-+ fwo+(—e 7 *+ Koe ") f Ry, kern).
Next we have
a=dz+e*(dt +e'n),
e *da=dsNdt+e"ds An+ e (dr An+dn).
Setting X = S;¢, Y =e" v —R,, Z =0, + fwo + (—e 7 ° + Koe ") fRy,
(X,Y) =e"ds A dt(Sr¢,v) — €7ds(Sr¢) = €7 (dz A ds(Sre,v)),
(X, Z) = eTds(Sre)(—e™77°f) = —e*fds(Sr¢),
(Y. Z) = e (e7ds(v)(—e " f)) + € = " (1 = fds(v)).
(1 x T)e = (1 fds(0))Sre + ™ fds(Sre) (€0 — Ry)
+dz Nds(Sre,0)(0r + fwo+ (—e7 7% + Koe 7) fRy).
A rearrangement of the terms gives the lemma. O

Note that Eq. (5.4.1) agrees with Eq. (5.2.1) at 7 = 0. The first two terms
of (S x I')¢ are analogous to those of Z;; see Lemma 5.2.1. The third term

f(ds(Sr¢)v — ds(v)Sr¢) lies in ker ds and, away from the corners,
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e vanishes on P, U Ps,
e has negative J;-component on Py U Py, and
e has positive J;-component on P.

See Figure 5.4.1. In other words, the third term, when we project out the s- and
W -directions, is a flow in the clockwise direction around 0P as seen in the pic-
ture. The last term of Eq. (5.4.1) has a substantial contribution in the R, -direction
when the damping happens quickly, i.e., when 7 is small and f is large. This is
something we need to be careful about, but ultimately can be finessed away by
stacking the mushrooms in a particular way in Section 7.

FIGURE 5.4.1. The vector field f(ds(S-¢)v — ds(v)Sy¢) is de-
picted in blue.

5.5. Description of the characteristic foliation of the mushroom. In this sub-
section we summarize the dynamics of the characteristic foliation of the mushroom
Zpof L ={z=0}C M =R, x W with profile H = [0, to] x W,.
Definition 5.5.1. The mushroom of 3 with profile H is the hypersurface
(5.5.1) Zp = (S\(@Ox W)U Zp, U (SH xD)pr,
modulo smoothing. (The smoothed versions do not have the subscripts PL.) The
region O x W£ C %, where [0 = [0, 5] x [0, o], is the base of Zy, and the region
o X I is the damping region.

Let 7§ € (0,79), let K1 > kg > kg > 0 > K4 > K5 > kg with all k; small as in
Proposition 3.2.1, and let 0=, 05 :Wf(,) — R>q be functions such that:

e o7 vanishes exactly on Sk(W) and o3 vanishes on W¢;

e on {0 < 7 < 74}, both 05 = 0 (7) and 05 = 0 (7) are strictly increas-
ing and reach their maximum at 7 = 7'6;
o o1 (19) + 05 (14) = to + k2 — kg and o (74) + 03 (74) = to + K3 — ks.
As the smooth version of Zx limits to the PL version, all x; — 0 and \aii lco —
0on W7 .
We then define the compact submanifolds

(5.5.2) Hy, ={(t,z) |z € Wf(,), Ky + oy (x) <t <top+kry—o(x)}
(5.53)  How = {(t,x) |z € W, k5 + 0] () <t <to+r3— oy (z)},
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which approximate H when all the smoothing parameters involved in the construc-
tion tend to 0. See Figure 5.5.1. We use the notation X ° (and also int(X)) as in
H;, to denote the interior of a space X.

Note that 0H (which we assume has rounded corners) is convex; this follows
from observing that ([—1, 1]; x W, dt + X) has contact vector field t0; + X .

Proposition 5.5.2. Assuming all the corner rounding parameters are sufficiently
small, there exists a tubular neighborhood [—e¢, €|y x OH of OH = {0} x OH and
Hiy, and H gy that approximate H such that:
(Z1) OHin, 0Hout C [—€, €] X OH are graphical over OH.
(Z2) Zyg is “1-Morse” in the following sense: it satisfies (M1) and (M3) of
Proposition 2.2.6 and
(M2’) every flow line passing through x € Zg with Zp ¢(x) # 0 converges
to a singularity or goes to {s = +oo} in forward time and converges
to a singularity or goes to {s = —oo} in backward time.
(Z3) Any flow line of Zy ¢ that passes through Hi, C {s = —1} converges to
a negative singularity of Zp ¢ in forward time. Similarly, any flow line of
Zu ¢ that passes through HS C {s = so + 1} converges to a positive
singularity of Zp ¢ in backward time.
(Z4) Any flow line of Zy ¢ that does not pass through H U ([—€, €] x OH) C
{s = —1} has trivial holonomy.
(Z5) There exists a Morse function F' on OH such that OH¢ is gradient-like for
F (and hence flows “from Ry (0H) to R_(0H)”) and such that any flow
line of Zp ¢ that passes through ({,x) € [—e€,e] x OH C {s = —1} and
does not converge to a singularity of Zy ¢:
(1) passes through (¢',y) € [—€,€] x OH C {s = so + 1} with F(y) >
F(x); and
(2) is parallel to Xy (resp. —X) on [—¢€, €] x W$ (resp. [—€, €] x WE)
when projected to [—¢, €] x OH.
Here WY is the portion of OH corresponding to {to} x W€ and W€ is the
portion corresponding to {0} x W¢.

Proof. (Z1) is by construction. (Z4) is clear. (Z2)—(Z5) follow from Lemmas 5.3.3
and 5.4.1. In (Z5) we take {7} x I to be level sets of F’ so that the component of
Z ¢ in the direction of the Reeb vector field R, vanishes on dF. U

6. QUANTITATIVE STABILIZATION OF AN OPEN BOOK DECOMPOSITION FOR
S2n—1

6.1. Some definitions. Let M be a closed manifold. An open book decomposition
(abbreviated OBD) of M is a pair (B, 7), where B C M is a closed codimension
2 submanifold and

m:M\B—S'cC
is a fibration which agrees with the angular coordinate # on a neighborhood B x D?
of B = B x {0}. Wecall Sy := 7 !(e), e € S, the pages of the OBD, and
call B the binding.
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FIGURE 5.5.1. The shaded regions are Hj, and H,y, respec-
tively. The area of the complements of Hj, and Hy in the rect-
angles tend to 0 as all the parameters involved in the construction
tend to 0.

Let £ be a contact structure on M.

Definition 6.1.1.

(1) An OBD (B, ) is {-compatible if there exists a contact form o for &, called
an adapted contact form, such that the Reeb vector field R,, of « is trans-
verse to all the pages and is tangent to B, and «|p is a contact form on
B. We also say “a-compatible” or simply “compatible” if the contact
structure is understood.

(2) An a-compatible (B, ) is strongly Weinstein if all its pages (Sp, c|s, ) are
Weinstein.

Let (B, ) be an a-compatible OBD. Let arg : S! — R/27Z be the map
¢+ 0. Then define p : M \ B — Ry by

(6.1.1) p(x) = d(arg om)(Ru(2)).

Roughly speaking, p(z) measures infinitesimally how fast the orbit of R, through
x traverses the pages.

Definition 6.1.2. The infinitesimal variation on the page Sy is

(6.1.2) Vp = sup p(z)/ inf p(x) € [1,00),
€S, TESy

and the total infinitesimal variation is V' := supg¢(9 2 Vo-
The following is standard:
Lemma 6.1.3. IfV = 1, then M \ Sy is the interior of a contact handlebody.

Proof. Let t be the coordinate obtained by flowing in the direction of R,, starting
from Sp. Then M \ Sy =~ (0,C); x Sp and o = fydt + B;, where f; (resp. 3;) is a
function (resp. 1-form) on Sy that depends on ¢.

We claim that R, = J; implies that f; = 1 and Bt = 0, where the dot denotes
the derivative in the ¢-direction: Since a(R,) = 1, we have f; = 1. Then da
becomes dt A Bt + ds, Bt, where dg, is the exterior derivative in the Sp-direction.
Finally, ip, da = 0 forces Bt =0. O
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6.2. Quantitative stabilization for S2"~!. Before starting, we warn the reader
that the type of stabilization in this section is different from the notion of stabiliza-
tion of an OBD in the Giroux correspondence which involves changing the topology
of the page by a handle attachment and composing the monodromy with a suitable
Dehn twist.

Let &4 be the standard contact structure on S2" 1 = {|z1]? + --- + |2, =
1} C C" given by the restriction of aw = 1 > (z;dy; — y;dx;) which we denote
by aistq. The standard OBD for &,;4 can be constructed as follows: Starting with
21 : §27~1 — C which is a submersion away from |21 | = 1, we set B = 2 1(0) =
S8 = {22+ +|2a]?> = 1} and
2L 82\ B st e C.

= Tal

The pages Sy are Weinstein (2n — 2)-disks and the Reeb vector field is

Ra,,, = Z?:l(xiayi - yia’fi) = Z?:l 891‘?

where 6; is the ith angular coordinate. Then p(z1,...,2,) = d01(0y,) =1,V =1,
and S?"~1\ Sy is the interior of a genuine contact handlebody of thickness 27 by
Lemma 6.1.3. Note that B has an analogous OBD derived from zy : S?"73 =
{lz2?+- 4+ |z]> =1} = C.

Lemma 6.2.1. For any positive integer k > 0 and € > 0 small, there exists an
stg-compatible, strongly Weinstein OBD (By, i) of S~ 1 such that each page
is C*°-close to

Sy U Sog42r/k U+ U Sogpom(k—1)/k

(i.e., the union of k evenly spaced pages for some 0) outside an € -small neigh-
borhood of B (with respect to the standard Euclidean metric on C") and such
that S*~1, cut open along a new page, is the interior of a contact handlebody of
thickness 2 / k.

Proof. We would like to “stabilize” (B, 7) by replacing z; by z’f. However, since
0 is not a regular value of 2¥, we use

fei=aF+ e+ 225+ 4 1F

where ¢ > 0 is small. We are thinking of f;, as inductively defined as z} plus e
times f corresponding to the binding |22|*+ - -+ |2, |> = 1. We write R = R,_,,.

Step 1. Verification that 0 is a regular value of fi. Let Fj be fi viewed as a

map C* — C. Then dFy(z1,...,2,) = k(zf~1 e2b=1 . en=125=1), Next
we precompose with the derivative of the inclusion map i : S?"~! < C". Let
z = (21,...,2,) € S*"1. Suppose there exists z; # 0,1. Then there exists

v € T, 5%~ with a nontrivial component in the zj-direction and df}, is surjective

since ejflz;“_l # 0. Otherwise, some z; = 1 and z; = 0 for all i # j. Then

fr(z) = ej_lz;? # 0. Hence 0 is a regular value of fj.

We set Bk = fl;l(()) T = ﬁ[cfllz' : SQn_l \Bk — Sl, and Skﬁ = 7_‘_’;1(0)
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Step 2. Computation of df,(R). For (z1,...,2) € S?~1\ By, we use polar
coordinates (r;, 6;) for z; and compute:

dfk(R) — d(,rllceikel + €r§€ik92 4+ .+ enilrﬁeiken)(z‘?zl 809]')
(6.2.1) = ik(rfe™ 1 erket02 g enTlpkeikiny — kg

Observe that this equation is the version of the equation in [Gir00, p.411, last line]
when F}, is holomorphic.

Step 3. Verification of the properties. Eq. (6.2.1) implies that R is tangent to By, and
transverse to Sy ¢ and that 7y, is a fibration. Moreover, for (By, 7x), p(2) = 1 and
V = 1,and $?"1\ S} ¢ is the interior of a contact handlebody of thickness 27 /k.
Since R is tangent to By, for each z € By, dfy(ker agq(2)) = C. This, together
with the invariance of ker «z;q under the standard almost complex structure on C",
implies that By, is a codimension two contact submanifold of ker avgg.

Next we apply Lemma 6.3.1, proved in §6.3, to show that S}, ¢ is Weinstein after
perturbing f, by adding > , cizf for ¢; small. Using the notation from §6.3, we
have df(R) = 1 and d¢(R) = 0; hence dp(X3) = 0 if and only if d¢ = 0,
where ¢ is viewed as a function on Sy, g—o. One can compute that if z € S, isa
critical point of ¢, then all |z;| # 0; at such a point d(z}), ..., d(z¥) are linearly
independent. This provides enough perturbations to make ¢ Morse.

Finally, the C°°-closeness property is immediate from taking € > 0 small. [

6.3. Verification of the Weinstein property. Let f : C" — C be a holomorphic
function such that f(0) = 0 with an isolated critical point at the origin. For x > 0
sufficiently small, f defines an OBD (B, 6) of the sphere S, of radius x, where
B=S.Nf0)and § = arg f : S, \ B — R/27Z. Also let ¢ := —log|f| on
S. \ B.

Let

o o = %Z?Zl(xidyi — yidx;) = %Z?:l r2df; be the standard Liouville
form on C" with Liouville vector field X, = % Sy Tz‘ai”, where (7, 0;)
are polar coordinates corresponding to (z;, y;);

e (v ;4 be the induced contact form on S, for x > 0 small and R = T% > 6%2,
be the Reeb vector field on Sy, where 1% = > 72 (note that R is defined
on all of C", not just on Sy);

e (3 be the 1-form induced by a4 on any page of the OBD with Liouville
vector field X 3; we view Xz as a vector field on S,; \ B that is tangent to
the pages;

e Xy be the Hamiltonian vector field of ¢ (satisfying i x,do = df), viewed
as a function on C"\ £71(0); and

e J be the standard complex structure on C".

The following is due to Emmanuel Giroux (presented here with his permission):

Lemma 6.3.1 (Giroux). On Sy, \ B, if dp(R) = 0, then d¢(Xg) = ﬁ\dm?_
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Proof. We first claim that, at every point of S, \ B, the following identity holds:
(6.3.1) Xo = Xpg+aXg+ bR,

where a = d0( ) and b = dge((x")) First note that the da-symplectic orthogonal

complement of the tangent space TS of a page S is spanned by R and Xjy. [Verifi-
cation: da(R,TS) = 0 since R, T'S are tangent to S,;; da(Xy,T'S) = dO(T'S) =
0; and da(Xy, R) = df(R) > 0.] Hence we can write X, =Y + aXy + bR for
some Y € T'S. Evaluating on T'S gives Y = Xjg. We can then determine a and
b by applying d6 and d(r?) to Eq. (6.3.1): d(r?)(Xa) = 2rdr(3 Y ;riz2) = r*
and d(r?)(Xo) = ad(r®)(Xp) = —adf(X,2) = —adf(—1R), 50 a = g5y
Similarly, df(Xo) = bd0(R), so b = “7s).
It follows from Eq. (6.3.1) that

A6(Xs) = — Gy + d6(Xa) — do(R) G-

Now, since the function —¢ + 6 is holomorphic when viewed as a function on
C™\ {f =0}, we have d¢ o J = df. Hence

dp(Xo) = —dd o J(JXa) = —dB(} Y, ) = — 2 dO(R),
dd(Xg) = —dd o J(JXg) = —db(JXg) = —da(Xg, JXg)
= —|Xp|* = —[dO)* = —|do[?,
dp(R) = —dO(JR) = db(5Xa),

and
do(Xs) = zomy (|do|* — (dp(5R))? — (dg(2Xa))?).

Observe that %Xa and g R are orthonormal unit vectors. Finally, since d¢(R) = 0,
dp(Xp) = quﬂ2 on each page. O

7. CONSTRUCTION OF THE PLUG

The goal of this section is to generalize the 3-dimensional plug constructed in
§4.1 to higher dimensions. This is the key construction that will allow us to prove
Theorems 1.2.3 and 1.2.5 in Section 9 in essentially the same way as in the 3-
dimensional case.

7.1. Definition of a plug. Let us rephrase the 3-dimensional case considered in
§4.1 in a way that is amenable to higher-dimensional generalization. Consider the
standard contact space (R, ker(dz + e®dt)) and the surface ¥ = {z = 0} C R3.
The plug is obtained by growing a mushroom along a box U = [0, s¢] X [0, to] C 3,
where we are viewing U as the truncated symplectization of the 1-dimensional
compact contact manifold 0_U = {0} x [0, to] with contact form dt.

In higher dimensions, let (Y, ker ) be a compact contact manifold of dimension
2n — 1 with convex boundary. Let

(Neo(Y) ==Y U ([0, €] x 0Y), kern)
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be a small extension of (Y, ker 7). Now we consider
(M= R | x Ney(Y), € = ker(dz + €°n))
and the hypersurface ¥ := {z = 0}. Let U := [0, s9] X N, (Y") and let
0_U ={-1} x Ng,(Y) and 0;U = {sg+ 1} x N (Y).

From now on, we fix a Riemannian metric on M, which induces a metric on any
submanifold and such that [0, eg] x OY has thickness o with respect to this metric.
Definition 7.1.1. A Y '-shaped plug with parameter € > 0 is a CP-small perturba-
tion U of U supported in the interior U° of U such that:

(1) all the flow lines of (75 that pass through {—1} x Y° flow to a negative
singularity; N
(2) all the flow lines of Uy that pass through {so+1} x Y° flow from a positive
singularity; N
(3) for all possibly broken flow lines of Ug that go from 0_U to 0,U, the
holonomy map is e-close to the identity when defined; N
(4) Ug is gradient-like with respect to a Morse function f : U — R which
agrees with s on QU in particular there are no possibly broken loops of
Ue.
Definition 7.1.2. A Y -shaped pre-plug U satisfies Definition 7.1.1 with (3) re-
placed by:

(3’) for each possibly broken flow line of [75 that goes from 0_U to 04U, the

holonomy map is obtained by following a small perturbation of (Y )xer -

7.2. A Peter-Paul contactomorphism. Let (Y, 7) be a contact manifold with a
fixed choice of contact form 7. Let S be a hypersurface of Y transverse to the
Reeb vector field R,. Then S has a neighborhood S x [—¢, €], C Y on which
R, = 0-.

The following is well-known:
Lemma 7.2.1. If R,y = 0, on S X [a,b] CY, a < b, thenn = dr + 3, where 3
is the pullback of a 1-form on S. Moreover, df3 is symplectic on S.

In other words, 7 is the contactization of (S, 3). In particular, if (S, 3) is Wein-
stein then S X [a, b] is a contact handlebody.

Proof. We first write = fdr+ 3, where f(7) € Q°(S) and 5(7) € Q(S). Since
n(R,) = 1, we have f = 1. Also, since £, 1 = 0, 3(7) must be 7-independent.
Finally, dg is symplectic on S due to the contact condition on Y. O

Given (Y,n), let (M,a) = (R2, x Y,dz + €*n) and let ¢, : ¥ = Y be the
time-¢ flow of R,;.

Lemma 7.2.2. The diffeomorphism
(21) WM SM, (zsy) > (TN C25/C00 o))

where C > 0, is a contactomorphism.
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Proof. We compute
U*(a) = d(e"HYO5 . C2) + /Y (n+ d((1 — C)e*2))
= TIHYOB(1 = C)ads + eT1HOCdz + e/
—e¥/C(1 — C)e *zds + e¥/C (1 — C)e*dz
_ 6(71+1/C)5(d2, +e'n) = e(—1+1/C)s

We explain the first line: By Lemma 7.2.1,  can locally be written as d7+ /3, where
B is a 1-form on a hypersurface S C Y transverse to R, = 0.. (Note that we can
use the immersion 7 : § x R; — Y with ¢*R,, = O instead in Lemma 7.2.1.)
Then ¢(1_c)e—s:(7,7) = (7 + (1 — C)e™*2,z), where z is the coordinate on S,
and ¢>(k1,c)e—sz77 =n+d((1—-C)e *z). 0

Let M, s0) = [—20,20] % [0,50] X Y C (M, ). As an immediate corollary,
by taking C' > 0, we have:

Lemma 7.2.3. For any 0 < s{ < so and z{, > 0, there exists 0 < zy < z,
such that M, s, contactly embeds into M s y and takes {z = 0} N My, s to
{Z = 0} N M(Z(S’SE))'

We call the contactomorphism ¥ given by (7.2.1) a Peter-Paul contactomor-
phism for the following reason: In Lemma 7.2.3, ¥ = {0} x [0, 5] x Y C M, 4
is the hypersurface on which we want to create mushrooms. The length of the in-
terval [—zg, zo| can be regarded as the given size of a neighborhood of ¥. The map
U then allows us to rob the (already small) size of the neighborhood of 3 to pay
for a large size in the s-direction.

