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ABSTRACT. We lay the foundations of convex hypersurface theory (CHT) in
contact topology, extending the work of Giroux in dimension three. Specifi-
cally, we prove that any closed hypersurface in a contact manifold can be C0-
approximated by a convex one. We also prove that a C0-generic family of mu-
tually disjoint closed hypersurfaces parametrized by t ∈ [0, 1] is convex except
at finitely many times t1, . . . , tN , and that crossing each ti corresponds to a
bypass attachment. As applications of CHT, we prove the existence of compati-
ble (relative) open book decompositions for contact manifolds and an existence
h-principle for codimension 2 contact submanifolds.
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1. INTRODUCTION

1.1. Convex contact structures. Morse theory is a topologist’s favorite tool for
exploring the structure of manifolds. The significance of Morse theory — here
we mean the traditional finite-dimensional version, not Floer theory — in contact
and symplectic topology was advocated by Eliashberg and Gromov in [EG91].
In particular, according to [EG91, Definition 3.5.A], a contact manifold (M, ξ) is
convex if there exists a Morse function, called a contact Morse function, which
admits a gradient-like vector field whose flow preserves ξ. Just as a manifold can
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be reconstructed from its Morse function by a sequence of handle attachments in
traditional Morse theory, a contact manifold can be reconstructed from a contact
Morse function by a sequence of contact handle attachments. The analogous theory
in symplectic topology is known as the theory of Weinstein manifolds.

Eliashberg and Gromov asked in [EG91] whether there exist non-convex contact
manifolds. Around 2000 Giroux gave a negative answer to the question by show-
ing that every closed contact manifold is convex; see [Gir02]. This can also be
formulated as his celebrated correspondence between contact structures and open
book decompositions. This is in sharp contrast to the theory of Weinstein mani-
folds, where it is relatively easy to see that any compatible Morse function cannot
have critical points of index greater than half of the dimension of the manifold.

Remark 1.1.1. It might be the case that “convexity” is one of the most abused
terminologies in mathematics. We will not use the term “convex contact manifold”
in the sense of Eliashberg and Gromov for the rest of the paper.

At this point, the question bifurcates into two:

Question 1.1.2. How do we establish Morse theory on contact manifolds?

Question 1.1.3. How do we use Morse theory to better understand contact mani-
folds?

Let us first address Question 1.1.2, which was first answered by Giroux in both
dimension 3 and in higher dimensions. Giroux used two completely different sets
of techniques to treat the 3-dimensional and higher-dimensional cases.

We first discuss the 3-dimensional case. In his thesis [Gir91], Giroux introduced
what is now known as convex surface theory into 3-dimensional contact topology.
It is an extremely powerful and efficient way of studying embedded surfaces in
contact 3-manifolds, and can recover most of the pioneering results of Bennequin
[Ben83] and Eliashberg [Eli92]. Using convex surface theory, Giroux showed that
for closed contact 3-manifolds, there is a one-to-one correspondence between iso-
topy classes of contact structures and compatible open book decompositions up to
positive stabilization.

Before moving onto higher dimensions, let us recall the definition of a convex
hypersurface following [Gir91]:

Definition 1.1.4. A hypersurface Σ ⊂ (M, ξ) is convex if there exists a contact
vector field v, i.e., a vector field whose flow preserves ξ, which is transverse to Σ
everywhere.

Observe that regular level sets of a contact Morse function are convex hypersur-
faces.

The situation in dimensions > 3 is quite different. Besides the fact that con-
vex hypersurfaces can be defined in any dimension, until now there has been no
systematic convex hypersurface theory. Giroux’s proof [Gir02, Gir17] that ev-
ery closed contact manifold is convex involves a completely different technology,
i.e., Donaldson’s [Don96] technique of approximately holomorphic sections, trans-
planted into contact topology independently by Ibort, Martı́nez-Torres, and Presas
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[IMTP00] and by Mohsen [Moh, Moh19]. Donaldson used the approximate holo-
morphic technology to construct real codimension 2 symplectic hypersurfaces of
a closed symplectic manifold as the zero locus of an approximately holomorphic
section of a complex line bundle, while [IMTP00] and [Moh, Moh19] constructed
certain codimension 2 contact submanifolds of a closed contact manifold. What
Giroux realized is that [Don96], [IMTP00], and [Moh, Moh19] could be used to
produce compatible open book decompositions. Roughly speaking, given a closed
contact manifold (M, ξ = kerα), one considers the trivial line bundle C on M
equipped with a suitable Hermitian connection determined by α. Then there exists
a section s : M → C whose zero locus B := s−1(0) is a closed codimension 2
contact submanifold called the binding, and

s

|s|
:M \B → S1

is a smooth fibration defining the compatible open book decomposition of (M, ξ).
As a consequence of using the approximate holomorphic technology, the higher-
dimensional Giroux correspondence (see Corollary 1.3.1) is a much weaker state-
ment compared to its 3-dimensional counterpart.