Observe that the Peter-Paul contactomorphism was not needed in Section 4 to
make any 2-dimensional surface convex.

7.3. A pre-plug. Given a standard Darboux ball (Y?"~1 1) with convex bound-
ary, we explain how to construct a Y -shaped pre-plug U on

Si={2=0}CM=RZ, x N,(Y).

The Y -shaped pre-plug will be upgraded to a Y'-shaped plug with parameter € > 0
in the next two subsections.
Modulo corner rounding, we may assume that (Y, ker ') is contactomorphic to
(Yp U Y, ker n) such that:
() Yo = (271 {I¢] € €}),m = asa), where 21 : S2"71 — C¢ and agyg =
% > (zidy; — yidx;) are as in §6.2 and € > 0 is small;
(2) Y1 = ([0,27]; x D*"~2 5y = dt + Bp2n—2), where Bpan—2 is a standard
Liouville form on D?"~2 with one elliptic singular point; and
(3) foreacht € [0,2n], {t} x 9D*"~2is glued to z; ' (¢'e*) so that the contact
forms (and the Reeb vector fields) match.
(In particular, YyUY7 has a partial open book structure, where Y is a neighborhood
of the binding and {t} x D?"~2 is a retraction of a page; see Definition 8.4.2.)
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We now apply the Peter-Paul contactomorphism to realize (Yy U Y7,7) as a
transverse slice (i.e., transverse to the characteristic foliation) on X; we then blur
the distinction between 'Y and Yy U 'Y, and write Y = Y U Y7. The price that we
pay is that we lose control of the z-height. (Recall that the z-height restricts the
thickness of the contact handlebody of the mushroom that we want to grow.)

To remedy this we apply quantitative stabilization (Lemma 6.2.1) with £ > 0
and 0 < € < € to Yp to obtain 7, : Yy — SI. After a C>°-small perturbation
of Y1 whose size depends on k£ and which we still denote by Y7, there is a smooth
extension 7y, : Y — S* which agrees with (¢, z) — kt on Y;.

Choose a finite number, say N = 5, and a small constant 0 < ¢’ < €. Then,

for j = 0,...,4, let H be the sector 77,;1([%, %

suitable extension of 7y, H j’ is a (complete) contact handlebody of thickness 27 .
Next let H; be a slight modification of H’, j = 0,...,4, obtained by removing

an 6%-neighborhood ({2 < E7”}) N Yy of the binding By, and thickening the
contact handlebody by flowing forward and backward by 5—]: in the Reeb direction.

Finally, we slightly (i.e., in a C*°-small manner) modify n by “shifting the bind-
ing” By away from Hj using a contactomorphism ¢ and construct the analogous
contact handlebody ¢(Hj) of thickness 27”“725” such that ¢(Hy) contains the €”-

neighborhood of By, as follows:

]). Assuming we chose a

Brief explanation of “shifting the binding”. By flowing along the characteristic
foliation of each page, one can normalize oy on a small neighborhood By, x D?
of the binding By, as

agq = [ B+ glady — yd),
where D? is a disk with Euclidean/polar coordinates (x, )/(r, #) and small radius;

B = asalp,; f = f(r)and £(0) = 1; g = gor? + O(r3) and gy is a nonvanishing
function on By; and the pages are still 6 = const. Letting

a:= flagq =B+ h(zdy — ydz), where h=f"'g,
and X = % — hyRg, where Rpg is the Reeb vector field of 3, we compute:

da = df + dh N\ (zdy — ydz) + 2hdzdy,
ixdoa =2hdy + O(r), d(a(X))=—2hdy+ O(r),

and hence Zxa = O(r). Therefore, the translation by aX, a < 0 small, on
By, x D? (where defined), is close to a contactomorphism and the modification
needed to make it into a contactomorphism ¢ is on the order of a - O(r), which is
an order of magnitude smaller. Hence ¢(H) has the property of being close to the
x — x + a-translate of Hy with error much smaller than a; in particular ¢(H)
contains the €”-neighborhood of By. Finally, one may adjust the contact form on
¢(Hp) by multiplying by a function that is close to 1 so that ¢(Hj) becomes a
contact handlebody.

In what follows we abuse notation and refer to ¢(Hp) by Ho.
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The pre-plug U consists of mushrooms Z;, 0 < J < 4, with bases
Bj = ", "5t x Hj;
see Figure 7.3.1. (Strictly speaking, the base By is obtained by shifting B, =
[, 55] x Ho by the map (s, z) — (s + fo(z),z), where fo is a C°-small smooth
function on Hy. We will assume that we started with a slightly smaller B =

[% +4, % — 6] x Hy and that the base for the contact handlebody Hy contains By.)

We also require the damping of Z1, ..., Z4 to occur inside the 3%/—neighborhood
of Bj so that the damping regions of Hy,..., Hy are contained in Hy and the
damping region of Hy to occur inside Ho.
s
-y

FIGURE 7.3.1. Hy,..., Hy, from top to bottom.

Verification of (3’) in Definition 7.1.2. This is a direct consequence of Proposi-
tion 5.5.2 and our choice of the ordering of the mushrooms in the s-direction.

We first give names to regions of 0_U: Viewing H as a subset of 0_U, let H §
be the closure of the union of H; and the set of points such that the holonomy from

s = % —dto % 4+ ¢ (for & > 0 small) is not trivial or does not exist; note that

H ;j 18 contained in a small neighborhood of H;. We denote the portion of H ; that
closely approximates it and acts as a sink by H; ;, and H ;i\ Hjn by Hj 5, and the
corresponding products with [8%(?, gz—gj] by Bjin and B 5.

The dynamics of U in forward time is described as follows: Let z € §_U and
let ¢, be the flow line of U passing through x.

(A) If 4, enters Bj;,, j = 0,...,4, then £, converges to a singularity in Z;.

(B) If £, enters Bjp, then /, exits Z; at a point near 0H; — recall that as (,
passes through Z; it flows “from R, (0H;) to R_(0H;)” in the sense of (Z25) of
Proposition 5.5.2 with possibly large nontrivial components in the Reeb direction
of L'op; on the damping region — and one of the following will happen:
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(1) ¢, follows Js until {s = 1} and exits the plug; the holonomy map is ob-
tained by following a small perturbation of (OY)kerr;
(2) £, follows O, until B; 3, for i < j; we then apply (A) after letting the new
j equal ¢;
(3) ¢, follows O, until B; 5 for i < j; we then apply (B) after letting the new
j equal :.
Note that Hy was chosen so that Z; captures all the trajectories that enter 0_U,
“survives to” s = 18—0, and is not close to JY. A similar analysis can be applied to
the dynamics of U in backward time and Definition 7.1 .2(3’) then holds.
In light of Proposition 2.2.6 and Lemma 2.3.2, we conclude that U is Morse.

7.4. e-short hypersurfaces. In this subsection we strengthen Theorem 1.2.3 in a
quantitative way. Namely, in addition to requiring that 3¢ be Morse™ or 1-Morse™,
we also require all the smooth flow lines of Y¢ to be short.

Definition 7.4.1. A closed hypersurface . C (M, &) is e-short if the length of any
smooth flow line of ¢ is shorter than € with respect to the induced metric on 3.

Observe that any closed Morse™ hypersurface X is e-short for a sufficiently large
e which depends on ¥. For our purposes we take ¢ > 0 to be a small number
which is independent of the choice of convex hypersurface. Theorem 1.2.3 can be
strengthened as follows:

Theorem 7.4.2. Given € > 0, any closed hypersurface ¥ in a contact manifold can
be CC-approximated by an e-short and Morse™ one. Moreover, if ¥ is Weinstein
convex, then there exists a t-invariant neighborhood [—6, 6]y x ¥ of {0} x X and
a l-parameter family of pairwise disjoint embeddings ¢, : X — [—0,0] x %,
t € [—0,0], such that:

(1) ¢—4(X) = {—0} x %,

(2) ¢¢(%) is CO-close to {t} x X for all t € [-6,0],

(3) ¢o(X) is 1-Morse™t and e-short, and

(4) ¢1(X) have the same number and type of singular points for all t € [—4,0)

and the whole family ¢:(X), t € [—0,0] is Weinstein convex.

In words, what (3) and (4) are saying is that the singular points of the charac-
teristic foliation of ¢;(X) remain the same for ¢ < 0 and all the singular points —
necessarily of birth-death type — are created at the same time when ¢ reaches 0.

Theorem 7.4.2 holds in dimension 3 by §4.3, together with a slightly more care-
ful analysis of the characteristic foliation when installing a mushroom. This will
be the base case of our inductive argument.

7.5. Construction of the plug. The goal of this subsection is to prove the follow-
ing:

Theorem 7.5.1. Let Y be the standard Darboux ball of dimension 2n — 1 with
convex boundary. Then for any € > 0 small there exists a Y -shaped plug with

parameter €, provided Theorem 7.4.2 holds for contact manifolds of any dimension
<2n - 1.
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We adopt a simplification due to Eliashberg, Fauteux-Chapleau, and Pancholi,
used with their permission, while retaining certain elements of the original version
of the paper.

Proof. Given e > 0 small, choose 0 < €y < €. Let X be the pushoff of Y towards
ON¢,(Y) such that X is the standard Weinstein convex sphere, which we take to
satisfy:

(Sphl) ¥ ~ §?"=2 and I'(X) ~ $?"~3, where ~ means “diffeomorphic”;

(Sph2) R4 (X) ~ D?"~2 is a Weinstein domain with precisely one singular point,
and the singular point on R4 (%) (resp. R_(X)) has index 0 (resp. index
2n — 2).

Applying Theorem 7.4.2, there exists a foliation by X} := ¢4(X) for ¢ € [—4, 0]
satisfying (1)—(4). We are starting with X/ s Which is the standard Weinstein con-
vex sphere by (1); fort € [—4, 0), ¥} remains the standard Weinstein convex sphere
by (4); and for t = 0, E{) is e-short and Weinstein convex with birth-death singular
points by (3).

Setup for U. The Y -shaped plug U consists of two mushrooms Zy, Zy with
contact handlebody profiles Hy, Hs; a pre-plug Z; with profile H;; and bases
[%so, 2%130] x Hj (i.e., Zy has the smallest s-value, followed by Z1, and then by
Z5), such that the following hold:

(P1) N,(Y) D HOUH{UH; DY and HyN Hy = @;
(P2) the damping region of Hj is a subset of H1 ;, and the damping region of
Hy is a subset of Hy oyt.

Note that H; does not need a damping region. See Figure 7.5.1. Recall that on
the damping regions the characteristic foliation may have large components in the
Reeb direction of the dividing set. Since these can potentially create trouble with
the e-shortness, we require (P2).

A
A I

A
= Y

2

FIGURE 7.5.1. A schematic diagram of the plug, with the s-
direction projected out (the boundaries on the right-hand side do
not actually exist). The arrows indicate the direction of the flow
along the characteristic foliations of the handlebodies (i.e., from
the positive side to the negative side). The circular region repre-
sents IV (I") and the shaded regions are the damping regions.
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Analysis of the dynamics of (75. We will specify Hg, Hi, Hy later, but for the

moment we analyze the effect of the plug U when we stack the mushrooms as
above.

(1) Given a flow line of ﬁg that enters Zg, either it flows to a negative singu-
larity of Zj or passes through Zj after flowing parallel to the characteristic
foliation of JH as given by (Z5) of Proposition 5.5.2.

(2) Given a flow line of (75 that enters Z; (including one that exits Zj in the
previous step), either it flows to a negative singularity of Z; or passes
through Z; after flowing parallel to the characteristic foliation of 0 H;. No-
tice that all the potentially problematic orbits that had large components in
the Reeb direction in Zj (i.e., those that flowed out of the damping region
of Hy or near R_(0H,)) flow to a negative singularity of Z; by (P2).

(3) A similar consideration holds for a flow line of 175 that enters Z5 (including
one that exits /7 in the previous step).

(4) Backwards flow lines can be analyzed similarly.

The orbits that pass through U flow along the characteristic foliations of 0Hy, 0H1,
and 0 H» without ever entering damping regions; this means they flow closely along
8(H0 UH U HQ).

Description of Hy, Hy, Hy. Let us write I' = T'(X()) and let N(I') = T" x Diﬁ be

a tubular neighborhood of I" with contact form Sr 4+ C' (%d@) for C' > 0 small and
such that the thickness in the D?-direction is < €” for ¢’ > 0 small. We take H
(resp. H>) to be a thin contact handlebody over an €’-retraction of R, () (resp.
R_(X{)), where 0 < €” < €”, and take the damping region to be small. There
exists d; > 0 small such that

R+(E’_5O) \N(I') C Hyout and R_(E’_(;O) \N(I') C Hajn.

We then take H to be union of N(I") and the region of N, (Y") bounded by ' .
There is some flexibility in choosing the dividing set and we take I'gx, and also
the damping region to be a subset of Hs ;. (P1) and (P2) hold by construction and
also 0(Hop U Hy U Hj) is e-short.

Lemma 7.5.2. H,, after a C°°-small perturbation, is contactomorphic to a stan-
dard Darboux ball with convex boundary.

Proof of Lemma 7.5.2. Let H} := [0,1]; x D, where D = D?"~! and let D; :=
{t} x D. We sketch the proof that if « is a contact form on H; such that:

(1) on a neighborhood of [0, 1] x Dy, a = dt + 3, where 3 is independent of
t and is the symplectization of a standard contact form on 0D.

(2) the characteristic foliation on each D; consists of a positive elliptic singu-
larity e; and all its trajectories go from e; to 0 Dy;

then (H{,ker «) is contactomorphic to (H{,ker(dt + [3)) for some extension of
B to D. The assumptions imply that o = f;dt + [;, where f; is a function on
Dy and By is a 1-form on D;. We slightly perturb o so that the (N (e¢), Bt n(e,))
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are all diffeomorphic, where N(e;) C Dy is a neighborhood of e;, and apply a 1-
parameter family of diffeomorphisms to straighten the characteristic foliation and
make 3; independent of ¢, which we now write as 3. The contact condition implies
that f; > 0; applying the Reeb flow gives the normalization fdt+ ’; and we divide
by f.

The lemma then follows modulo adjusting/rounding corners. U

In view of Lemma 7.5.2 and the construction of a pre-plug from §7.3, Uisa
Y -shaped plug with parameter e.
O

8. BIFURCATIONS OF CHARACTERISTIC FOLIATIONS AND BYPASS
ATTACHMENTS

The goal of this section is to relate certain codimension 1 degenerations of
Morse™ hypersurfaces to bypass attachments introduced in [HH]. Such a corre-
spondence is fundamental in bridging the more dynamical approach [Gir91, Gir00]
and the more combinatorial approach [Hon00] of convex surface theory in dimen-
sion 3. Unfortunately the details have never existed in the literature.

To this end, we slightly repackage the Morse theory on Morse hypersurfaces
from Section 2 in terms of folded Weinstein hypersurfaces.

8.1. Definitions and examples. In this subsection we define folded Weinstein hy-
persurfaces and examine a few examples.

Definition 8.1.1. An oriented hypersurface > C (M, &) is a folded Weinstein
hypersurface if the characteristic foliation Y.¢ satisfies the following properties:

(FWI) There exist pairwise disjoint closed codimension 1 submanifolds K; C %,
i=1,...,2m — 1, which cut ¥ into 2m pieces, i.e.,

Y= WI UKl e Uszfl W2m7

where W; are compact with boundary OW; = K; U K;_1. Here we are
setting Ko = Ko, = &. We call K; the folding loci of 3.

(FW2) The singular points of Y¢ in each W; have the same sign, and the sign
changes when crossing K;. We assume the singular points in W are posi-
tive and that each W; has at least one singular point.

(FW3) There exists a Morse function f; on each W; such that K; 1 and K; are
regular level sets and (W;)¢ is gradient-like with respect to f;. In particu-
lar, X¢ is transverse to all the K;.

Observe that if ¥ = Wy U --- U Wy, C (M,§) is a folded Weinstein hyper-
surface, then there exists a contact form « for £ whose restriction to the interior of
each W; defines a Weinstein cobordism (the argument is similar to that of Propo-
sition 2.3.3). Moreover, the orientation on W; given by the Weinstein structure
agrees with (resp. is opposite to) the orientation inherited from 3 if the singular
points of (W;)¢ are positive (resp. negative). We say a folding locus K; is maximal
(resp. minimal) if the Liouville vector fields on W; and W;; are pointing towards
(resp. away from) K.
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- + + - +
Wom |Womet| ... | W5 | W 1%
Kom—1 K3 Ko Ky
g

FIGURE 8.1.1. A schematic picture of a folded Weinstein hyper-
surface . The top arrows indicate the direction of the Liouville
vector fields on the W, and the bottom arrow indicates the direc-
tion of the characteristic foliation.

Note that by definition any folded Weinstein hypersurface is Morse, and any
Morse hypersurface can be equipped with the structure of a folded Weinstein hy-
persurface.

We now give examples of folded Weinstein hypersurfaces and explain why they
are called “folded”.

Example 8.1.2. If ¥ is a convex hypersurface such that Ry (3) are Weinstein
manifolds, then ¥ can be given the structure of a folded Weinstein hypersurface
where the folding locus coincides with the dividing set I's; and is maximal. On the
other hand, a folded Weinstein hypersurface is not always convex because there
may exist trajectories of ¢ from a negative singularity to a positive one. Nev-
ertheless, since a C'°°-small perturbation of a Morse hypersurface is Morse™ by
Lemma 2.3.2, any folded Weinstein hypersurface is C°°-generically convex by
Proposition 2.3.3.

Example 8.1.3. Consider (R?"*1 £.q) with contact form o = dz + Y v, r2do);.

?
The unit sphere S?" is convex with respect to the contact vector field 220, +

Z:’L:l T 67"i'

We slightly generalize this example as follows, which motivates our definition
of a “folded” Weinstein hypersurface: We refer the reader to Definition A.3.1 for
the definition of a v-folded hypersurface and a seam, where v is a vector field; for
example, the graph of y = 2 is a d,-folded hypersurface in R?. Taking v to be
R, = 0., we consider closed R,-folded hypersurfaces > C R2?"*1! with seam C
and decomposition ¥\ C' = ¥4 U X_ such that R,, is positively (resp. negatively)
transverse to 2. It follows that 21 are naturally exact symplectic manifolds with
symplectic forms da |y, .

Now consider the following nontrivial condition:

(WC) Each component of > is a (completed) Weinstein cobordism.

For example (WC) holds if each component of C' is contained in {z = const} =
R?" and is transverse to the radial vector field. Moreover, ¥4 are graphical over
R2" and are Weinstein homotopic to subdomains of (R?", wstq).
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Any R,-folded hypersurface satisfying (WC) is clearly folded Weinstein with
the folding locus equal to C, and hence can be made convex by a C'*°-small pertur-
bation. Note, however, that if 3> happens to be convex, Ry (X) # X in general.

This explains our terminology but at the same time raises a hard problem:

Question 8.1.4. Characterize or classify convex hypersurfaces (e.g., spheres) in a
Darboux chart.

Any answer to this question will be of fundamental importance in understanding
contact manifolds. See [Eli92] for a complete answer to this question in the case
52 - (Rga gstd)‘

8.2. Normalization of contact structure near a folded Weinstein hypersurface.
Recall that if ¥ C (M, €) is a convex hypersurface, then there exists a “standard”
tubular neighborhood U(X) ~ R; x X of ¥ such that |y = ker(fdt + ),
where f € C*°(X) and 3 € Q}(Z).

The goal of this subsection is to generalize this to folded Weinstein hypersur-
faces, namely associate to a folded Weinstein surface ¥ C (M,{ = kera) a
standard tubular neighborhood, i.e., a tubular neighborhood U (X) of ¥ and a con-
tactomorphism ¢ : U(X) = ((—¢,€); x X, ker ax), where ay is a normalized
contact form (specified below), ¢ > 0 is sufficiently small, and ¢(X) = . Here
Et = {t} X 2.

In the following three steps we construct the normalized contact form ay, on
R x ¥ such that ax |y = alx,, up to rescaling by a positive function. Lemma 2.1.3
then gives the desired contactomorphism.

Following Definition 8.1.1, we write ¥ = W1 Uk, U- - Ug,,, , Wap,. Choose
a tubular neighborhood U ( K;) for each K; and identify it with [—1, 1], x K such
that ¥ is directed by 0 on U (K;). (In particular, this means that { -1} x K; C W;
and {1} x K; C Wit1))

STEP 1. Construct the contact form on R x (X \ U U (K;)).

Let W2 = W; \ (U(K;-1) UU(K;)). After possibly rescaling « by a positive
function as in Proposition 2.3.3, we may assume that 3; = O‘|Wi° is Liouville for
all ¢. (Here dB; > 0 for i odd and dgB; < 0 for ¢ even.) Moreover, we can arrange
so that the Liouville vector field X g, equals 0, /(27) near OU (Kj;) if i is even, and
equals —0;/(27) if 7 is odd. (This is a purely technical arrangement which makes
the gluing of contact forms below easier.) We define

(8.2.1) as = (=1)"tdt + p;
onR x (X\ UM U(K)).
STEP 2. Construct the contact form on R x U(K;) for i even.

In this case /; is minimal. Assume without loss of generality that oy (k,) =
e’ A, where ) is a contact form on K;. We will choose ay; of the form

(8.2.2) as = —f(7)dt — tg(r)dr + e A
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on RxU(K;). Clearly ax|y(k,) = a|y(x,)- A straightforward computation shows
that ay; is positively contact if and only if
(8.2.3) f —2rf—g>0.

We choose f to be a decreasing odd function which equals +1 when 7 is close to
F1, and then choose g to be a nonpositive even function which equals 0 when 7 is
close to +1, subject to (8.2.3); see Figure 8.2.1.

f(7) 1

—i I T 1 \/ 1
? (7)

1

FIGURE 8.2.1. The graph of functions used in the contact form
given by Eq. (8.2.2).

For later use, note that ay; restricts to the Liouville form 3; ; = —tg(T)dT—i—eTQ)\
on {t} x (U(K;) \ K;) for any t € R. We compute the Liouville vector fields

Xg,, = 1/(27)(0; +te™ g(T)Ry),
where Ry denotes the Reeb vector field on (K, ).
It follows that
(8.2.4) U(Ki)e = ({t} x U(K;))e = 0- + e g(1)Ra.

STEP 3. Construct the contact form on R x U(K;) for i odd.

In this case K; is maximal. This step is analogous to the construction of the
contact form on I" x [—1, 1] in the proof of Proposition 2.3.3. Assume without loss

of generality that oy (k) = e~ X. We define the 1-form

(8.2.5) as = f(r)dt+e T\

on R x U(Kj;). Since ay is positively contact if and only if —f’ — 27 f > 0, taking
f(7) as in Figure 8.2.1 suffices.

We compute the Liouville vector fields X, , = —1/(27)0, on {t} x (U(K;) \
K;), and note that it is independent of ¢. In fact U(Kj;) is convex with respect to
the contact vector field ;.

Combining (8.2.1), (8.2.2), and (8.2.5), we obtain a contact form ax, on R x %
such that x|y, = a|x,, up to rescaling by a positive function.

Remark 8.2.1. A crucial difference between the normal forms of contact structures
near a convex hypersurface and a folded Weinstein hypersurface is the following:
For convex hypersurfaces, since 0; is a transverse contact vector field, any small
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neighborhood of X is in fact contactomorphic to the entire R; x 3. On the other
hand, the above-constructed ay; is not ¢-invariant, and hence only specified by the
data on X for |¢| sufficiently small.

8.3. Bypass attachment as a bifurcation. Let £ be a contact structure on ¥ X
[0, 1] such that 3 x {0, 1} are Weinstein convex, or equivalently Morse™*. Then by
Proposition 2.3.3, 3; is Morse™ for all ¢t € [0,¢) U (1 — ¢,1] with € > 0 small.
It will be shown in Section 9 that after a boundary-relative isotopy, 2y is 1-Morse
for all t € [0,1]. However, the 1-Morse™ condition may fail at isolated instances.
In particular, there may exist a first instance ¢g > 0 such that >; is convex for any
t # 1o sufficiently close to tg but there exists a “retrogradient” flow line of (Eto)g
from a negative index n singularity to a positive one. Such a phenomenon is called
a bifurcation of the characteristic foliation in [GirOO].2 As we will see, crossing
such tg corresponds precisely to a bypass attachment as introduced in [HH].

To set up the “bypass—bifurcation correspondence”, it is convenient to reformu-
late the bypass attachment in the language of folded Weinstein hypersurfaces.

8.3.1. Bypass attachments. We briefly review bypass attachments from [HH], leav-
ing the details of contact handle attachments and Legendrian (boundary) sums to
[HH].

Let ¥ be a Weinstein convex hypersurface with the usual decomposition ¥ \
I' = Ry UR_. A bypass attachment data (Ay; Dy) is given as follows: Let
D4 C R4 be Lagrangian disks with cylindrical ends which are regular in the sense
of [EGL18], i.e., the complement in R of a standard neighborhood of Dy is still
Weinstein. Let A4 = 0D+ be Legendrian spheres in I' equipped with the contact
form «|p, which we assume have a unique &|p-transversal intersection point (i.e.,
they intersect transversely when projected to £|r) .

Next we discuss Reeb pushoffs. If A is a Legendrian submanifold of I', then let
A€ be the Reeb pushoff of A in the Reeb direction by €. Clearly A€ is embedded
for |e| sufficiently small. Moreover, if A bounds a Lagrangian disk D in some
Weinstein filling, then there exists a corresponding Lagrangian D¢ in the same
filling with 0D = A°.

We now explain how to attach a bypass to X using the bypass attachment data
(Ax; D) to obtain a contact structure on ¥ x [0,1]. The bypass attachment is
a smoothly canceling pair of contact handle attachments in the middle dimen-
sions. The first is a contact n-handle attachment to > along the Legendrian sphere
A_ W Ay C T obtained by Legendrian sum. This step produces a new convex
hypersurface S. It turns out the pushoffs AT of A; become Legendrian isotopic
when viewed on I'g. Hence we can attach a contact (n + 1)-handle to S along the
Legendrian sphere that we denote by D U D*¢ and is obtained by gluing Dye
and D€ via the Legendrian isotopy.

2Since Morse-Smale vector fields are considered in [Gir00], there exists a different kind of bi-
furcation where a pair of periodic orbits appear or disappear. This phenomenon does not occur here
since we are dealing with Morse gradient vector fields.
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Remark 8.3.1. It is not necessary to assume that D are regular in the definition
of a bypass attachment. It is an outstanding, and of course hard, problem to even
find an irregular Lagrangian disk in any Weinstein domain. One consequence of
our work in this paper is that, as far as convex hypersurface theory and open book
decompositions are concerned, one can completely stay in the world of Morse
theory, e.g., avoid using any irregular Lagrangian disks, regardless of their very
existence, without losing any generality. Compare this with the work of Lazarev
[Laz20] which proves the existence h-principle for regular Lagrangians.

Let (X x [0, 1], £) be the contact manifold resulting from the bypass attachment.
Write 3, := ¥ x {t}, where 3 = ¥y. We have the usual decomposition ; \ I'; =
R UR!,i=0,1. Then by [HH, Theorem 5.1.3]:

. RL is obtained from Rg by removing a standard neighborhood of D “ and
attaching a Weinstein handle along A_ W A .

e R! isobtained from R® by removing a standard neighborhood of D™ and
attaching a Weinstein handle along A_ W A .

e I'y, viewed as the boundary of R—lw is obtained from I'y by a contact (+1)-
surgery along A “ and a contact (—1)-surgery along A_ WA . I', viewed
as the boundary of R!, is obtained from Iy by a contact (+1)-surgery
along A*€ and a contact (—1)-surgery along A_ W A, . These two presen-
tations of I'; are canonically identified by a handleslide.

8.3.2. Folded Weinstein description. We will now describe the Morse™ hypersur-
face ¥ as a folded Weinstein hypersurface.

Let W1 C R4 be the Weinstein subdomain obtained by digging out a standard
neighborhood of D “. Then D “ is the unstable manifold of an index n critical
point ¢4 with respect to the Liouville flow on R4 and R, can be viewed as the
concatenation W, U W3, where W73 is a Weinstein cobordism with a unique critical
point ¢. Similarly, let W4 C R_ be the Weinstein subdomain such that I2_ is the
concatenation of Wy and a Weinstein cobordism W3 with a unique index n critical
point g_, whose unstable manifold is D¢ with respect to the Liouville flow on R_.
Since AT® = dDI° are disjoint, we can shuffle the critical values of g+ to obtain
the following decomposition

Y = Wi Uk, WaoUg, W3 Ug, Wiy,

where Wo, W3 are Weinstein cobordisms (slight variants of W3, W3) associated
with the critical points g_, g4, respectively. See Figure 8.3.1.
In particular we have:

(FBP1) As contact manifolds, K7, oriented as 9W7 (and also as 0W5), is obtained
from I" by a contact (+1)-surgery along AL “; K3, oriented as 0W3 (and
also as 0W)), is obtained from I" by a contact (41)-surgery along A€ ; and
K, oriented as —0W> (and also as —9W3), is obtained from I by contact
(+1)-surgeries along AL “ and A€ .

(FBP2) Let (D ;)" and (D<) be the stable manifolds of g} and ¢_ in W3 and W5
with respect to the Liouville flows. Then (D) N Ky = A7°(K>) and
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(D) N Ky = A (K3), where we write A7°(K>) and A€ (K>) for the
core Legendrians of the contact (+1)-surgeries.

(FBP3) The &|p-transverse intersection point between A ; and A _ turns into a short
Reeb chord v C K from A7¢(K3) to A° (K>).

K3 DI_ K> K1
Dt
V[/'4 q+ q_ W1
Ws Wo

FIGURE 8.3.1. A Morse™t hypersurface viewed as a folded We-
instein hypersurface.

8.3.3. Bypass-bifurcation correspondence.

Proposition 8.3.2 (Bypass-bifurcation correspondence). Let (Xx[—§, d], ax) with
0 > 0 small be a standard neighborhood of a 2n-dimensional folded Weinstein
hypersurface
(8.3.1) Yo =Wy Uk, WoUg, W3 Uk, UWy,
where we are writing ¥y := X x {t} as before, such that:
(F1) Wy and W3 are Weinstein cobordisms assoczated wzth ind = n negative
and positive critical points q_ and q. Let D oand Dt 4,0 (resp. D_ o and
D o) be the stable (resp. unstable) manifolds of q_ and q+ in Wy and W3
with respect to the Liouville flows.
(F2) A = 8DT_,0 and A, := ODL’O are Legendrians which intersect at a
unique | i, -transversal point.
Then the contact manifold (X.x[—0, 0], ker aisy) is contactomorphic, relative bound-
ary, to the bypass attachment to X._s along a quadruple (Ay; D).
Under the conditions of Proposition 8.3.2,
(Fa) X, is convex for all £ # 0 by (8.2.1), (8.2.4), and (8.2.5);
(Fb) ¥ for t < 0 (resp. ¢ > 0) has a folded Weinstein structure which satis-
fies (8.3.1) and (F1) with stable and unstable manifolds D_ + Di’t, D_,,
D,y 4, and BDLt is a positive (resp. negative) Reeb pushoff of aDLO and
8D]Lht is a negative (resp. positive) Reeb pushoff of 8D1,0
Moreover, comparing with the notation from §8.3.2, 3 = »_j;, Df = Dy s,
D¢ = D__5 (D7) =D ;. (D))" = D _; and AT = ODF*. We then
take Ay and Dy so that AT¢ and DT¢ are pushoffs of Ay and Dy. We will use
both sets of notations interchangeably.
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Since the proof of Proposition 8.3.2 is somewhat complicated, we start by ex-
plaining the key ideas involved and also highlight the difference between the usual
3-dimensional strategy and the higher-dimensional approach.

First note that the bypass attachment is a local operation, i.e., the hypersurface is
only affected in a neighborhood of Dy U D_. Let B C X be a small neighborhood
of Dy U D_ which is diffeomorphic to a ball. The question is then reduced to
understanding the contact structure on B x I given by the bypass attachment, where
I =1[-4¢,4].

At this point, two “miracles” happen in dimension 3 (i.e., dim ¥ = 2) which
greatly simplify the 3-dimensional proof. The first is that one can take 0B to be
Legendrian using the Legendrian realization principle (see [Hon00, Theorem 3.7]).
This gives us good control over the contact structure near 0B x I. The second, and
more significant, miracle is Eliashberg’s theorem (see [Eli92, Theorem 2.1.3]) on
the uniqueness of tight contact structures on the 3-ball. Using these two facts, one
can prove Proposition 8.3.2 in dimension 3 by arguing that both the bifurcation and
the bypass attachment produce tight contact structures on the 3-ball B x I with the
same boundary conditions and hence must coincide.

Unfortunately, both of the above-mentioned miracles fail in dimension > 3: the
first one fails for dimensional reasons and the second one fails by results of [Eli91,
Ust99a]. Nevertheless, the proof of Proposition 8.3.2 follows the same general
outline as in dimension 3 by replacing the Legendrian boundary condition on 0B
by a transverse boundary condition and Eliashberg’s theorem by a direct proof that
both the bifurcation and the (trivial) bypass attachment produce the standard ball
in a Darboux chart.

Proof of Proposition 8.3.2. The proof follows the above outline and consists of
several steps.

STEP 1. Localizing the problem to B.

By (FBP1), the contact manifold K5 is obtained from I' by a contact (+1)-
surgeries along A “ and A€ ; we are also viewing K> as a submanifold of X; for

allt € I. Let A, := 8D:LO C Ky C X be the Legendrian spheres which &, -

transversely intersect at one point and let Dl,t C Xt be the Lagrangian disks in
W3 and W5 from (Fb) with boundary A, ,.

We now describe a small closed neighborhood B of Di,o U DLO in Yg. We take
BN K> to be a small contact handlebody neighborhood Cy = [—k, k], X A2, k > 0
small, of A/, UA’_, where A5 is the plumbing of two copies of disk bundles D*S"~!
with the canonical Liouville form and A/, are the 0-sections of the corresponding
D*S™Lin {0} x As. The restriction of B to a tubular neighborhood [—1, 1], x Ko
with the 1-form e™ X is [—1,1] x C,. Then B is obtained from [—1,1] x Cy
by attaching Weinstein handles along {—1} x A’ and {1} x A’_. The boundary
decomposes as 9B = Cy U Cj, U C3, where C (resp. C3) is the compact contact
manifold obtained from C5 by a contact (—1)-surgery along {—1} x A’ (resp.
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{1} x A’)) and C}, = [-1,1] x 0C5. We are viewing B C W U W3, C; C Kj,
and C5 C K3.

Note that the C;,¢ = 1,2, 3, are all contactomorphic since applying a contact
(—1)-surgery along {0} x A, to [—k, k] x T*A/, still yields [—r, k] x T*A/, . The
case for {0} x A’ is identical.

The characteristic foliation B¢ is inward-pointing along C7, outward-pointing
along C3, and tangent to C},. By slightly tilting C},, we may assume that B is
outward-pointing along C'3 U C}, and inward-pointing along C;. This results in a
fold-type tangency roughly along 0C'.

Moreover, for § > 0 sufficiently small, we can construct parallel copies B; C
Yy, t € I, of B = By such that the characteristic foliation is ¢-invariant near 9B;.
The copies B; are obtained from [—1,1] x Ag by attaching cores of the handles
along {—1} x A_ ; and {1} x A, ;, and § > 0 small ensures that we can attach
handles (i.e., the thickened cores) to {1} x C5 in a manner that varies smoothly
with ¢.

By using certain folding techniques similar to (and in fact simpler than) those in
Section 5, one can reverse the direction of the characteristic foliation on C; through
an isotopy of B in a suitably wiggled X such that ¥, is everywhere outward-
pointing along 0 B. This will be achieved in Step 3. The folding technique is called
the Creation Lemma which in dimension 3 is the converse of the usual Elimination
Lemma (see [GeiO8, §4.6.3]). This is described in Step 2.

STEP 2. The Creation Lemma.

In this step, we describe the effect of applying a C"-small perturbation called
a box-fold. This is the content of the Creation Lemma, which we do not state
formally.

We closely follow the discussion of Section 5, except that we replace ¢ by ¢
here, since we are already using ¢ to parametrize the hypersurfaces >;. Consider
Ri,s,i x V equipped with the contact form a = dz + e*(dt + \), where (V, \) is a
complete Weinstein manifold. Let F' := {z = 0} be the hypersurface on which we
will create singularities. Clearly F; = 05 where £ = ker a.

Fix 29, so,to > 0. Let II? C ]RZ o7 be a surface obtained from the flat Rif

i)

by growing a box with base (I := [0, so] x [0, o] and height zo; see Figure 8.3.2.
Of course, as in the construction of Z in §3.2, one needs to smooth the corners of
113 and “Morsify” the resulting characteristic foliation Hg. These operations are
suppressed from the notation. We say II® is obtained from ]Ri 7 by a 3-dimensional
box-fold. 7

Comparing Figure 8.3.2 with Figure 3.1.1, we note that the key difference is that
HZ’ admits only positive singularities: one source and one saddle. See Figure 8.3.3.
This is the content of the Creation Lemma in dimension 3.

In higher dimensions, we consider the hypersurface IT? x V¢, where V¢ C V
is the compact domain, i.e., V \ V¢ = [0,00), x V¢ is symplectomorphic to
a half-symplectization of 9V ¢. Following the strategy from Section 5, define the
general box-fold 11 to be the hypersurface which extends II? x V¢ by damping out
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FIGURE 8.3.2. The PL model of TI3.

e+
’————-5\*
- hy

FIGURE 8.3.3. The characteristic foliation before and after the
box folding.

the IT3-factor on R3 X [0, 71] x OV ¢ as 7 increases. Then Eq. (5.2.1) implies that I1¢
is Morse with a pair of canceling critical points for each one in V. In particular, let
D C II3 be a disk containing the source e, such that Hg’ is transverse to D. Then
II¢ is everywhere outward-pointing along 9(D x V¢). Note that instead of creating
a pair of canceling critical points as in dimension 3 (see [CE12, Proposition 12.21]
for the higher-dimensional version), our Creation Lemma produces many pairs of

canceling critical points at once, in fact as many as the number of critical points of
V.

STEP 3. Modification from B to B.