1.2. Main results. The main goal of this paper is to systematically generalize
Giroux’s convex surface theory to all dimensions. The main results of convex hy-
persurface theory (CHT) are Theorems 1.2.3 and 1.2.5. In fact, even in dimension
3, our method (see Section 4) differs somewhat from Giroux’s original approach,
is simpler, and is consistent with our more general approach in higher dimensions.

We first introduce some more terminology describing the anatomy of a convex
hypersurface.

Definition 1.2.1. Let Σ ⊂ (M, ξ = kerα) be a convex hypersurface with respect
to a transverse contact vector field v. Define the dividing set Γ(Σ) := {α(v) = 0}
and R±(Σ) := {±α(v) > 0} as subsets of Σ.

It turns out that Γ(Σ) ⊂ (M, ξ) is a codimension 2 contact submanifold, and
R±(Σ) are (complete) Liouville manifolds with Liouville form given by a suitable
rescaling of α|R±(Σ), respectively. Moreover, the isotopy classes of Γ(Σ), R±(Σ)
are independent of the choices of v and α.

In dimensions ≥ 4, there exist Liouville manifolds that are not Weinstein by Mc-
Duff [McD91], Geiges [Gei94, Gei95], Mitsumatsu [Mit95], and Massot, Nieder-
krüger, and Wendl [MNW13]. While these “exotic” Liouville manifolds are great
for constructing (counter-)examples, there currently is no systematic understand-
ing of such non-Weinstein Liouville manifolds, partially because of the lack of an
appropriate Morse theory on such manifolds. This is slowly starting to change: For
example it was recently shown in [EOY] that a stabilized Liouville manifold with
the homotopy type of a half-dimensional CW-complex is symplectomorphic to a
flexible Weinstein manifold and in [BC] that the stabilizations of Mitsumatsu’s Li-
ouville domains are Weinstein domains.1 This motivates the following definition:

1Note the latter involves Liouville domains, which is a much harder problem.
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Definition 1.2.2. A convex hypersurface Σ is Weinstein (resp. 1-Weinstein) convex
if R+(Σ) and R−(Σ) are Weinstein (resp. 1-Weinstein).

Here a Liouville domain that admits a Liouville vector field which is gradient-
like with respect to a “1-Morse” function which also admits critical points of birth-
death type) will be called a 1-Weinstein domain (instead of a generalized Weinstein
domain) in this paper.

Weinstein convex hypersurfaces admit a Morse-theoretic interpretation, given in
Proposition 2.3.3.

Now we are ready to state the foundational theorems of CHT.

Theorem 1.2.3. Any closed oriented hypersurface in a contact manifold can be
C0-approximated by a Weinstein convex one.

Remark 1.2.4. The C∞-version of Theorem 1.2.3 remains open. Mori’s candidate
counterexample in [Mor] was shown by Breen [Bre21] to actually admit a C∞-
small approximation by a convex one.

Theorem 1.2.5. Let ξ be a contact structure on Σ× [0, 1] such that the hypersur-
faces Σ × {0, 1} are Weinstein convex. Then, up to a boundary-relative contact
isotopy, there exists a finite sequence 0 < t1 < · · · < tN < 1 such that the
following hold:

• Σ× {t} is 1-Weinstein convex if t ̸= ti for any 1 ≤ i ≤ N .
• For each i, there exists a small ϵ > 0 such that ξ restricted to Σ × [ti −
ϵ, ti + ϵ] is contactomorphic to a bypass attachment.

For an initial study of bypass attachments in higher dimensions the reader is
referred to [HH].

Remark 1.2.6. Theorem 1.2.5 was conjectured by Paolo Ghiggini in the afternoon
of April 10, 2015 in Paris.