In Step 1 we constructed the family By C >, ¢t € I, such that > ¢ is inward-
pointing along C'. The goal of this step is to modify B; (and X ¢) to Et so that
Yt ¢ 1s outward-pointing along 8§t. Write C; = [—k, k|; X Ag, where k > 0 is
sufficiently small. Since X¢ points into B along C'y, we can choose tg, 59 > 0 so
that there exists an embedding

U(Cl) = Ito X [0,50} X Cl C M, Ito = [—to,to],

such that tg < 0, U(C1) N By = {(t,s0)} x C1, and {t} x [0, sp] x C; C Wh.
Write the contact form as a|y(c,) = dt + e*(df + X), where X is the standard
Liouville form on As. Here we are identifying the z-coordinate from the previous
step with t.
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We then apply the Creation Lemma with V' = As to install/uninstall a smoothed
box-fold along [0, 9] x C7, which we are assuming is contained in Wj. This is
the higher-dimensional analog of the procedure in Section 4.4 (see Figure 4.4.1).
More precisely, we modify the foliation of ¥ x I by leaves ¥; to obtain a C%-close
foliation by leaves still denoted by ¥; such that the following hold:

(i) Xy ¢ is unchanged fort € 91 and on Wo U W3 U Wy fort € 1.

(ii) The box-fold is installed along [0, so] x C; fort € [—9, —tp] and is unin-
stalled along [0, sg] x C1 for t € [to, d]. The characteristic foliation on 13
is t-invariant for ¢ € I,. (This is possible since the smoothed box-folds
can be taken to be graphical.)

(iii) Fort € I,, W; contains a subdomain symplectomorphic to D x Ag, where
D C R? s adisk containing e as in Step 2 and there exists an arc yn C 9D
such that p x Ay is identified with {so} x C; see Figure 8.3.4.

FIGURE 8.3.4. A schematic picture for isotoping B to B so it

encompasses e. The blue arc represents p and the red arc repre-
sents D \ p.

In order to achieve the transversal boundary condition on By, t € Iy, it remains
to isotop p through D to 9D\ 11 and use the fact from Step 2 that 3, ¢ is everywhere
transverse to O(D X As), to obtain the new B; C ¥; such that 2t ¢ 18 everywhere

outward-pointing along é@t. In particular 8§t, t € Iy,, are contact submanifolds
of M.

Remark 8.3.3. Similar ideas will be exploited in greater generality in Section 11.

Claim 8.3.4. X, ¢ is 1-Morse for all t € I and 1-Morse™ (hence ¥, is convex) for
t#£0.

Proof of Claim 8.3.4. By the folded Weinstein structure for 3J; and the fact that in-
stalling/uninstalling the box-fold induces a Weinstein homotopy on W1, it follows
that 3, ¢ is 1-Morse for all ¢ € I. As for the 1-Morse™ property, it suffices to
consider the stable manifold of the unique singular point in W3. There is a stable
flow line that comes from a negative singularity precisely when ¢ = 0 (this is the
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same as the situation before X; was perturbed). The convexity of ¥, ¢ # 0, then
follows from Proposition 2.3.3. ]

Hence we may restrict attention to the new X, ¢t € Iy,.
STEP 4. Triviality of the contact structure on Iy, x B Jorty > 0 small.
Let S := 9(Iy, x B) = E_to U Bto U (I, X dB). Suppose to > 0 is small.

Claim 8.3.5. After corner rounding, S is convex and Ry (S) are Weinstein homo-
topic to the standard ball with a unique critical point.?

Proof of Claim 8.3.5. For R (S) we describe the positive critical points and the
stable manifolds of these critical points; the situation for R_ () is similar.
The critical points of R (S) are as follows:

(1) sitting over e in Eto are one index O critical point g and two index (n—1)
critical points g4 correspondmg to A/, C Ay;and

(2) the critical points p4 on Bto N W3 and p_ on B_ to N Wa have index n,
where + indicates being on the “top sheet” Bto

We denote the analogous critical points of R_(.S) by g¢(, ¢, ;.
We denote the stable manifold of a critical point p by #),. For definiteness, we
assume that there exists ¢/ > 0 small such that
() Wy, Wy, intersect Cy C Ba. 14, along the pushoffs (A’ )2, (A )~

(i) #,_, W,y intersect Co C Earto along the pushoffs (A’ ), (A’Jr)_el.

By (i), #,, intersects K = 0W; along (A’+)25/ and therefore limits to A/, C
As over e ; moreover, there is a unique flow line from p; to g;. Next, %,
intersects C'3 along a Legendrian which is isotopic to a positive pushoff of A’ ,
continues inside Eaﬁto to a Legendrian isotopic to a positive pushoff of A’ on
K1, and limits to A’ C Aj over e,. Moreover, there is a unique flow line from
p— to g_. This implies that S¢ is Morse™t and convex, with Weinstein structures on
R (S) just described.

The index (n — 1) and index n critical points cancel in pairs and R4 (S) are
Weinstein homotopic to the standard ball with a unique critical point. (]

Remark 8.3.6. The reader might find it instructive to consider the n = 1 (i.e.,
dim M = 3) case, where we have three index 0 critical points “sitting over e ”.

Now consider the 1-parameter family of pairwise disjoint homotopy spheres S,

t € o, 3%], that are slight perturbations of O([—to 4 £, to] x B) and such that the

region G bounded by Sz, /o is t-invariant.

Claim 8.3.7. The homotopy spheres Sp; te [0, ] can be made simultaneously
convex dfter a small perturbation.

3For the moment we only know that .S is a homotopy sphere. Presumably S is a standard sphere,
although we will not need this.
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Proof of Claim 8.3.7. We use the argument of Claim 8.3.5, but this time there are
two moments ¢(, and to with ¢, < ¢o, where a bifurcation occurs as explained in the
next paragraph. There is still a unique flow line from p. to g for all t.

Next we describe the trajectories of #,_ for ¢ € [0, 22]. When ¢ = t{, all the
trajectories of %),_ reach C3 but one continues to the critical point of Eto N Ws;
when ¢ = to, a flow line of %,_ limits to the critical point of Eav N W3. We have:

(1) Fort < t), #;_ N K is Legendrian isotopic to a positive pushoff of A .

(2) Fort > t, #,_ N K is Legendrian isotopic to a negative pushoff of A’ .

(3) Fortf < t < to, #,_ N K is Legendrian isotopic to A/, & A’_.

(4) Fort = t),to, #',_ N K is Legendrian isotopic to A’, U A’_ intersecting
at a point and #),_ N K corresponds to A\ A/,..

Here K is understood to be on ¢t = ¢y. (3) is a consequence of corner-rounding
along C'3, which has the effect of introducing a slight negative Reeb flow along the
corner as we go from the bottom sheet to the top. (4) is the limiting configuration
of (1)—(3). In all the cases, there is a unique flow line from p_ to ¢_, although there
may be trajectories from p_ to ¢4 for ¢, < t < to.

The claim then follows from the usual Elimination Lemma (see [CE12, Propo-
sition 12.22]) and a trick from [Hual3, Lemma 3.3]: By a C"-small perturbation
one can simultaneously eliminate the pairs (p4,q4) and (p—,g—) on Sy for all
t e o, 3%] (since the trajectories from py to ¢, and p_ to ¢_ vary continuously
with respect to ¢), which in turn implies that all the Sy are convex. U

Finally we observe that the bypass attachment to 3 along (A ; D+ ) restricts to
the trivial bypass attachment to .S in the sense of [HH, Definition 6.1.1]. It follows
from [HH, Proposition 8.3.2] that the contact structure on ([, X B) \ G given by
a trivial bypass attachment is standard. By Claim 8.3.7, £ on (I, X B)\ G is
standard, hence is equivalent to a bypass attachment. This finishes the proof of the
proposition. U

8.4. Bypass attachment in terms of partial open book decompositions. The
goal of this subsection is to summarize the main constructions and results from
[HH, Section 8]. The reader is referred to the original paper for details.

8.4.1. Fartial open book decompositions.

Definition 8.4.1. Given a Weinstein domain S, a cornered Weinstein subdomain
W C S is a (possibly empty) codimension 0 submanifold with corners which sat-
isfies the following properties:

(CW1) There exists a decomposition OW = Oy W U QoW such that
(1) OnW and O W are compact manifolds with smooth boundary that
intersect along their boundaries;
(2) O(OnW) = 0(Oout W) is the codimension 1 corner of OW ; and
(3) OoutW = W N IS and is a proper subset of each component of 0S.
(CW2) The Liouville vector field Xy on S is inward-pointing along 0, W and
outward-pointing near OoytW.
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(CW3) S\ W is a Weinstein domain after smoothing.

A particularly useful class of cornered Weinstein subdomains consists of regular
neighborhoods of Lagrangian cocore disks in S.

Definition 8.4.2. A Weinstein partial open book decomposition (POBD) is a pair
([0,1] x S, ¢ : W1 = W), where:
(1) [0,1]; x S is a generalized contact handlebody (with Sy := {t} x S Wein-
stein);
(2) Wy C Sg and W1 C Sy are cornered Weinstein subdomains, and
(3) ¢ is a partial monodromy map which preserves the Liouville forms and
restricts to the identity map Oyut W1 — Ogus Wo.

By taking the quotient of [0, 1] x S by the map ¢ and filling in D? x S as in the
closed case (note that this yields a concave sutured contact manifold and we need
to round the concave sutures; see [CGHHI11, Section 4.2] for details) we obtain a
compact contact manifold with Weinstein convex boundary.

8.4.2. Bypass attachment in terms of POBDs. We follow the recipe from [HH,
Section 8.3] to interpret a bypass attachment in terms of POBDs.

Lemma 8.4.3 ((HH], Proposition 8.3.1). Let (M, &,T") be a compact contact man-
ifold with Weinstein convex boundary associated to the Weinstein POBD ([0, 1] x
S.¢: Wy — Wy). If (M?,&,T°) is the contact manifold obtained by attach-
ing a bypass to M along OM with data (Ay; D), where Dy C Ry are regular
in the sense of [EGL18], then (M°, &, I") is associated to the Weinstein POBD
([0,1]; x S°,¢* : W} — W) satisfying:

(PO1) S’ is obtained from S by attaching a Weinstein handle along A_ & Ay,
this is done independently of t;

(PO2) W} = W U N¢jo(DL€) C S°, where € > 0 is small and Nejo(DL€) is
a cornered Weinstein subdomain which is a standard € /2-neighborhood of
the Lagrangian disk D7 ¢;

(PO3) ¢ : W} — W} is determined by specifying the Lagrangian disk qu(Df) C
Sg.' Start with the Lagrangian disk D¢ C Sg \ Wg with Legendrian bound-
ary A C 858. We can slide A€ in the negative Reeb direction across the
Weinstein handle along A_ & A so it precisely matches AT = 0D.".
The sliding is induced by a Weinstein isotopy Ts : Sg = Sg, s € [0,1],
with 7o = id. Then we set ¢’ (D) = 71(D<).

Note that Lemma 8.4.3 is a direct consequence of the interpretation of a by-
pass attachment as a smoothly canceling pair of contact handle attachments. If
dim M = 2n + 1, then the handles have indices n and n + 1.

8.4.3. Contact Morse functions and vector fields. It is helpful, although not tech-
nically necessary in this paper, to interpret the contact handle attachments in terms
of contact Morse functions. This is the contact-topological analog of the corre-
spondence between handle decompositions and Morse function presentations of a
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given smooth manifold. See Sackel [Sac] for a more thorough discussion of contact
Morse functions and a careful construction of contact handles. Sackel also works
out the dictionary between contact Morse functions and open book decompositions
and our proofs of Corollaries 1.3.1 and 1.3.2 follow the same line of reasoning.

Recall that a vector field v on (M, &) is a contact Morse vector field if v is
gradient-like for some Morse function f : M — R and the flow of v preserves &,
ie., %, = ga where £ = ker a and g € C°°(M). The Morse function f is called
a contact Morse function. The zeros of v are precisely the critical points of f and
hence it makes sense to refer to the (Morse) indices of the zeros of v.

If (X x [0,1],£) is the contact manifold corresponding to a bypass attachment
as above, then there exists a contact Morse vector field v on 3 x [0, 1] satisfying
the following properties:

(BM1) v is inward-pointing along >y and outward-pointing along ;.

(BM2) v has exactly two zeros — p of index n and ¢ of index n + 1 — which are
connected by a unique flow line of v.

(BM3) Forany x € X x0, 1], the flow line of v passing through x either converges
to a zero of v or leaves ¥ x [0, 1] in both forward and backward time.

(BM4) The unstable manifold of p intersects >g along the Legendrian A_ WA C
Iy, and the stable manifold of ¢ intersects 31 along the Legendrian A_“ C
I'y, viewed as the boundary of R.

Note, however, that in general >, >3; are not regular level sets of f since contact
vector fields are not stable under rescaling by positive functions.

9. CY-APPROXIMATION BY CONVEX HYPERSURFACES

In this section we complete the proofs of Theorems 7.4.2 and 1.2.5. The main
technical ingredient is the higher-dimensional plug constructed in Section 7. In fact
our proofs are basically the same as those for the 3-dimensional case discussed in
Section 4.

Proof of Theorem 7.4.2. The proof is by induction on the dimension of M.

Fix a Riemannian metric on M. Given a closed hypersurface ¥ C (M, §), we
may assume that the singularities of X are isolated and Morse after a C'°°-small
perturbation. By Theorem 4.2.3 a finite barricade By = {B; = [0, ;] X Yi}ier
exists for X¢, where each Y; is a standard (2n — 1)-dimensional Darboux ball.

Choose ¢’ > 0 much smaller than the sizes of the Y;. We then replace each
B; with a Yj-shaped plug with parameter ¢’ constructed in Section 7; note that
the construction of the Y;-shaped plug uses the inductive step of Theorem 7.4.2 for
dim(M)—2. Let XV be the resulting hypersurface. A trajectory that passes near Y;
is either trapped by Y; or has holonomy at most ¢’. Since € is small, the trajectory
that continues is close to the original trajectory on Y¢ and will be trapped by some
other Y; by the positioning of the barricade. Hence Zg satisfies Conditions (M1)-
(M3) of Proposition 2.2.6. A further C'°°-small perturbation of ¥V will make it
convex by Proposition 2.3.3.
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The e-Morse™ property is guaranteed if all the B;,i € I, have diameters < §
and all the trajectories of ¥¢ \ (U;c7B;) have lengths < £.

Finally, the second statement (for X already Weinstein convex) follows from
observing that all singularities of all the Y;-shaped plugs can be “turned on simul-
taneously”’; see Remark 3.2.2 which also holds for higher dimensions. U

Proof of Theorem 1.2.5. Let (¥ x [0, 1],£) be a contact manifold such that the hy-
persurfaces ¥;, ¢ = 0, 1, are Weinstein convex. The proof from §4.5 carries over
almost verbatim with “surface” replaced by “hypersurface”. We use Lemma 4.2.4
to construct refinements of barricades so that we can install/uninstall two sets of
barricades.

Suppose for simplicity that the barricade consists of one flow box B = [0, sg] x
D?"~1, Even though the folded hypersurface XV can be made convex, the inter-
mediate hypersurfaces appearing in the procedure of installing and uninstalling a
D?"~1_shaped plug need not be Morse. To remedy this defect, we take a cover
D=1 = Ui<i<x U; by a finite number of balls of small diameter % for which
there exists a partition

P A1, K}~ {1,....2n}

such that U; NU; = @ if Z(i) = Z(j). Now we choose 2n pairwise distinct
values in (0, so) and position U; along [0, s¢] such that all the U; with the same &-
value have the same s-value. When we install/uninstall all the U;-shaped plugs, the
interior discrepancy for B goes to zero as N — oo by the analog of Lemma 4.4.1
and the fact that the e that appears in Theorem 7.5.1 is one order of magnitude
smaller than the sizes of U;.

Finally, proceeding as in §4.5, we can foliate ¥ x [0, 1] by hypersurfaces of
the form 3;, which we may assume are 1-Morse by the smallness of the interior
discrepancy and Step 1 of §4.5. The only obstruction to convexity occurs when
(X¢)¢ fails to be Morse™, which occurs at isolated moments by the description of
a standard neighborhood of a non-Morse™ folded Weinstein hypersurface in §8.2.
The theorem then follows from Proposition 8.3.2. (]

10. THE EXISTENCE OF (PARTIAL) OPEN BOOK DECOMPOSITIONS

The goal of this section is to prove Corollary 1.3.1, a stronger/more precise
version of Corollary 1.3.2, and Corollary 1.3.3. The proofs are, again, essentially
the same as the proofs in the 3-dimensional case; see [Gir(02] for the absolute case
and [HKMO9] for the relative case.

Proof of Corollary 1.3.1. Let (M,£) be a closed connected contact manifold of
dimension 2n 4 1. Choose a generic self-indexing Morse function f : M —
R. Then the regular level set ¥ = f~!(n + %) is a smooth hypersurface which
divides M into two connected components M \ ¥ = Yy U Y;. It follows that
Y;,i = 0,1, deformation retracts (along =V f) to the skeleton Sk(Y;), which is a
finite n-dimensional CW-complex.

Writing Y for either of Y or Y7, we now construct NV (Sk(Y')) as a compact
contact handlebody. There exists a neighborhood of the O-cells of Y that can be
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written as a contact handlebody Hy = [—1,1] x Wy, where W, is Weinstein.
Arguing by induction, assume that a neighborhood of the k-skeleton of Sk(Y") can
be realized as a contact handlebody Hy, = [—1, 1] x W}, where W}, is Weinstein

and 'y, = {0} x OW} is the dividing set of 0H. We explain how to attach the
(k 4 1)-handles to 0Hj, where k + 1 < n, in a contact manner. Write K for
the core disk of a (k + 1)-handle. Then dim 9K = k and by dimension reasons
0K C OHy, after possible perturbation, can be isotoped into I';, using the Liouville
flow on Wy. Let v (resp. w) be a nonvanishing (7'M -valued) vector field along I'g,
that is tangent to &, transverse to 0 Hj, (resp. transverse to I';, and tangent to 0 Hy,),
and is symplectically orthogonal to £|r, .

Next we would like to isotop JK to an isotropic submanifold 0K’ in T’y (it
may be Legendrian if £ + 1 = n) and then isotop K to an isotropic submanifold
K' C Y \ int Hy, with boundary OK’, using Gromov’s h-principle [Gro86, p. 339]
for isotropic submanifolds in a contact manifold. To this end we show that:

Claim 10.0.1. There is a formal homotopy ¢ : TK — TM, t € [0, 1], such that:

(1) ¢q is the derivative of the inclusion map;

(2) ¢y is an injective bundle map for all t € [0, 1];

(3) the fibers of ¢1(TK) are &-isotropic;

(4) the fibers of ¢p(T'K) for all t € [0, 1] along OK have the form R(v) times
a plane of TTy,; and

(5) whent = 1, the planes in (4) are §' := £ N TT g-isotropic.

Proof of Claim 10.0.1. We will explain the Legendrian (i.e., k+1 = n) case, which
is the hardest case. Since K is a disk, it is clearly formally Legendrian inside its
disk neighborhood N (K). The key point is to make 0 K formally isotropic as well.

Let 7 be a trivialization of |y (k. Projecting out the Reeb direction and using
the trivialization 7, the embedding K — N (K) can be converted into the map
¢ : K — G(n,2n), where G(n,2n) is the Grassmannian of n-planes in R?",
Since K is a disk, ¢% is homotopic to ¢b1/2 : K — %, where £, C G(n,2n)

is the Lagrangian Grassmannian. Next, we would like to further homotop qbbl /2 10

¢, : K — %, such that v(x) € ¢} (z) for all z € K. At this point we note that
over 0K the trivial complex bundle £ satisfies

§~Rv,w) & ¢

and that the classification of complex vector bundles over 0K ~ S"~! is given by
Tn—oU =~ 0 or Z. In the former case, &’ is a trivial complex vector bundle; in the
latter case, £’ is classified by its (n — 1) /2nd Chern class, but then C & ¢’ is trivial,
so the Chern class must vanish and & must be trivial. Hence we can view the
desired map d)? as restricting to 0K — .%,_1 C %, corresponding to a standard
inclusion R?"~2 — R?",
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We now claim that 7,_1.%, 1 — mp_1-%, is surjective. Using the fact that
%, =U(n)/O(n), we have:

Tn1UMm) —— m1ly —— mp—20(n) —— m—2U(n)

K o [ K
Tn1UMn—1) —— 1181 —— m—20(n—1) —— m,2U(n—1)

Using the homotopy exact sequences for U(n)/U(n—1) = S**~tand O(n)/O(n—
1) = S"~1, it follows that a, c are surjective and d is injective. The claim then fol-
lows from the five lemma.

The claim then allows us to homotop ¢b1 /2 O qb*i such that, when we view qﬁ,
t € [0, 1], as family of maps ¢, : TK — TM, t € [0, 1], Conditions (1)—(3) and
(5) hold and (4) holds for ¢ = 0, 1. It remains to modify ¢; so that (4) holds for all
t € [0, 1]: Observe that Z := U;(o11¢:(T K |ox ) has dimension 2n. Since ¢, may
be taken to be generic, Z th R({w) and projecting to R(v) & TT, along R(w) is an
isomorphism for each ¢4 (T, K), t € [0, 1], z € K. Hence (4) is also satisfied and
Claim 10.0.1 follows. U

Hence a neighborhood of the (k + 1)-skeleton of Sk(Y") can be realized as a
contact handlebody Hy1 = [—1,1] x Wy and N(Sk(Yp)) U N(Sk(Y7)) can
be realized as compact contact handlebodies with sutured convex boundary and its
complement in M has sutured concave boundary.

Now identify M \ (N(Sk(Yp)) U N(Sk(Y7))) with ¥ x [0, 1] such that if we
write 3; = X x {t}, then ¥; = ON(Sk(Y;)),7 = 0, 1, are convex with dividing
sets corresponding to the sutures. By Theorem 1.2.5, £ \Zx[o,l} is given by a finite
sequence of bypass attachments, which can be further turned into a sequence of
modifications of the trivial Weinstein POBD of

N(Sk(Yp)) = [-1,1] x Won,

according to Lemma 8.4.3 (here Wy ,, is W,, for Yp). In this way we obtain a
1-Weinstein POBD of M \ N(Sk(Y7)), viewed as a contact manifold with su-
tured concave boundary. It remains to fill in NV(Sk(Y7)) in the obvious manner
to get a compatible 1-Weinstein OBD. (Alternatively, we can attach all the con-
tact n-handles of the bypass attachments to N (Sk(Y()), which gives a generalized
contact handlebody, and all the contact (n + 1)-handles of the bypass attachments
to N (Sk(Y1)), which also gives a generalized contact handlebody. Hence we can
view the OBD as consisting of two halves and each half is a generalized contact
handlebody foliated by 1-Weinstein domains.) ([

Next we turn to the relative case, i.e., to contact manifolds with boundary. The
following theorem is a more precise version of Corollary 1.3.2 (note the boundary
condition of Corollary 1.3.2 was vaguely stated).

Theorem 10.0.2. If (M,&) is a compact contact manifold with sutured concave
boundary and R1(0M) are Weinstein, then there exists a compatible 1-Weinstein
POBD where each of R4 (0M ) and R_(OM ) extends to a page.
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Proof. Choose a generic self-indexing Morse function f : M — [%, o0) such that
f= % on OM. In other words, f has no index O critical points. As in the absolute
case, consider the hypersurface ¥ := f~!(n + %) which divides M into two com-
ponents Y;, ¢ = 0,1, such that Y contains all the critical points of index at most
n and Y7 contains all the critical points of index at least n + 1. By the handle at-
tachment discussion in the proof of Corollary 1.3.1, we can turn the critical points
in Yj into isotropic handles attached to M along the suture which we still denote
by N(Sk(Yp)) although it is no longer a contact handlebody, and the critical points
in Y7 into the handle decomposition of a contact handlebody N (Sk(Y;)) with su-
tured convex boundary, as in the closed case. The rest of the proof proceeds as in
the closed case. O

Proof of Corollary 1.3.3. We modify the proof of Corollary 1.3.1 as follows: In
the decomposition of M into contact handlebodies Y; and Y7, we first take a stan-
dard contact neighborhood N (A) of the Legendrian A and a corresponding contact
Morse function f on N(A) that is constant on 9N (A). We then extend f arbitrar-
ily to a Morse function which is self-indexing on M \ N(A), realize the k-handles
with k£ < n as contact handles, and attach them to N (A) to obtain Y{y. The rest of
the proof is the same as that of Corollary 1.3.1. ]

11. APPLICATIONS TO CONTACT SUBMANIFOLDS

In this section, we apply the techniques developed so far to prove Corollaries
1.3.6,1.3.7, and 1.3.9.

Recall that Ibort, Martinez-Torres, and Presas [IMTPO0O] constructed contact
submanifolds Y of (M, &) as the zero loci of “approximately holomorphic™ sec-
tions of a complex line or vector bundle over M. Our strategy for constructing
contact submanifolds is rather different and relies on the following key observa-
tion: if ¥ C M is a hypersurface which contains a codimension 2 submanifold Y
such that the characteristic foliation X is transverse to Y, then Y C (M, §) is a
contact submanifold.*

11.1. Models for pushing across mushrooms. We first explain the idea of the
proofs of Corollaries 1.3.6 and 1.3.7 in the n = 1 case. We apply the operation
of “pushing across a mushroom”, as given in Figure 11.1.1. (Also refer to Fig-
ure 3.2.1.) There are three variants of this operation: The initial step is given by
Figure 11.1.1(a), where the curve Y (in purple) is pushed across the shaded region
(in light blue). The result is a curve Y’ which intersects the characteristic foliation
Z¢ of the mushroom Z with opposite sign on the blue interval between the dots.
(The purple portion represents where Y intersects Z with the sign that we want
to reverse and the blue portion represents where Y intersects Z¢ with the desired
sign.) Now assuming that there is another mushroom placed just to the right of
the first one (i.e., with smaller t-coordinate) but with larger s-coordinate, we can
push Y’ across that mushroom (or more precisely the shaded region given in Fig-
ure 11.1.1(b)) to obtain Y with a “larger” blue portion. Finally, after several steps

“4We can view this as the contact analog of symplectic reduction.
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of type (b), we complete the “sign reversal” by pushing across the shaded region
given by Figure 11.1.1(c).

(a) Y (b) (©)

FIGURE 11.1.1. Pushing across mushrooms.

We now discuss the general case. We start with the ambient contact manifold
(M =RS_, x W,&=ker(dz + e*(dt + \)))

as before, where (W, \) is a Weinstein manifold and the hypersurface before per-
turbation is ¥ = {z = 0}. Let H = [0,to] x W (refer to Eq. (5.1.1)) be a
contact handlebody, Z a mushroom with contact handlebody profile H, and Hj,
the subset of R; x W given by (5.5.2) and satisfying Proposition 5.5.2. By Defini-
tion 5.5.1, Z and ¥ agree outside of a small neighborhood N ([0, s} x [0, to] x W)
of [0, s0] x [0, 0] x W£ whose size depends on the smoothing parameters.

By taking an isotopy I from Z to 3., which is supported outside of
b \ N([O, So] X [O,to] X W‘I?o)

and assumed to satisfy (11)—(13) below, and carrying the germ of the contact struc-
ture with it, we will assume in this section that Z = {z = 0} = Ry x Ry x W. The
isotoped contact structure will still be called €.

Let p = pw : W\ Sk(W) — R be the function such that p(0W*¢) = 0 and
dp(Xy) = l,and let 7 = 7y : W — R, where 7 = e” on W \ Sk(WW) and
7 = 0 on Sk(W). The function 7 is a variant of 7 which appears in Section 5.4.
Consider the map

(11.1.1) D=0y :Z =Ry xRy x W — Rsg x R?,
(s, t,z) — (T(x), s,t).

In view of Eq. (5.2.1) and Eq. (5.4.1), we may choose the isotopy Z from Z to X
so that Z¢ = Zé“ + ZB, where:

(€89) Z?(s,t,a:) is the component in the Rg’t—direction and depends only on
(7(x),5,1);

(12) Zg‘(s,t,az) = Zg’(s,t) for 7(z) < 1/2, where Zg’ is the characteristic
foliation of the 3-dimensional mushroom; and

(13) Z¥(s,t,2) has the form f(7(x), s,t) Xx(2)+g(s, t, 2) R, away from R? x
Sk(W), where R, is the Reeb vector field of A|gyy-e.
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Claim 11.1.1. Away from R? x Sk(W), ®.(Z) is a well-defined (i.e., single-
valued) vector field on R~ x R2.

Proof. This follows immediately from (I1)—(13). ([l

Given a codimension 0 submanifold S of {z = s = 0}, let U(S) C X be the set
of points p for which there is a forward smooth flow line of Z¢ from some g € S to
p and let U(S) be its closure. We orient S using the normal orientation 95 which
agrees with Z.

Remark 11.1.2. For our submanifolds S of interest, Claim 11.1.1 reduces the prob-
lem of determining U (.5), pushing .S across U (S) to S/, and determining the set of
points where S’ is positively/negative transverse to Z¢, to a 3-dimensional one on
R>g x R2.

Recall that the zeros of Z, are e” ,e%, h”  /h%, where e_, e, h_, h, are zeros

of the 3-dimensional mushroom Z3 and A(z) = 0. They are all contained in
7' = 73 x W¢; see §5.3 and Figure 3.2.1.

Lemma 11.1.3. U(Hy,) is a compact manifold diffeomorphic to Hy, x [0, 1], after
smoothing Z¢ on a sufficiently small neighborhood of E_ := {e_} x Sk(W). Here
Hin = Hin X {0}

The smoothing is generally necessary even in the n = 1 case, as the shaded
region of Figure 11.1.1(a) will usually have a corner at e_. Note that F/_ is the
closure of the union of all the unstable trajectories of e as we range over all the =
satisfying A(z) = 0.

Proof. This is immediate from Proposition 5.5.2. ([

To prepare for the next lemma let us identify ®(U (Hjy,)) with V' x [0, 1], where
V = ®(Hi, x {0}) is a half-disk {z € C | |2] < 1,Imz > 0}. Let V? be the
slight enlargement {z € C | [z] < 1+ 0,Imz > 0} of V with 6 > 0. Then the
back face V' x {1} and the bottom face (V0 x [0,1]) N {# = 0} are as shown in
Figure 11.1.2.

The following lemma explains how to modify three types of S. Figures 11.1.2(a),
(b), (c¢) correspond to (a), (b), (c) in the lemma.

Lemma 11.1.4.

(a) If S is a slight enlargement of Hiy, such that S \ Hiy, is a collar neighbor-
hood of S, then there is a submanifold S’ obtained by isotoping S across
U(Hiyn) rel 9S in Z such that S" decomposes into S', U S”_ and:

(i) Zg is positively (resp. negatively) transverse to S along int(S", ) (resp.
int(S”)).
(it) S, is a pushoff of (OHi,) x [0,1] and S”_ is a pushoff of Hi, x {1},
using an outward-pointing vector field to Hi, % [0, 1] after rounding
the corner along O0Hi, x {1}.
(iii) Along the folding locus S’ N S’ Z¢ points into S',.
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SN ATV

(@) (b) (©)

FIGURE 11.1.2. The image V x [0,1] = ®(U(Hj,)) of the sink
U (Hsy,), after smoothing. Shown are the back face V° x {1} and
the bottom face (V° x [0,1]) N {# = 0}. The black dots rep-
resent the images of h., e_, hy times Sk(W). The purple and
blue arcs are the intersections of ®(S”) with the back and bot-
tom faces and are subsets of ®(S’,) and ®(S”.), respectively. Fig-
ure 11.1.2(a), (b), (c) represent the higher-dimensional analogs of
Figure 11.1.1(a), (b), (c).

(b) Let W_ (resp. W) be a possibly empty Weinstein subdomain of W€ x {to}
(resp. W€ x {0}). If S is obtained from Hiy, by perturbing OHiy, to 0S so
that S th OHiy, and either (o) S\ Hiy is a submanifold parallel to er or
(8) SNOH;, = W', then there is a submanifold S’ obtained by isotoping
S across U(S N Hin) rel 35 in Z such that S" decomposes into S', U S
and:

(i) Zg is positively (resp. negatively) transverse to S" along int(S', ) (resp.
int(S”)).

(ii) Let O_U be the closure of the subset of OU (S N Hyy,) for which there
is a smooth flow line from some y € S N OH;, and let O, U be the
closure of OU (S N Hiy) \ O_U. Then S, (resp. S’ ) is a pushoff of
0.U (resp. 0_U).

(iii) Along the folding locus S’ N S’ Z¢ points into S',..

(c) If S is a slight retraction of Hi, such that Hi, \ S is a collar neighbor-
hood of Hyy,, then there is a submanifold S’ obtained by isotoping S across
U(S) rel 9S in Z such that Zg is negatively transverse to S'. Here S*!
is a slight retraction of S.

The smoothing of Z¢ can be done inside a sufficiently small neighborhood
N(E_) of E_, and hence the resulting S’ can be made to avoid N(E_). Also
note that in Figure 11.1.1 ', (resp. S’ ) corresponds to the purple (resp. blue)
portion of Y.

Remark 11.1.5. The directions of the folding locus given by (a)(iii) and (b)(iii) are
essential when iterating the moves given by (a)—(c).

Proof. (a) The submanifold S’ is constructed using the map P as follows: Let.# be
the union of the side .74 = 9®(S) x [0, 1+¢€'] and the back .7_ = ®(S) x {1+¢'}
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of I(®(S) x[0,1+¢']), with € > 0 small. Then S’ is the preimage of the set ®(.5”)
obtained by rounding the corner and perturbing . so that:

e O(S")N{7 € [0, €]} with € > 0 small agrees with Y/ x {7 € [0, €]}, where
Y’ is as given in Figure 11.1.1(a).

e $(S’) is a perturbation of ., , is positively transverse to @, (Z¢), and in-
tersects the back and bottom faces in the purple arcs given in Figure 11.1.2(a).

e O(S’)is a perturbation of . and is negatively transverse to ®,.(Z).

(1)—(iii) are immediate from the construction.

(c) is similar to (a). In this case . is the union of the side 9P (S) x [0,1 + €]
and the back ®(S) x {1 + €'} of J(®(S) x [0,1 + €]), with ¢ > 0 small, and
O (5") satisfies:

e O(S')N{7 € [0, €]} with € > 0 small agrees with Y/ x {7 € [0, €]}, where
Y’ is as given in Figure 11.1.1(c).

e O(5') is negatively transverse to P, (Z¢) and intersects the back and bot-
tom faces in the purple arcs given in Figure 11.1.2(c).

(b) is similar to (a) and (c) in the case where (/3) holds and W/ C W¢€is a
retraction of W¢ along the Liouville flow. In this case . is again the union of the
side 9P(S) x [0,1 + €] and the back ®(S) x {1 + €'} of I(P(S) x [0,1 + €]),
with ¢ > 0 small. . decomposes into .#; and .¥_ along the seam consisting of
the blue dot on the back face of Figure 11.1.2(b) times [0, 1 4 €], followed by the
extension along OP(S) x {1 + €'} to the point with 7 = 0 and ¢ < 0 (which is
analogous to the blue dot on Y in Figure 11.1.1(b)). (i)—(iii) are immediate from
the construction.

For () in general, i.e., when W’ C W€ is an arbitrary Weinstein subdomain,
we first write .S as the union of S; of type (c) and S» a subset of

{s =0} x {t e[ x W,

such that S7 U S5 has smooth boundary and €’ > 0 is small. (In particular, So has
a rounded corner at {—€”} x W' and a cusp corner at {¢’} x OW’.) We then
apply (c) to push S across S. Next, let pyr : W\ Sk(W’) — R be the function

such that pys (OW') = 0 and dpy (X)) = 1, and 7y : W, — Ry satisfy
Ty = """ on W’ \ Sk(W’) and Ty = 0on Sk(W”), and

Py R x [—€", €] x W = Rxg x R x [—€", €],
(s,t,x) = (Twr , 5, 1),

as in Eq. (11.1.1). We then push S5 — viewed as a subset of S from the previ-
ous paragraph — across using @y . The seam with respect to the vector field

(@yyr )s(Zelmx[—er,emxw ) is analogous to that of the previous paragraph, where
the blue dot on the back face of Figure 11.1.2(b) times [0, 1 + €'| can be viewed as
the rounded corner near ®yy7 ({(0, —€¢”)} x OW’) x [0,1 + €'].

The proof of () follows the same general reasoning and is omitted. ([
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11.2. Existence h-principles. We use the models from §11.1 (and specifically
Lemma 11.1.4(a), (b), (c)) to prove Corollaries 1.3.6 and 1.3.7 as well as the exis-
tence h-principle for contact structures in this subsection.

Let Y be a closed codimension 2 submanifold of (M, ¢). For the moment as-
sume that Y C (M, ¢) has a trivial normal bundle. Any even-codimensional sub-
manifold with trivial normal bundle is almost contact by [BCS14, Lemma 2.17].

Proof of Corollary 1.3.7 assuming trivial normal bundle. LetY C (M, &) be acon-
tact submanifold. By the trivial normal bundle condition there exists a hypersurface
Y=Y x[-1,1]; C M such that Y = Y and ¥¢ = 0,, where Y, :=Y x {s}.

By Corollary 1.3.1, Y admits a strongly Weinstein OBD (B, ) and an adapted
contact form «. Referring to Appendix B, by Lemma B.2.1, Lemma B.3.1 and
Proposition B.0.1, for § > 0 small there exists a strongly Weinstein and damped
OBD (B’, ') of (M, '), where o/ is C'-close to o with o’ strongly adapted and
damped and A(B’, 7/, a/) < 4.

Fix a large integer N > 0. For § > 0 small, we can cover Y by a finite num-
ber Hy,...,Hy of contact handlebodies over the Weinstein pages (arranged in
order of increasing 6) of total thickness at most §. We then install mushrooms with
profiles Hy, ..., Hy, arranged as in §7.3 and Figure 7.3.1, on a small neighbor-
hood of ¥ x {%} The mushroom corresponding to H will be of type (a) from
Lemma 11.1.4, those corresponding to Hy_1, ..., Hs will be of type (b), and the
last one corresponding to H; will be of type (c). Pushing Y across the mushrooms
and applying Lemma 11.1.4 in order yields a contact submanifold with orientation
reversed. (]

Proof of Corollary 1.3.6 assuming trivial normal bundle. As before, by the trivial
normal bundle condition there exists a hypersurface ¥ =Y x [—1,1]s C (M, &)
such that Y =Y x {0}, but now ¥ is not necessarily transverse to Y.

By Proposition A.3.2, we can assume that Y is Y¢-folded with folding locus
C C Y. We then have the decomposition Y = Y, Uc Y_ such that ¥ is positively
transverse to int(Y ) and negatively transverse to int(Y_). Using Theorem 1.2.3,
we perturb C into a convex hypersurface. We then decompose C' = Cy L C_,
where C (resp. C'_) is the set of points where ¥¢ points out of (resp. into) Y_.

Next we perturb Y on a neighborhood of C' and relative to C' and convert C
from a fold to a cusp, keeping the same notation C, Y, , Y_. For more details see
Appendix A. Note that Y_ is the “lower sheet” near the cusp C and the “upper
sheet” near the cusp C_.

Since we can deal with the connected components of Y_ one at a time, assume
Y_ is connected.