1.3. Applications. As an immediate application of Theorems 1.2.3 and 1.2.5, we
can extend Giroux’s 3-dimensional approach to constructing compatible open book
decompositions to higher dimensions. This is the content of the following three
corollaries. Note, however, that we do not address the stabilization equivalence of
the compatible open book decompositions in this paper. We plan to investigate this
in future work.

Corollary 1.3.1 ([Gir02]). Any closed contact manifold admits a compatible open
book decomposition, all of whose pages are 1-Weinstein.

Corollary 1.3.2. Any compact contact manifold with convex boundary admits a
compatible partial open book decomposition, all of whose pages are 1-Weinstein
domains or 1-Weinstein cobordisms.

Corollary 1.3.3. Given a possibly disconnected closed Legendrian submanifold Λ
in a closed contact manifold, there exists a compatible open book decomposition
such that all the pages are 1-Weinstein and Λ is contained in a page.
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Remark 1.3.4. Although Corollary 1.3.3 does not appear in the literature, asymp-
totically holomorphic techniques in contact geometry from [IMTP00] and [Moh,
Moh19] — more specifically the combination of Giroux’s existence theorem of
compatible open book decompositions (see Presas [Pre14] for a published proof)
and asymptotically holomorphic symplectic special position theorems for Lagran-
gians in symplectic manifolds [AMnP05] applied to the Lagrangianization of a
Legendrian in the symplectization gives the result.

This completes our exploration of Question 1.1.2 for the time being.
Next we turn to Question 1.1.3, which is a much harder question. For exam-

ple, we would like to obtain classification results for contact structures on higher-
dimensional manifolds (e.g., the spheres) besides the “flexible” ones due to Bor-
man, Eliashberg, and Murphy [BEM15]. Unfortunately, our current understanding
of contact Morse theory is not good enough for us to classify anything in higher di-
mensions. Instead, we will use the (mostly dynamical) techniques developed in this
paper to address the existence problems of contact manifolds and submanifolds.

The existence problems of contact manifolds and submanifolds were first ad-
dressed by Gromov [Gro86] using his magnificent zoo of h-principles. In partic-
ular, he proved a full h-principle for contact structures on open manifolds (see
[EM02, 10.3.2]) and an existence h-principle for isocontact embeddings Y ⊂
(M, ξ) under the assumptions that either Y has codimY ≥ 4 or is open with
codimY = 2.

The existence problem turned out to be much harder for closed manifolds. In
dimension 3, an existence h-principle for contact structures was proved by Martinet
[Mar71] and Lutz [Lut77]. For overtwisted contact 3-manifolds, a full h-principle
was proved by Eliashberg [Eli89]. In dimension 5, there is a rich literature of
partial results: the existence of contact structures on certain classes of 5-manifolds
was established by Geiges [Gei91, Gei97], Geiges-Thomas [GT98, GT01], and
Bourgeois [Bou02]. Afterwards, a complete existence h-principle for contact 5-
manifolds was established by Casals, Pancholi, and Presas [CPP15] (there is also
the approach of of Etnyre [Etn], which currently has a gap). Finally, the existence
h-principle for contact manifolds of any dimension, as well as the full h-principle
for overtwisted contact manifolds of any dimension, was established by Borman,
Eliashberg, and Murphy [BEM15].

So far the story has mostly been about the contact manifolds themselves. Now
we turn to the existence problem of contact submanifolds or (iso-)contact embed-
dings. Results in this direction were surprisingly rare until recently. Besides
the aforementioned h-principle of Gromov, there exist constructions of contact
submanifolds by Ibort, Martı́nez-Torres, and Presas [IMTP00], mentioned earlier.
In low dimensions, there also exist works by Kasuya [Kas16], Etnyre-Furukawa
[EF17], and Etnyre-Lekili [EL] on embedding contact 3-manifolds into certain
contact 5-manifolds.

In the rest of the introduction we will explain the existence h-principle for codi-
mension 2 contact submanifolds. Since the case of open submanifolds has already
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been settled by Gromov, we may assume that all the submanifolds involved are
closed.

Definition 1.3.5. Let (M, ξ) be a contact manifold. A submanifold Y ⊂ M is an
almost contact submanifold if there exists a homotopy (ηt, ωt), t ∈ [0, 1], where
ηt ⊂ TM |Y is a codimension 1 distribution of TM along Y and ωt is a conformal
symplectic structure on ηt, such that:

(1) η0 = ξ|Y and ω0 is induced from ξ|Y ; and
(2) TY ⋔ η1 and the normal bundle TYM ⊂ η1 is ω1-symplectic.