(i) Suppose for the moment that 0Y_ = Cy or 0Y_ = C_. Assuming 0Y_ =
C (the case 9Y_ = C_ is similar), there exist a collar neighborhood N (Y_) =
Y_ X [—€,0]s of Y- = Y_ x {0} and a piecewise smooth approximation Y* of Y’
such that:

[} E§|N€(Y,) = 88;
o Y*NN(Y_) = (Y- x{-5})U(Cy x[-5,0]) U(N(Cy) x {0}), where
N(C4+) C Y_ is a collar neighborhood of the boundary; and
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o Y\ N.(Y_) is positively transverse to Xe.
Informally, Y* is sutured with respect to 3¢, where the suture is C'y x [—-§,0].
We now apply the proof of Corollary 1.3.7 above, with POBDs in place of

OBDs. By Theorem 10.0.2 Y* admits a compatible POBD. In particular we have
the following data:

(1) a contact 1-form « on Y*, the binding B, and Weinstein pages Sy, 6 €

[0, 27];
(2) an identification ~ of Weinstein cobordisms S}, C Sy and S}, C Sa, such
that 0.5 D 0S5y and 0S5, D 0S2,; and

(3) an identification of Y \ B with Uge(o 2758/ ~-
Applying the relative version of Proposition B.0.1, for § > 0 small there exists
a strongly Weinstein POBD of Y*, where the new contact form o’ is C'-close
to the old one, o’ is strongly adapted and damped, and sup, gy A7) < 6
(defined as in Definition B.1.1). We can cover Y by a finite number Hy, ..., Hy
of contact handlebodies over the new Weinstein pages S} (arranged in order of
increasing 0) of total thickness at most ¢; here H; is a contact handlebody over
S, and Hy is a contact handlebody over S . We then install mushrooms with
profiles Hy, ..., Hy as before. The mushrooms corresponding to Hy, ..., Ha
will be of type (b) from Lemma 11.1.4 and the last one corresponding to H; will
be of type (c). We then push Y* across the mushrooms and replace Y* N N(Y_)
by a hypersurface which is positively transverse to Eg and has the same boundary.

(i1) Next suppose that 9Y_ has components in Cy and C_. In this case we

perturb Y to create extra folds (or equivalently cusps) near C_ as in Figure 11.2.1
sothatthenew Yis Y/ UA; UA_UY], where Ay ~ C_ x [—1,1].

A A A /

Y.
—
/

A

| — TR

- Yy _

A

—

FIGURE 11.2.1. Modification near C_. The actual folds are ob-
tained by multiplying by C_ and the dots represent the folding
loci. The arrows indicate Y.

Note that after the modification each of the negative regions Y’ and A_ satisfies
the conditions of (i). Hence we can now apply (i) to conclude the proof. U

Completion of proofs of Corollaries 1.3.6 and 1.3.7. We explain how to remove the
requirement that Y C M have trivial normal bundle. Let D C Y be a closed ball
around some point in Y. Then Y\ D is an open manifold. If Y is an almost contact
manifold, then so is Y\ D. By Gromov’s h-principles for open contact manifolds
(see [EMO02, 10.3.2]) and open isocontact embeddings (see [EMO02, 12.3.1]), we
may assume that Y \ D C (M, €) is an open contact submanifold. Hence the prob-
lem reduces to an extension problem over the ball D, which clearly has a trivial
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normal bundle in M. Observe that the proof of Corollary 1.3.6 is essentially a rel-
ative extension problem. Corollary 1.3.6 then immediately implies Corollary 1.3.7
since if Y is contact then —Y is almost contact (just reverse the orientation of the
line field transverse to 7Y N &). U

Proof of Corollary 1.3.9. We refer the reader to Uebele [Ueb16, Section 4.2] and
the references therein for a useful summary of almost contact structures and their
homotopy classes.

Let M?"~! be a closed manifold with an almost contact structure ¢ = (H¢, J¢),
where H is a hyperplane field and J; is an almost complex structure on H,. We
view ( as a section s. of the fiber bundle P — M with fiber SO(2n—1)/U(n—1)
associated to 7'M . Let D C M be a closed ball in M. By Gromov’s h-principle
(see [EMO2]) there exists a homotopy of s¢ to s,/ (as sections of P — M) such
that ¢’| M\int(D) 18 @ genuine contact structure.

Since T'D is trivial, we may view s¢/|g2n—2_gp as a map

S22 5 §0(2n —1)/U(n — 1);

the map is homotopically trivial since it extends over D. The set of homotopy
classes of extensions of §¢/|g2n—2 to D is given by mo,,—1(SO(2n —1)/U(n —1)).
Now

SO2n—1)/U(n—1) ~ SO((2n)/U(n)

(see [Ueb16, Section 4.2]), so their homotopy groups agree.
Next we stabilize ¢'|p = (H¢/, J¢)| p to the almost contact structure

n=(Hy xR Joo % j)|pxe,

where 7 is the standard almost complex structure on R?. Again by Gromov’s h-
principle there exists a formal homotopy on D x R? from 7 to a genuine contact
structure 7’ relative to N(0D) x {0}, where N(0D) C D is a neighborhood of
0D. We then apply Corollary 1.3.6 to obtain a contact submanifold of (D x R2,7’)
which is C%-close to D x {0}, isotopic to D x {0}, and agrees with D x {0} on
N(0D) x {0}. The induced contact structure £ on D is stably homotopic to '|p
relative to 0D.

It remains to find contact structures in each homotopy class of almost contact
structures on S2"~! to connect sum with so that we can adjust the homotopy class
of the almost contact structure.

When n = 1 or 3mod 4 (i.e., the manifold has dimension 4k + 1 where k €
7Z71), we claim that each homotopy class can be represented by connected sums of
canonical contact structures &4, 4, on Brieskorn spheres ¥(ay, ..., a,) that are
diffeomorphic to standard spheres. In our case we have ma,—1(SO(2n)/U(n)) ~
Z/d by Massey [Mas61]. By Morita [Mor75] there is a map ac that assigns the
value

ac(8ag,...an) = 3 [[j=1(a; — 1) € Z/d.

In particular, we can take (ag,...,a,) = (7,2,...,2) or (9,2,...,2) (these were
studied by Ustilovsky [Ust99b] and are diffeomorphic to the standard spheres).
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Since
ac(§ra,.2)) =3 and ac(§oya,.2) =4
are relatively prime they generate Z/d. (]

APPENDIX A. WRINKLED AND FOLDED EMBEDDINGS

The technique of wrinkled maps and wrinkled embeddings, developed by Eliash-
berg and Mishachev in the series of papers [EM97, EM98, EM00, EM09], is ex-
tremely powerful in dealing with homotopy problems of smooth maps between
manifolds. The goal of this appendix is to give a brief overview of their theory and
prove a technical result, Proposition A.3.2, which is only used in Section 11.

This appendix is organized as follows. First we review several fundamental
definitions and results in the theory of wrinkled embeddings following Eliashberg
and Mishachev. Then we use the wrinkling technique to put a generic hypersurface
in a “good” position with respect to a nonvanishing vector field.

A.1. Wrinkled and cuspidal embeddings. In this subsection we review the main
results of [EMO09].

Let f : 3 — M be a smooth map between smooth manifolds. In this subsection
we assume that dim ¥ = dim M — 1 = k, unless otherwise specified. All the
results in this subsection are also valid whenever dimY» < dim M. If dim¥ <
dim M, then the singular set Sing(f) of f : ¥ — M is the set of points in ¥ where
df is not injective.

Definition A.1.1 (Wrinkled embedding). A smooth map f : > — M is a wrinkled

embedding if:

(WEI) fis a topological embedding.

(WE2) Sing(f) is diffeomorphic to a disjoint union of spheres S; = S*~1, each
of which bounds a k-disk in 3. Each such S; is called a wrinkle of f.

(WE3) The map f can be written locally near each wrinkle as:

Oprr(SF71) — RFFL
(y2) > (y 4 3(y2 1)z, / (22 4y - 1>2dz) ,
0

where (y,2) = (Y1, ..., Yx_1, ) denotes the Cartesian coordinates on R¥
such that S¥=1 = {|y|? + 2% = 1} is the unit sphere.

Let f : ¥ — M be a wrinkled embedding. Consider a wrinkle S = S*~1 of
f given in the local model specified by (WE3). Let S’ := {z = 0} C S be the
equator of S. By identifying the wrinkled map f with its image in M which we
also denote by X, we say that X has cusp singularities along S \ S’ and unfurled
swallowtail singularities along S’. See Figure A.1.1.

Remark A.1.2. Although a wrinkled embedding f : > — M is in general not a
smooth embedding, it follows from (WE3) that the image f(X) has a well-defined
k-dimensional tangent plane everywhere. We shall denote by Gdf : ¥ — Gry (M)
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pa—

FIGURE A.1.1. Left: cusp singularity; Right: unfurled swallow-
tail singularity.

the corresponding “Gauss map”, where 7 : Grg(M) — M is the tangent k-plane
bundle on M.

According to [EMO09], the significance of wrinkled embeddings is that they sat-
isfy an h-principle with respect to tangential rotations.

Definition A.1.3 (Tangential rotation). Given a smooth embedding f : > — M, a
tangential rotation is a smooth homotopy Gy : ¥ — Gri(M), t € [0, 1], such that
Go=Gdf and f =m0 G,

The following theorem was proved by Eliashberg and Mishachev in [EM09,
Theorem 2.2]. Although we are only interested in codimension 1 submanifolds
3. C M, the theorem holds for embedded submanifolds of any codimension.

Theorem A.1.4 (Wrinkled approximation of a tangential rotation). Let G : ¥ —
Gri (M) be a tangential rotation of a smooth embedding f : ¥ — M. Then there
exists a homotopy of wrinkled embeddings f; : > — M with fo = f such that
Gdf; : ¥ — Grp(M) is arbitrarily C°-close to Gy. If the rotation Gy is fixed on a
closed set K C %, then the homotopy fi can also be chosen to be fixed on K.

Here a homotopy of wrinkled embeddings allows birth-death type singularities.

Remark A.1.5. The wrinkles that appear in Theorem A.1.4 can be made arbitrarily
small.

It turns out that the unfurled swallowtail singularities in a wrinkle can be elim-
inated by a C°-small operation called Whitney surgery. Whitney surgery involves
first choosing an embedded (k — 1)-disk D in the wrinkled X such that 0D = S’
for some wrinkle S C ¥ and the interior of D is disjoint from the wrinkles. (The
existence of such a disk D is immediate.) Then one removes the unfurled swallow-
tail singularities along S’ and adds a family of zigzags along D as in Figure A.1.2.
The formal treatment of Whitney surgery can be found in [EMO09, §2.10].

The resulting hypersurface has only cusp singularities along spheres and we
formalize it in the following definition.

Definition A.1.6 (Cuspidal embedding). A smooth map f : ¥ — M is a spheri-
cally cuspidal embedding (or simply a cuspidal embedding) if the following hold:
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FIGURE A.1.2. Left: before the Whitney surgery; Right: after
the Whitney surgery. The vertical sides are identified in these pic-
tures.

(CE1) f is a topological embedding.

(CE2) Sing(f) is a finite disjoint union of smoothly embedded spheres S; =
Sk=1 called cusp edges, in 3.

(CE3) The map f can be written locally on a tubular neighborhood S; x (—¢, €)
of S; in X as:

SFx (—e,€) = SPT X R?,
(y,2) = (y,2%,2%).

Remark A.1.7. As in the case of wrinkled embeddings, the image of a cuspidal
embedding f : ¥ — M also has well-defined tangent planes everywhere. We
denote by Gdf : ¥ — Gri (M) the corresponding Gauss map.

Remark A.1.8. Our cuspidal embeddings are called folded embeddings in [EM09],
where the cusp edges are not necessarily diffeomorphic to the sphere. The reason
we use the terminology “cuspidal embedding” is that a “folded embedding” means
something else in this paper. See Definition A.3.1.

The following result follows immediately from Theorem A.1.4 and the Whitney
surgery on wrinkles discussed above.

Theorem A.1.9 (Cuspidal approximation of tangential rotation). Let G; : ¥ —
Gri (M) be a tangential rotation of a smooth embedding f : ¥ — M. Then there
exists a homotopy of cuspidal embeddings f; : ¥ — M with fy = f such that
Gdf; : ¥ — Grg(M) is arbitrarily C°-close to Gy. If the rotation Gy is fixed on a
closed set K C %, then the homotopy f; can be chosen to be fixed on K.

We conclude this subsection with a smoothing operation which turns a cuspidal
embedding into a smooth embedding. Suppose f : 32 — M is a cuspidal embed-
ding with cusp edges .S;. Using the local model near cusps given by (CE3), the
smoothing operation amounts to replacing each fiber {(yo, 22, 2%) | 2z € (—¢,€)}
at yo € S; by {(y0,2%,2?) | 2 € (—€,€)}. Here v : (—€,¢) — [1,3]is a
smooth function which equals 1 near 0, equals 3 near +e, is nondecreasing on
[0, €), and is nonincreasing on (—¢, 0]. We denote the resulting smooth embedding
by Sm(f) : ¥ — M and the image by Sm(2).
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A.2. Cuspidal embeddings of a disk. In the previous subsection, we saw that
any tangential rotation of a smooth embedding can be C°-approximated by a ho-
motopy of wrinkled or cuspidal embeddings. However, for our purposes, we also
need to change the homotopy class of the tangential distribution, and ask if it can
be approximated by cuspidal embeddings. This was done in great generality by
Eliashberg and Mishachev in [EMO0O]. In this subsection we review their work in a
special case.

Let D* be the unit disk in R* and let f : D¥ — R* xR, be a smooth embedding
such that f is positively transverse to ds on a neighborhood of O D*. We identify
D with its image in R**! and coorient D¥ by declaring that 9, is positively trans-
verse to it near D*. Using the Euclidean metric on R**1, let n be the positive
unit normal vector field along DF.

Remark A.2.1. Since f is a codimension 1 embedding, specifying an oriented hy-
perplane distribution along DF is equivalent to specifying a nonvanishing vector
field along DF.

Let C C int(D*) be an embedded codimension 1 submanifold which divides
D into two parts D*\ C' = D, LI D_ such that 9D* C D, and the sign switches
when we cross C. Identify a small tubular neighborhood N(C) C D* of C with
C' X [—¢,€]. Choose a decomposition C' = Cy U C_ and define a vector field v on
N(C) such that v points into D along C.

Given n and C' = C; U C_ as above, we define a nonvanishing vector field
n(C) along DF as follows:

e n(C) =nalong Dy \ N(C).

e n(C)=—nalong D_\ N(C).

e Along each fiber {y} x [—€,¢] C C x [—¢,¢] = N(C), n(C) rotates
counterclockwise from n to —n in the oriented 2-plane spanned by (n, v).

Roughly speaking, C';. becomes a convex suture and C'_ becomes a concave suture
with respect to n(Cy, C_).

We state the following result [EMO00, Theorem 1.7], adapted to our special case;
see also [Eli72].

Theorem A.2.2. Suppose the manifolds Cy and C_ are nonempty and the vector
field n(C) is homotopic to Os rel OD¥. Then there exists a cuspidal embedding
f': D¥ — RF x R that is everywhere transverse to Oy, such that f' = f near 0D*
and Sm(f') is C°-small isotopic to f rel 0D*.

Remark A.2.3. In fact a stronger result is given in [EMO00], i.e., one can further
arrange so that the cusp edges of f’ coincide with C. This fact, however, is not
needed in this paper.

Corollary A.2.4. Given any smooth embedding f : D¥ — RF x R which is
positively transverse to s on a neighborhood of ODF, there exists a cuspidal em-
bedding f' : D¥ — R* x R that is everywhere transverse to ds, such that f' = f
near OD* and Sm(f') is C°-small isotopic to f rel DDF.
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Sketch of proof. Let f : D¥ — R¥ x R be a smooth embedding which is positively
transverse to 0, on a neighborhood of 9 DF.

We claim there exists C = Cy U C_ such that n(C) is homotopic to 95 rel
D", where C can be taken to be spherical boundaries of small neighborhoods of
points in D*. For generic D*, there exists a finite set of points {; };c; in D¥ where
n = —0,. Let D; C D* be a small disk neighborhood of z; and let S; = 0D;. We
then take C' = U;0.S; and construct n(C') as appropriate (depending on the local
degree of the Gauss map on D;) so that n(C') is homotopic to J. (It is not hard to
add extra components of C if necessary without affecting the homotopy type of
n(C).)

Corollary A.2.4 then follows from Theorem A.2.2. U

A.3. Folding hypersurfaces. Using the techniques reviewed in §A.1 and §A.2,
we show in this subsection how to “fold” a generic hypersurface with respect to a
nonvanishing vector field.

Let ¥ C M be a closed cooriented hypersurface and v a nonvanishing vector
field defined on a neighborhood of ¥. In general it is not possible to find a C°-small
isotopy ¢; : M = M with ¢ = idy; such that ¥ is everywhere transverse to v,
where 3; := ¢¢(X). However, if we allow X, to have cusp singularities (here we
are implicitly allowing birth-death type singularities), then there exists a cuspidal
embedding >; C M which is everywhere transverse to v, and whose smoothing
Sm(%4) is C°-small isotopic to ¥ — this is the content of Proposition A.3.2.

The smoothing Sm(X;) is a v-folded hypersurface in the following sense:

Definition A.3.1 (v-folded hypersurface). Let > C M be a closed, cooriented
hypersurface. If v is a nonvanishing vector field defined on a tubular neighborhood
of 3, then ¥ is v-folded if there exists a codimension 1 submanifold C(¥X) C ¥
such that:

(1) 2\ C(X) = XL UX_, where v is positively (resp. negatively) transverse to
Y4 (resp. X_) with respect to the coorientation of . and the sign switches
when we cross C'(X).

(2) For each connected component C of C(X), there exists an orientation-
preserving diffeomorphism from C' x R? 1 zo 10 a tubular neighborhood U
of C'in M such that ©NU is identified with C x {x1 = x3}, C is identified
with C' x {0}, and v|y is identified with O,,.

The submanifold C(X) is called the v-seam (or the seam if v is understood) of 3.
Then C(X) = C1(X)UC_(X), where a component C of C(X) belongs to C1(X)
(resp. C_ (X)) if, in the local model described in (2) above, ¥ NU is identified with
C x {z1 = 23,29 > 0} (resp. ¥4 N U is identified with C x {x1 = 13,29 < 0}).

Proposition A.3.2. Given a closed cooriented hypersurface > C M and a non-
vanishing vector field v defined on a tubular neighborhood of %, there exists a
C-small isotopy ¢¢ - M = M with ¢g = idys such that $1 = ¢1(X) is v-folded.

Proof. Fix a Riemannian metric on M such that v has unit length. Let n be the
positive unit normal vector field along 3. We note that since v and n may not be
homotopic, some extra steps are needed to apply the wrinkling h-principle.
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As in the proof of Corollary A.2.4, for generic X, there exists a finite set of points
{z;}icr in ¥ where v = —n. Let D; C ¥ be a small disk neighborhood of x; and
let S; = 0D;. Choose nested tubular neighborhoods S; C N¢(S;) C Na(S;) of
S; in ¥ such that z; & No (S;).

It is not hard to see that there exists a homotopy n, ¢ € [0, 1], of nonvanishing
vector fields along > with ng = n such that:

(1) ny = non Uier(D; \ Nac(Si));
(2) n; = v on the complement of U;e(D; \ Nc(.S;)).

Now we apply Theorem A.1.9 to the tangential rotation induced by n; to obtain
a CY-approximation of ¥ by a cuspidal hypersurface ¥, whose smoothing is v-
folded on the complement of U;c7(D;\ N(S;)) and such that the v-seam is disjoint
from S; for all i € I. To see this, first apply Theorem A.1.4 to obtain a C°-
approximation ¥’ of ¥ by a wrinkled hypersurface whose Gauss map is close to
(the orthogonal complement of) n;. Since the wrinkles can be made arbitrarily
small by Remark A.1.5, we can C"-small isotop S; C X so that they avoid all the
wrinkles. The Whitney surgery of the wrinkles can also be made disjoint from S,
so we obtain a cuspidal C-approximation ¥” of ¥’ such that the cusp edges are
disjoint from S;. The smoothing of X" converts the cusp edges to the v-seam.

Finally we apply Corollary A.2.4 to each D; to conclude the proof. ]

APPENDIX B. QUANTITATIVE STABILIZATIONS OF OPEN BOOK
DECOMPOSITIONS IN GENERAL

The goal of this appendix is to explain (see Section B.1 for the definitions of the
terms involved) and prove the following generalization of Lemma 6.2.1:

Proposition B.0.1 (Quantitative stabilization). Let  be a contact form on M*"+1
which is strongly adapted to the strongly Weinstein OBD (B, 7) and damped.
Choose 6 > 0 small. Suppose «|p, the restriction to the binding B, is strongly
adapted to the strongly Weinstein OBD (B, 1), damped, and with action

A(Bl,ﬂ'ha‘B) < 0.

Then there exists a strongly Weinstein OBD (B', ') of (M, ') with a strongly
adapted contact form o/ C'-close to o which is damped and with action

A(B' 7' a) < 4.

While Lemma 6.2.1 suffices for the purposes of constructing a plug, we need
the much more technical Proposition B.0.1 for proving Corollaries 1.3.6, 1.3.7,
and 1.3.9.

B.1. Definitions. In this subsection we define the terms involved in Proposition
B.0.1. In what follows let (B, ) be an a-compatible strongly Weinstein OBD on
M. Tts pages are denoted by Sy = 7! (e'?).

Definition B.1.1. The action A(B, 7, &) is Sup,c(a) A(7), where Z(«) is the set
of Reeb chords ~y in M \ Sy whose closures have endpoints on Sy and A(7y) is the
action f,y Q.
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Suppose M admits a decomposition M = N(B) U Ty, where N.(B) and T}
are glued along their boundary and:
(SA1) N.(B) = D?(e) x B, where ¢ > 0 is small, D?(¢) is the open disk
{(r,0) | < €}, and (r,0) are polar coordinates, is a tubular neighbor-
hood of the binding {0} x B, with contact form

(B.1.1) aln. gy = (1 — car®)A + cor?df
where ¢1, co > 0 are constants.

(SA2) On N.(B), Sy, restricts to {((r,0),z) | § = 6y} for all %0 ¢ St.

(SA3) Ty is the mapping torus of (S*,¢), where S* = Sj is a truncated page
So N (M \ N¢(B)) and ¢|ss; is a positive-time flow of the Reeb vector
field Ry.

On N¢(B) the Reeb vector field is given by
(B.1.2) R, = Ry + (61/62)89.
Hence all the Reeb chords 7 in N(B) \ Sy have the same action A(y) = 2mca/cy.

Definition B.1.2. A contact form « adapted to the strongly Weinstein (B, ) is
strongly adapted to (B, ) if there exists € > 0 such that (SA1)—(SA3) hold.

Given a strongly adapted contact form which takes the form of (B.1.1) near the
binding, one can easily rescale the r-coordinate such that c; = 1, which we assume
to be the case from now on.

Definition B.1.3. A strongly adapted contact form o adapted to (B, ) is damped
if its total infinitesimal variation (see Definition 6.1.2) satisfies V < 11/10.5

Given a damped contact form « compatible with the OBD (B, ), one can as-
sume that p from Eq. (6.1.1) is almost constant.

Definition B.1.4. Given a Riemannian manifold M, two contact forms o, o are
C*-close if both ||ag — 1| and ||dag — day||co, measured with respect to the
Riemannian metric, are sufficiently small.

Our notion of C''-closeness given in Definition B.1.4 is strictly weaker than the
usual notion of C'!-closeness since we take the exterior derivatives rather than all
the partial derivatives.

B.2. Perturbing to a strongly adapted contact form.

Lemma B.2.1. Let (B, 7) be a strongly Weinstein OBD of (M?"1 ¢) with an
adapted contact form o. Then there exists a contact form o/ which is C'-close to
« such that o/ is strongly adapted to (B, ).

Proof. By assumption B C (M, £) is a contact submanifold and there exists a
tubular neighborhood N, (B) = D?(e) x B such that 7| y_(py is the projection onto

Here the precise constant slightly larger than 1 is not important, but we choose one for
definiteness.
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the D?(¢)-factor. It follows that B, := {p} x B is contact for any p € D?(e) if €
is sufficiently small.

The characteristic foliation .%y on Sy N N¢(B) has a nonzero d,-component for
any e’ € S'. Hence through any point z € B = B, there exists a 2-disk D, such
that D, N Sy is tangent to .%y for all € € S, and the family of disks D,z € B,
varies smoothly in B. Using the disks D, we can reparametrize N¢(B) such that
the characteristic foliation on Sp N N¢(B) is parallel to J; and a|g,n,(p) has the
form F'\, where A = «|p and F only depends on r. This implies that

where F,G : N.(B) — R satisfy (i) F|p = 1, G|p = 0, (ii) F’ only depends
on r, and (iii) lim,_g a’;,G > 0. Here (iii) follows from the contact condition
a A (da)™ > 0.

We compute

daly,(p) = 8- Fdr A X+ Fd\ + dpG A d6 + 8,Gdr A\ df

and claim that R, |y, () has the form qﬁ(%Rx — 8"%(99 +X), where ¢ is a positive
function and X € Span(d,, ker A). Indeed we calculate
iryda|n, () = —0pFdr + dpG(Ry)db,
ig,daln, By = —dpG — 0, Gdr,
(B) = OrFA + 0,Gdb,
(B) = Fliyd\ + dpG(Y)do,

ig,da|n, (B
iydOé|NE B
where Y € ker \. The vanishing of coefficient of the dr term implies that R |y, ()
is parallel to %R,\ — 8’%89 + Cy0, + Y for some Cy and Y. Since « is adapted
by assumption, R, must have a positive dg-component for » > 0. It follows that
o F < 0forr > 0.

Finally, to obtain the strongly adapted ¢/, it suffices to pick 0 < ¢ < ¢ and
write o |, () = F'\ + G'df such that

o F' = (14 cy) —cir?and G’ = %rQ for r < € and some cg, ¢ > 0;
o ' = Fand G’ = G forr close to ¢
e 0, F' <0and 9,G' > Oforall 0 < r < e.

It is straightforward to check that o/ is C'*-close to «, is contact, and is strongly
adapted. ([

A key feature of C'-close contact forms is the following:

Lemma B.2.2. If o, o/ are two C'-close contact forms on M, then there exists
a C'-diffeomorphism ¢ : M = M isotopic to the identity and a function f €
C> (M) which is C°-close to the constant function 1 such that ¢*(o/) = fou

The proof is a standard application of the proof of Gray’s theorem and is omitted.
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B.3. Damped OBD. In order to construct a damped contact form adapted to an
OBD, we work with abstract OBDs, whose data consists of a Weinstein domain
(S,7) and an exact symplectomorphism ¢ : S — S such that ¢ = id near S and
¢*(n) = n + dF for some F' € C*°(S) which vanishes near 0.5.

We construct the compatible contact structure as follows: Let R; x S be the
contactization of (.S, n) with contact form a = dt 4+ 1. Choose a constant C' > 0
such that ' + C' > 0. Let T} ¢ be the mapping torus

Too ={(t,z) eRxS|0<t < F(x)+C}/(0,0(x)) ~ (F(x) + C,x).
Then 0Ty = R/CZ x 8S. We extend o to N(B) = D? x B, where D? =
{(r,0) | r < 1} (in polar coordinates), by
(B.3.1) O"N(B) = f(r)/\—i—g(r)dﬁ,
where A is a contact form on B and f, g satisfy the following conditions:

(NB1) There exists € > 0 small such that «| Ne(B) satisfies (SA1)—(SA3);
(NB2) The contact condition (f’,¢") - (—g, f) > 0 holds for r > 0;
(NB3) f(r)A\ = nand g(r) = % for r close to 1. In particular § = % along
{r=1}
The resulting contact manifold N (B) U Ty ¢ will be denoted by Mg 4) c-
The mapping torus Ty « admits a foliation by

Sy = graph(hy), t € [0, C],
where h; : .S — R varies smoothly with respect to ¢ and satisfies the following:
(1) hg=0,h¢c = F +C;
(2) hyy(x) < hy,(x) forany to < t; and z € S,
(3) hy =t near 9S.
Then S, t € [0, C], are the truncated pages of a compatible OBD of Mg 4; see
Figure B.3.1. Each S, is naturally a Liouville domain with Liouville form n + dh;.

We will impose a strongly Weinstein OBD condition which guarantees that there
exist Sy, t € [0, C|, that are all Weinstein.

~~

=

0

FIGURE B.3.1. Foliation of T} ¢ by the pages S;.
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Lemma B.3.1. Suppose « is a contact form for (M, &) which is strongly adapted
to the strongly Weinstein OBD (B, 7). Then « can be isotoped to the contact form
o/ which is damped in addition.

Proof. Let ((S,n), ¢) be an abstract OBD representing (B, 7). We first discuss the
mapping torus part of the open book. Starting with the fundamental domain

Too={(tz)eRxS|0<t<F(x)+C}CRxS

foliated by Weinstein domains S; = graph(h;),t € [0, C], the trick is to thicken
Ty ¢ by inserting [0,C’] x S with C" > 0. More precisely, take k& > 0 and
consider a new angular variable 7 € [0, kC]. Then the graph of

Hr = h,, + 52tr, 7 €00,kC],
defines a foliation on the mapping torus
Tore ={(t,z) eRxS|0<t<F+kC}/(0,¢(x)) ~ (F(z) + kC, z).
Since the Liouville form on each S* := graph(H.) coincides with that on S, /k» all
the pages S¥ are Weinstein by assumption. Now observe that

H-,-— khT/k+ —>1

uniformly as £ — oo, where the dot means 7-derivative. Hence we can choose
a large k such that T} ;¢ is damped with respect to the contact form ay|r, . =
dr +n.

Next we extend oy, to N(B). Using a|y(p) = f(r)A+ g(r)df as in Eq. (B.3.1)
and satisfying (NB1)-(NB3), we can write

ag = fi(r)A + gi(r)do,
near D? x B, where fi(r) = f(r) and gi(r) = kg(r) = % for r close to 1.
Define gi, = kg for r € [0, 1], where we are assuming without loss of generality
that g is constant for r € [, 1] and is strictly increasing for r € [0, 5]. We extend
frtor €0, 1] as a strictly decreasing function in three steps as follows. Fix € > 0
1

small. First extend fi to r € [3,1] arbitrarily; then to 7 € [ — €, 3] such that

fl, < —cgj,, with equality near r = 1 — ¢, where we choose a constant ¢ > 0
such that f, < cgx(1) for all 7 € [1 — ¢, 1]; and finally to 7 € [0, 5 — €] such
that f; = —cg;, holds. The reader might find it helpful to note that the curve
{(fx(r), gr(r)) | r € [0,1]} — for k > 0 and viewed from sufficiently far away
— is close to the line segment connecting (cgx(1),0) and (0, gx(1)).

We claim that the total infinitesimal variation on N (B) with respect to a|y(p)
is less than 11/10 for e sufficiently small. Indeed, the Reeb vector field is given by

! Ra—f10

Roy vy = %-

/
The coefﬁcient of O is equal to gkl(l) onr > % and is equal to 7&9};?292% =
1 1 .
Ftean gk(l) onr < 5 —e€ Ong—e<r <3, we can estimate \fkg;g/f]’gy <

|f/c| < gi(1), which 1mplies that the coefficient 7— f/ of Jy is close to (1)
The claim then follows.
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The contact structure ker o’ := ker ay, is isotopic to £ by varying the parameter
k. Moreover ¢ is clearly strongly adapted by construction. ]

B.4. Quantitative stabilization of OBD. The goal of this subsection is to prove
Proposition B.0.1.

Let (B, 7) be a compatible strongly Weinstein OBD of (M, €) and « be a
strongly adapted contact form. Let N.(B) =2 D?(e) x B be the e-neighborhood of
B such that «| N.(B) satisfies (SA1)~(SA3). Here € > 0 is a small constant subject
to conditions specified later in the proof.

We construct a map s : M — C as follows: First define

S‘NE(B) N NE(B) — D2(€) C C

as the projection to the first factor D?(¢) C C, and then uniquely extend s continu-
ously to all of M by requiring it to be constant on each Sy \ N.(B), e’ € 0D?(e).
Hence m = s/|s| on M \ B. Strictly speaking, s is only piecewise smooth, but in
what follows we will pretend that s is smooth since a smoothing can easily be
constructed. By definition B = s~1(0) and is transversely cut out.

We then consider the map s* : M — C for k € Z~. Since 0 is not a regular
value of s* for any k£ > 1, we need to add a small perturbation term coming from
B to s*.

By assumption B also admits a compatible strongly Weinstein OBD (By, 1)
such that A := a]p is strongly adapted. As in (SA1), let N, (B1) = D7, , (e1) X
B with €; > 0 be a neighborhood of B; on which

(B.4.1) )"Nel(Bﬂ = (1 — 01717'%))\1 + T%d@l,

and let s; : B — C be the associated map defined in the same manner as s with
N(B) replaced by N, (By). We will be using the convention that the subscript 1
(e.g., B1, s1, r1, c1,1) refers to subsets etc. of B that are analogous to those of M
(e.g., B, s, 7, cy).

Nextlet 0 < € < eand let p : [0,¢] = R>( be a C°°-small nonincreasing
bump function such that p(0) > 0, p is constant on [0, ¢’ /2] and p is supported on
[0, €']. See Figure B.4.1 We then define the map

FIGURE B.4.1. The graph of p.

(B.4.2) S(k) = sk — p(r)sy: M — C,
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where s; is first extended to N (B) by precomposing with the projection onto
the second factor B, and then the cutoff function p(r) guarantees that p(r)s; is
globally defined on M.

We analyze the OBD (B, 7(;)) given by s(;) and the corresponding Reeb
dynamics in steps. Steps 1 and 2 give topological descriptions of the binding By,
and the page (1) and the remaining steps describe the compatibility with a suitably
C'-small perturbed c.

Note that besides the trivial case of dim M = 1, the case dim M = 3 is
slightly different from and substantially easier than the higher-dimensional cases
since B; = @. We will point out such differences in the proof when applicable.

.o 1
STEP 1. The binding B = s(k)(()).

We can write

s(z) = r(x)eie(x), if x € N.(B),
) ee??®), if z € M\ N.(B),

where €)= 7(z) for x ¢ B. More concisely, we write s = re'’ with the

understanding that r(z) = € for z € M \ N.(B). Similarly we write s; = 71!
on B, where r1(y) = ¢; fory € B\ N¢, (Bi1). Then

(B.4.3) S(k) = rRetR0 — p(r)r e,
(B4.4) By = {0 = r"e™ — p(r)rme™ = 0}.

Observe that, since ¥ /p(r) is strictly increasing, there exists a unique a €
(0, €') such that a* = p(a)e;. We may assume that p is sufficiently small such that
a < ¢'/2 and hence p is equal to the constant a* /e; on [0, ¢//2].

We have the following description of By:

Claim B.4.1.
(1) B(k) C {7“ < CL}.
(2) By is a k-fold branched cover of B with branch locus By C {r = 0}.
(3) By N {r = a} is a k-fold cover of B\ N¢,(B1).
(4) By N {r < a} is graphical over D*(a) := {(r,0) | r < a} times B.

Proof. (1) This follows from (i) 71 < € on B and (i) B(;,) N {p(r) = 0} = @.
(2) Clearly By N B = By C {r = 0}. Since p(r) # 0 on B, we can
write By = {r1 = r®/p(r), e = ™9}, This implies that, for each point in
1% (r1,01) with r; > 0, there exist k distinct values of (r, §) for which (k) = 0.
(3) is immediate from (2).
(4) Given a point in B, N {r < a}, its (r1, 01)-coordinates are determined by
its (r, @)-coordinates: we have #; = k6 (mod 27) and ry = 7% /p(r). O

Note that when dim M = 3, we have dim B = 1 and r; = €;. Eq. (B.4.3)
implies that the new binding By, is the closure of a k-strand braid around B.

STEP 2. The page Sy,
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It is an easy verification that the map

(B.4.5) k) = S/ || : M\ By — S,
rkeikd _ p(?")?“lewl

(k) = 1k, ik0 i1
|rketkd — p(r)rieifr]

18 a submersion, and hence induces a smooth fibration.

We analyze the page Sy = 77(75 (1), i.e., examine the solution set to:

(B.4.6) rketk? _ p(r)rleiel € R>o.

First consider P := S,y N {r > a}. In this case we always have r* > p(r)r
since 1 < €1. We claim that

P = Uo<j<k(So=2jm/m N {r > a}),
where the right-hand side is the disjoint union of k copies of the page .S and ==

means the left-hand side can be viewed as a graph over the right-hand side. Indeed,
ifr > ¢€,i.e., p(r) =0, then Eq. (B.4.6) holds precisely when e*® — 1. Hence

Sy N {r > €'} = Uo<jcr(So—ajr/r N {r > €'}).0

On the other hand, if a < r < ¢, then referring to the right-hand side of Fig-
ure B.4.2, we have for any fixed r,r1, 601, there exists a unique e guch that
Eq. (B.4.6) holds; the set of allowed values of ¢’*Y is drawn in blue. Hence the
components of S(;) N {a < r < ¢'} can be viewed as graphs over Sy_q /1, N {a <
r < €'}, where 6 is viewed as a function of 7,1, 6;. This completes the proof of
the claim.

Next consider @ := S(y) N {r < a}. Write Q = Q1 U Q2, where

Qu=Qn{r* <p(r)yri} and Qa:=QN{r* > p(r)ri}.
We first examine (1. Referring to the left-hand side of Figure B.4.2, any fixed
(r,0) determines a unique ¢; € (Z, 2F) which solves Eq. (B.4.6). Hence
(B.4.7) Q1 = Urca(S1,0,=x N {r1 > 7% /p(r)}),
where S} g, — is the page of (B, ;) at §; = 7, and 6, is viewed as a function of
r, 11, 0; also the right-hand side of Eq. (B.4.7) deformation retracts to D? (a)(rﬁg) X
(S1.0,=r N{r1 = e1}). Now we turn to Q2. For each < a, the set of points in A/
such that r* > p(r)ry is Ny oy (B1), which is a disk times By and deformation
retracts to B;. Hence

Q2 = Ur<a,0§j<k({%} X {T} x Nrk/p(r)(Bl))a

where 6 is viewed as a function of r, 1, 6.
Finally consider R := S, N {r = a}, which is the union R; U Ry, where

Ry ={r=a,r =¢e% =¢h) c By,

Ry = U0§j<k({%} x {a} x N, (B1)),

6We will be writing Sg—. to avoid confusion with a page S1 of (B1,m1).
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FIGURE B.4.2. The circles have radii 7* and p(r)r with coordi-
nates e’*% and %1, respectively. On the left we have r* < p(r)r
and on the right 7¥ > p(r)r;. The blue regions indicate the values
of "% for which there exist €’’* such that Eq. (B.4.6) holds.

where @ is a function of r1, ;.
STEP 3. Description of modified contact form and Reeb vector field.

One technical difficulty is that the Reeb vector field given by Eq. (B.1.2) is al-
most never tangent to By unless the Reeb flow of Ry on B\ B takes pages to
pages. (Note that this can easily be achieved when dim M = 3 since dim B = 1
and B; = O in this case.) The main task of this step therefore is to “synchro-
nize” the Reeb flows on M \ B and B \ Bj. In particular, we apply a C''-small
perturbation to a|y, () given by (B.1.1) into the form given by (B.4.11).