A straightforward calculation (see [BCS14, Lemma 2.17]) shows that any even-
codimensional submanifold with trivial normal bundle is almost contact.

Corollary 1.3.6. Any almost contact submanifold can be C0-approximated by a
genuine contact submanifold.

Corollary 1.3.7. Any (coorientable) contact submanifold can beC0-approximated
by another contact submanifold with the opposite orientation.

Remark 1.3.8. Around the same time as our paper, Casals-Pancholi-Presas [CPP]
proved the existence of iso-contact embeddings in codimension 2. Their work and
ours are equivalent via the work of Pancholi-Pandit [PP] on iso-contact embed-
dings.

Wrapping up the introduction, by combining Corollary 1.3.6 with Gromov’s
h-principle for contact structures on open manifolds, one can deduce the follow-
ing one-half of the groundbreaking(!) theorem of Borman-Eliashberg-Murphy
[BEM15] without too much difficulty:

Corollary 1.3.9 (Borman-Eliashberg-Murphy). The existence h-principle holds
for contact structures on closed odd-dimensional manifolds of dimension 4k + 1,
k ∈ Z+, i.e., there exists a genuine contact structure in the homotopy class of any
almost contact structure on M4k+1.

Our proof of Corollary 1.3.9 follows from producing genuine contact structures
representing each homotopy class of almost contact structures on S2n−1, i.e., prov-
ing the existence h-principle for S2n−1. This is easy for S4k+1 (via connected sums
of Brieskorn manifolds) and is much more involved for S4k+3.

The proofs of Corollaries 1.3.6, 1.3.7, and 1.3.9 will be given in Section 11. We
note that the proof of [CPP] relies on [BEM15] and cannot be used to prove it.
Finally, note that in contrast to the contact structures constructed in [BEM15], the
contact submanifolds constructed by Corollary 1.3.6 are not a priori overtwisted.

Acknowledgments. KH is grateful to Yi Ni and the Caltech Mathematics Depart-
ment for their hospitality during his sabbatical. YH thanks the geometry group
at Uppsala: Georgios Dimitroglou Rizell, Luis Diogo (his officemate), Tobias
Ekholm, Agnès Gadbled, Thomas Kragh, Wanmin Liu, Maksim Maydanskiy and
Jian Qiu for conversations about Everything during the period 2017–2019. We
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2. A CONVEXITY CRITERION

Let Σ ⊂ (M2n+1, ξ) be a closed cooriented hypersurface. The goal of this
section is to give a sufficient condition for the characteristic foliation Σξ on Σ (see
Definition 2.1.1) which guarantees the Weinstein convexity of Σ.

2.1. Characteristic foliations. Let α be a contact form for ξ. Let (−ϵ, ϵ)× Σ be
a tubular neighborhood of Σ = {0} × Σ ⊂ M . Fix an orientation on Σ such that
the induced orientation on (−ϵ, ϵ) × Σ agrees with the orientation determined by
α ∧ (dα)n. We now introduce the characteristic foliation Σξ on Σ.

Definition 2.1.1. The characteristic foliation Σξ is an oriented singular line field
on Σ defined by

Σξ = ker dβ|kerβ,

where β := α|Σ ∈ Ω1(Σ). The orientation of Σξ is determined by requiring that
the decomposition TΣ = Σξ ⊕ Σ⊥

ξ respect orientations, where the orthogonal
complement Σ⊥

ξ , taken with respect to an auxiliary Riemannian metric on Σ, is
oriented by β ∧ (dβ)n−1|Σ⊥

ξ
.

Remark 2.1.2. The characteristic foliation depends only on the contact structure
and the orientation of Σ, and not on the choice of the contact form.

Note that x ∈ Σ is a singular point of Σξ if TxΣ = ξx as unoriented spaces. We
say x is positive (resp. negative) if TxΣ = ±ξx as oriented spaces, respectively.

The significance of the characteristic foliation in 3-dimensional contact topol-
ogy is that it uniquely determines the germ of contact structures on any embedded
surface. The corresponding statement for hypersurfaces in contact manifolds of
dimension > 3 is unlikely to hold, i.e., the characteristic foliation by itself is not
enough to determine the contact germ. Instead we have the following characteriza-
tion of contact germs on hypersurfaces in any dimension. The proof is a standard
application of the Moser technique and is omitted here.