Fix § > 0 small as in the assumption of the proposition. Recall A = «|p,
which is strongly adapted to (Bj, ) and satisfies Eq. (B.4.1) on N, (B1). We
first choose a splitting of the exact sequence

(B.4.8) 0— TS — T(B\ By) — Tse(B\ By) — 0,

where S7 denotes the interior of the page: For r; < €;/2, the splitting is given by
the product structure N, /o(B1) = D?(e1/2) x By. On B\ N, (B1), we choose
the splitting 7'(B \ N¢,(B1)) = R(Ry) & T'ST, where S} = S1 \ N, (By) is
the truncated page from before. Finally we interpolate between the two splittings
on {€1/2 < r; < €}, e.g., one can use the linear interpolation with suitable
smoothing at the endpoints.

We then define the vector field dg, on B\ By via the splitting (B.4.8) and recall-
ing Eq. (B.1.2) (applied to )\ instead of o) we write:

(B.4.9) Ry = f(r1)Rx, + h0p,,

where f(r1) is supported in {r1 < €1}, f(r1) = 1forr; <e€1/2,h: B — Rygis
constant on {r; < €;}, and the functions f and h depend on the splitting (B.4.8).
Here h can be taken to be almost constant since (B, ) is damped.

Since « is strongly adapted to (B, 7), there exists a small tubular neighborhood
Ne(B) = D*(€) x B of B such that a|y_ () = (1 — c17?)A + r2df. There exists
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0 < ¢ < € and a perturbation of a (with the same name) such that
(B.4.10) aln.(p) = F(z,r)\ + rdo,

where F' : N.(B) — R+ depends on = € B and r and satisfies:
() F(z,r)=1—cr’nearr = ¢;
(i) F(z,r) =1—gr?forr < ¢, where g: B — Ryqis h/k and k is a large
positive integer such that A(B, 7, a)/k < §;
(i) %€ < 0forany z € Bandr > 0.
Here (iii) guarantees that oy, (p) is contact and is adapted to (B, 7). (A direct

computation shows that R,, is parallel to Ry — agf Oy + v, where v € 1 = ker \,

and hence is positively transverse to the pages.) We note that
(B.4.11) aly, = (1- gr) X+ r2db.
Using Eq. (B.4.9) we compute:
daln, ) = (1— gr2Yd\ — ridg A X — 2grdr A X+ 2rdr A db,
Raln, By = Bx+90s +v = f(r1)Rx, + hdg, + g0 + v,
where v is the unique vector field tangent to 7 = ker A solving the equation
(B.4.12) (1 — gr?)iyd\ + rd,g = 0.

Here d,g = dg — dg(Rx)\. Note that if Eq. (B.4.12) holds, then dg(v) = 0 and
we have

(1 — gr¥)iyd\ — r*(dg(v))A + r’dy,g = 0.
Since both ¢ and d,,g are bounded, |v| is small as long as 7 is sufficiently small.
Using the splitting 7'(B \ B1) = R(dy,) & T'S1, we can write

(B.4.13) v=pdy, +v, veTS.
‘We then obtain:
(B.4.14) RQ‘NE,(B) = f(ri)Ry, + 0+ iL@gl + g0y, where h=h+ e

The C%-norm ||k — kg| = ||p|| = O(r2) for small r by Eq. (B.4.12); we assume
that ||h|| > ||x|| since we may take € > 0 to be small.

Moreover, note that & = kg and & = 0 on {r; < €}, since h and g = h/k are
constant there and v = 0 by Eq. (B.4.12). Hence R, = f(r1)Rx, + h0y, + %(99.
One easily computes that ds)(Ra) = ihs(). Hence R, is tangent to By, and
transverse to S,y on N (B) N {ry < ei}.

Unfortunately, since h # kg in general, R, | N,/(B) 1s not everywhere tangent to
By In fact, the first-order PDE h = kg — u, whose solution would have solved
the problem, has no solutions in g for general h. We will deal with this technical
issue in the next few steps.

As a motivation for the above construction, we state the following, which is
proved in Step 5:

"The choice of k depends only on A(B, 7, «) and, in particular, not on e.
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Claim B.4.2. There exists a small tubular neighborhood of the stabilized binding
By, away from which we have

(B.4.15) A(B(k), T(k)s a) < max(A(Bl, T, )\), A(B, T, Oé)/k) < 0.

STEP 4. At this point we summarize the order in which we choose the constants.
We are given § > 0 and €; > 0. We choose £ > 0 such that A(B, 7, «)/k < d.
We then choose € > 0, followed by €’ > 0. Finally we choose a small p(r) so that
a > 0 satisfying a* = p(a)e; is much smaller than ¢’. Recall that p is constant on
0<r<é/2

STEP 4. The stabilized binding By, is contact.

The goal of this step is to show that B(;y C (M, §), as constructed in Step 1, is
a contact submanifold. It follows immediately that a small tubular neighborhood
of By, is foliated by contact submanifolds since the contact condition is open. We
then prove Claim B.4.3, which estimates the size of such a neighborhood.

In the following we calculate modulo error terms of order O(a?); recall that
By C {r < a} by Claim B.4.1(1). For « satisfying Eq. (B.4.11) we obtain:

(B.4.16) a=XA+0(d?), da=d\—2grdr\+ 2rdrdd + O(a?),
(B.4.17) aAda" P = XA (AN 4 (n = 1)2rdrdfdA"?) 4+ O(a?).

First consider B(;) N {r = a}, which is a k-fold cover of B \ N, (B1) by
Claim B.4.1(3). Since r is constant, Eq. (B.4.17) becomes

(B.4.18) a ANda™ g, npr=ay = AA AN 4 O(a?),

which implies that By N {r = a} is contact.

Next consider By N {r < a}, which by Claim B.4.1(4) is graphical over
D?*(a) x By. By expanding Eq. (B.4.17) using A = (1 — ¢1.177)A\1 + r2df; and
using the fact that rydridf; can be written as a nonnegative function of r times
drdf away from r; = 0,

(B.4.19) aAda™ | Byn{r<ay = ¢(r)rdrdd A Ay A A\ + O(a?),
where ¢(r) > 2(n — 1)(1 — c1,1€%)" 1. Hence By N {r < a} is contact.

Claim B.4.3. There exists a small constant ¢ > O which depends on o but not on
a and p, for which the tubular neighborhood N . (B ) = S(_kl)({|w\ < ca*}) of

By, is foliated by contact submanifolds By, := {s(,) = w}.

Proof. Let |w| < ca®. We consider B, N {r; = e1}. Since p = a¥/e1, w =
rke* — qket Then r, viewed as a function B, N {r; = €} — R, is close to
r = a, with error that goes to zero as ¢ — 0, where c is independent of a and p.
The middle term on the right-hand side of Eq. (B.4.17) then goes to zero as ¢ — 0.
Hence B, N {r; = €1}, |w| < ca¥, is contact provided ¢ > 0 is small.

Next we consider B,, N {r1 < €1}, |w| < ca®, which we write as a graph:

riet = (1/p(r))(r*e® — w).
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By writing r1dr1df; in terms of drdf as in Eq. (B.4.19) and observing that p =
a® /ey, we see that B,, N {r; < €} is contact. O

STEP 5. Transversality away from By).

Lemma B.4.4. For the small constant ¢ > 0 from Claim B.4.3, R, is transverse to
Sy on M \ Neok (B(r)), provided a > 0 is sufficiently small.

Proof. We fix S(; to be the page at angle 0. All the other pages can be treated in
the same manner.

First consider the restriction of S(;y to M \ Ng(B). Outside of N.(B) the
contact form « is the original one and R, is transverse to S(;) since p = 0. On
Ne(B) \ No(B), we still have p = 0 and by (iii) following Eq. (B.4.10), « is
adapted to (B, ) and R, is transverse to S(;. Recall that B,y C {r < a}, where
a<¢€.

Next we restrict to N/(B), on which R, is given by Eq. (B.4.14). Observe
that R, is transverse to .S(;) when ds(k)(Ra) has positive :R-component. When
r1 < €1, by the paragraph after Eq. (B.4.14) in Step 3, R, is tangent to By and
transverse to ka) on this region.

It remains to consider N (B) N {r; = €1}. Since f(r1) = 0 on 7y = € by
definition (see the line after Eq. (B.4.9)), R, = v+ 13891 + h%@@ by Eq. (B.4.14);
here v € T'S; by Eq. (B.4.13). We compute

(B.4.20) ds(r)(Ra) = i(kgrFe®® — hp(r)rie?) = iﬁs(k) — iprkett?

By the paragraph after Eq. (B.4.4), p = a¥/e1; hence sy = r¥e™*® — akel®t by
Eq. (B.4.3). By the definition of N ,x(B)), for x € S(iy \ Negr(B(x)) we have
|s(k) ()] > ca®. Recall that h is bounded below by a positive constant and || || =
O(r?). If r(x) < Ca, where C > 0 is a large constant, then Hﬁs(k) | > 'ca® for

some ¢ > 0 and [|ur*e®®| < ¢"C¥2aF+2 for some ¢ > 0. If a is sufficiently
small, then syl > | ket ||, and hence ds (i) (Ra) is dominated by the first

term hs . If r(z) > Ca, then S(k) is dominated by the ke term whose size
is bounded below by C*a*. This in turn implies that ds()(Rq) is dominated by

the first term iBS(k) since we may take ||h|| > |u||. Hence R, is transverse to
S(k) \Ncak (B(k)) on NE/(B) N {7‘1 = 61}. O

Claim B.4.2 now readily follows from the observation that the maximal action
of Reeb chords of (B, m(x)) in Ne(B) \ Nea(B(y)) is approximately equal to
A(B1, 71, A).

STEP 6. Transversality near the binding By;).

In this step we modify o on N« (B4 ) so that the Reeb vector field becomes
compatible with the OBD (B4, 7(1)). Since R, is already transverse to the pages
and tangent to the binding for 71 < €1 by the proof of Lemma B.4.4, we assume
r1 = €1 throughout this step.
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Let By == By N {r = a} be the k-fold cyclic cover of B \ N, (B1) and let
¥ = 51\ N, (B1) be a truncated page of (B, 7). (It is instructive to keep in

mind the dim M = 3 case, i.e., when S; = S7 is a point.) We identify
By =~ {(z;w) ERxST|0< 2 < C(w)}/ ~,

where C' : ST — R is a smooth function such that C'(w) is roughly linear in &k
for each w € ST and (C(w),w) ~ (0,¢(w)) for some diffeomorphism ¢ of S}.
Moreover we may assume that «| B, = dz + o for a Liouville form o on S7. We

then identify
(B.4.21) N (Bfyy) = D3, x By ~ D3 x {0 < 2 < C(w)}/ ~,

Ci
so that:
e R, isparallel to 9, + W + O(a?) on N, (B(*k)), where W is tangent to
ST and also tangent to 05T, by Eq. (B.4.14), and
o Sy N (0D* x B(*k)) is a fiber [TI"!(p), p € OD?, of the projection II :
Near (By,)) = D2,
By Claim B.4.3, the fibers of II are contact submanifolds and, after a diffeomor-
phism of N« (Bz*k)) which is isotopic to the identity and takes fibers to fibers, o

(for the rest of the step we elide |y (Bly) from the notation) can be written as

(B.4.22) a=F(dz+o0)+ %(mly — ydz),

where F is a positive function on N, (B(*k)) such that |F' — 1||c1 = O(a?) and
we are taking D? to be a disk of small radius depending on a.

Writing R, || X := 0. + a0, + b0, + W, where IV is tangent to ST, we have
(B.4.23)
a=(1+o(W))F,, b=—(1+c(W))F,, Fiwdo= (14+0(W))(ds;F—F.0),
where dgx is the differential in the ST-direction. Indeed we verify that i xda = 0:

do = (Fypdr + Fydy + F.dz + ds: F') A (dz + o) + Fdo + dzdy,
ig,do = —(Fpdx + Fydy + ds: F') + Fio,
iad,+b0,da = (aFy +bF,)(dz + o) + (ady — bdz),
iwda = dsy F(W)(dz + o) — o(W)(Fedx + Fydy + F.dz + ds; F') + Fiydo.

Setting a = (1 + o(W))F, and b = —(1 + o(W))F,, we can cancel all the
dx,dy terms in ixdo as well as (aFy, + bF,)(dz + o). Setting Fiyydo = (1 +
o(W))(dss F' — F,0), we have dg; (W) = F,o(W), and the remaining terms of
ix do can be canceled.

Observe that as a — 0, ||dF’||co becomes small and hence |o(WV)| < 1. Also
the component Y := 0, + (1 + o(W))F,0, — (1 + o(W))F,0, of the vector
field X is positively transverse to II" ({6 = const}) near {# = const} N OD?,
where we are using polar coordinates (r, ) on D?. More precisely, by the proof
of Lemma B.4.4, ds;(R) is dominated by the ifw(k) term; hence Y is close to

the vector field Y/ on D? x By;, that roughly winds + times around 0D? while
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going once around the z-direction. Finally we replace F' by the function G such
that:
(a) F = G near aNcak(B(*k)) and ||F' — G| is small on N,k (B(*k));
(b) for each z,w, G(z,y, z, w) has the form G(0, 0, z, w) + Cor? near r = 0,
where Cy is a negative constant;
(©) % < 0 for 7 > 0, which guarantees transversality to the pages S() on
Ncak (B?k;) );
(d) «is still contact with F replaced by G.
In view of the above description of the pages Sy NN 4k (BZ‘k)), the new contact

form C'-approximates a/|y 8 (By) and is strongly adapted.

STEP 7. Weinstein structure on the page S ).

In this step we describe the Weinstein structure on S(y), which we fix to be the
page at angle 0.  All the other pages can be treated in a similar manner. We
will decompose S(3,y = T1 U T3 U T3 into three pieces and study the characteristic
foliation on each piece separately. Note that the decomposition of .3 in this step
will be different from, but based on, the one from Step 2.

Firstlet 71 := SN {r > €'} = Up<j<k(Sg—2j=/N{r > €'}). The characteris-
tic foliation on 77 is Morse since 1 agrees with restrictions of the Weinstein pages
on the region r > ¢ and the modification given by Eq. (B.4.10) does not change the
dynamical properties of the characteristic foliation on the region ¢ < r <.

Nextlet T3 = S(3;)N (Dfﬁ(e’) X N¢, (B1)) and use the contact form o before the
modification done in Step 6, since the topological conjugacy type of the character-
istic foliation on T3 is the same for both contact forms. On N (B) = Dfﬁ(e’ )x B

we use the contact form o« = \ + 11";2 df (see Eq. (B.4.11)) which is C'-close to

A -+ r2df when € is small. Restricted to (D7 »(€’) x N, (B1) we have

a=(1—ciir})A +ridoy + ?T;Q df.

Let us write 7 = ¥ /p(r) and 6 = k6. Using Cartesian coordinates (Z, 9), (1, y1)
corresponding to the polar coordinates (7, ), (r1,61), Eq. (B.4.6) becomes T —
z1 € R>p and § = y1, and we write

a=(1—crirP)M + (v1df — gdor) + () (2dj — §d7),
where 1) > 0. We now calculate the characteristic foliation Y.

da = (1 — c1173)d\y — 2¢11(x1dxy + §dg) Ay + 2da1dy + 26(7)dzdy,

= (1 —crarf)dA + 1,2;111@ (z1dz1 + §dy)((x1dy — gdz1) + P (F)(2dy — §di))

+ 2dx1df + 2¢(7)dEdy
= (1 —c1ard)dA + 13511:11@ (r2daydij + (7)) (21 Edar df — z1§dadi + §2didg))

+ 2da1 dij + 2¢(7)dEdy,
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where ¢ > 0 and 1 (7) and ¢(7) are dominated by a term of the form C'72+2/k
for 7 # 0 small. Let us write Y = Z + nR),, where

7 — 2c1,1 %(_r%ai + w(f)(_xlj;ai, — Q:lgﬁg —+ g]28x1)) — 28@ + 2¢(f)aa:

l—ciar

Then iy da = 0 and a(Y") = 0 for a suitable choice of function 7.

We claim the forward flow of Y limits to 73 N B,y = {Z = 71,9 = y1} x Bi.
Assume 7 # 0. The case 7 = 0 can be treated separately, and is left to the reader.
When x1 < 0, then Y flows to the region 21 > 0 since r; < €; and the coefficient
of 0., is positive and bounded below. When z; > 0, then the coefficient of 0, is
positive and the coefficient of J; is less than —2; since & — 1 > 0, Y eventually
flows to £ = x1. The claim then follows.

Finally we consider 75 := S(k)ﬂ(nye(e’ )X (B\N¢, (B1))). Recall the fibration
m @ B\ N (B1) — S(}l with fiber ST such that MB\NGI(BQ = f1dby + f1,
where fj is a positive function on B \ N, (B;) and f; is a 6;-dependent Liouville
form on S}. Let Zj be the surface in the 3-manifold Dfﬂ(e’ ) x S satisfying

keik® _ p(r)eei® € Rsq. Then Ty = (idng(e,),m)_l(Zk). Restrict attention to

where p(r)js constant and Writef = 612% = (£)* and 0 = k0. Then Eq. (B.4.6)
gives 7 sin f = sin 01 We view 0 as a function of 7, 6;. Without loss of generality
we may replace ;—_5 by r2 in o, since € can be taken to be small. Since 88991 =
1cosb @ 1 sind
T COSé and T 7 cosf’ we have

o= f1d91 +Bl +7"2d9 _ (fl + r? cos@l)de o r Smed’l"—FBl,

K cos0
do = dg, fi A dfy + ds, B + doy A B + Z=di A dB

= (ds, 1 — 1) A dby +ds, B + F= Ccooss‘g dF A dé,

where dg, is the exterior derivative in the Si-direction and Bl = 2—911. Writing

Y = X + ad; + b0y,, where X € T'S;, we solve for Y in iy da = —(cosf;)a.
We compute:

X Jdo =ixds, 1 + (ds, f1(X) — B1(X))d0y,

272 c0591
k272 cos d@

bdp, s da = b(fBy — dslfl) — b <0 g,

alr oda = a

Comparing the coefficients of d7* and df; and the .S1-component, we obtain

b= —%rsm@
ixds, B1 = —(cos01)B1 + 5Fsin 0(81 — ds, f1),
k2~2

= c?sseel (—(cosOy1) f1 + Bl(X) —dg, f1(X)) — kr cos 0.
By the b0y, term in Y, unless 7 = 0, one either flows to the binding or to ; = 0

or 7. If 61 = 7, then 0 = 0 or 7 and X is the Liguville vector field of 81. One then
flows to 357 and hence into T3. If 61 = 0, then # = 0 and X is minus the Liouville
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vector field of 31. One then flows to a zero of X on Sq;thena = — k;r’f fi— % <0
and 7 — 1 along the flow, which means one flows to the binding.

Remark B.4.5. As an aid to understanding 75, consider the situation when dim M =
3. Then Zj, C S, and is Morse. The topological determination of Z; C D? x St

is straightforward and we see that the characteristic foliation on Zj has one index

0 critical point and % index 1 critical points; see Figure B.4.3 for an illustration in

the case k = 6.

FIGURE B.4.3. The characteristic foliation on Z.

STEP 8. Damping property.

We finally prove the damping property for (By), W(k)).

On the region M\ No(B), the page Sy restricts to Up<j<xSo—2j /M7 > €'}
Since (B, ) is damped, the actions of the Reeb chords are close to %A(B ST, Q) RS
,3—:1 in view of Eq. (B.1.2) with the normalization co = 1.

On the region Ne/(B) — Neo(B()), by Eq. (B.4.14), the relevant component of
R, is close to hdp, + %69 = h(0p, + %89) and the actions of the Reeb chords are
close to 27/h. (We can see this for example from ds ;) (9, + %89) = 15(k)-)

On the region Nca(B(k)), in view of the modifications (a)—(c) from Step 6, the
actions of the Reeb chords are close to A(By, 71, A) &~ 27“ Taken together, (B’, 7')
is damped with respect to a C'-small perturbation of o/'.

This completes the proof of Proposition B.0.1.
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