Lemma 2.1.3. Suppose ξi = kerαi, i = 0, 1, are contact structures on M such
that β0 = gβ1 ∈ Ω1(Σ) for some g : Σ → R+, where βi = αi|Σ. Then there
exists an isotopy ϕs : M

∼→ M, s ∈ [0, 1], such that ϕ0 = idM , ϕs(Σ) = Σ and
(ϕ1)∗(ξ0) = ξ1 on a neighborhood of Σ.
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Generally speaking, Σξ can be rather complicated, even when Σ is convex with
Liouville R±(Σ). For our purposes of this paper, it is more convenient to regard
Σξ as a vector field rather than an oriented line field. Of course there is no natural
way to specify the magnitude of Σξ as a vector field, which motivates the following
definition: Two vector fields v1, v2 on Σ are conformally equivalent if there exists
a positive function h : Σ → R+ such that v1 = hv2. This is clearly an equivalence
relation among all vector fields, and we will not distinguish conformally equivalent
vector fields in the rest of the paper unless otherwise stated.

In order to state the convexity criterion, we need to prepare some generalities on
gradient-like vector fields in the following subsection. Our treatment on this sub-
ject will be kept to a minimum. The reader is referred to the classical works of Cerf
[Cer70] and Hatcher-Wagoner [HW73] for more thorough discussions. Indeed the
adaptation of the techniques of Cerf and Hatcher-Wagoner to CHT is carried out in
[BHH]. Note that similar techniques in symplectic topology have been developed
by Cieliebak-Eliashberg in [CE12].

2.2. Morse and 1-Morse vector fields. Let Y be a closed manifold of dimension
n. A smooth function f : Y → R is Morse if all the critical points of f (i.e., points
p ∈ Y such that df(p) = 0) are nondegenerate, i.e., there exist local coordinates
x1, . . . , xn about p such that locally f takes the form

(2.2.1) −x21 − · · · − x2k + x2k+1 + · · ·+ x2n.

Here k is called the Morse index, or just the index, of the critical point p. We write
ind(p) = k.

A smooth function f : Y → R is 1-Morse if the critical points of f are either
nondegenerate or of birth-death type. Here a critical point p ∈ Y of f is of birth-
death type (also called embryonic) if there exist local coordinates x1, . . . , xn about
p such that f takes the form

(2.2.2) −x21 − · · · − x2k + x2k+1 + · · ·+ x2n−1 + x3n.

Similarly, k is defined to be the (Morse) index of p. The birth-death type critical
point fits into a 1-parameter family of 1-Morse functions

−x21 − · · · − x2k + x2k+1 + · · ·+ x2n−1 + txn + x3n,

such that for t < 0, there exist two nondegenerate critical points of indices k and
k + 1; for t = 0, there exists a birth-death type critical point; and for t > 0, there
are no critical points.

It is a well-known fact due to Morse that any smooth function can be C∞-
approximated by a Morse function. Moreover, Cerf proved that any 1-parameter
family of smooth functions can be C∞-approximated by a family of 1-Morse func-
tions, where the birth-death type critical points as above occur only at isolated
moments.

Given a 1-Morse function f : Y → R, we say a vector field v on Y is gradient-
like for f if the following two conditions are satisfied:
(GL1) Near each critical point of f , v = ∇f with respect to some Riemannian

metric; and
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(GL2) f is strictly increasing along (non-constant) flow lines of v.

Definition 2.2.1.
(1) A vector field v on Y is Morse (resp. 1-Morse) if there exists a Morse (resp.

1-Morse) function f : Y → R such that v is gradient-like for f .
(2) A 1-parameter family of vector fields (vt)t∈[0,1] is a 1-Morse family if each

vt is 1-Morse and there exist t1 < · · · < tk ∈ (0, 1) such that the birth-
death type singularities occur only at ti and there is a single birth-death
type singularity at each ti.

We also make the slightly nonstandard definition:

Definition 2.2.2. A Liouville domain is 1-Weinstein if its Liouville vector field is
gradient-like with respect to a 1-Morse function.

Remark 2.2.3. 1-Morse functions will be sufficient for the purposes of this paper
since we will only encounter 1-parameter families of functions. In [BHH], we
will need to deal with generic 2-parameter families of functions (called 2-Morse
functions) where new singularities, i.e., the swallowtails, appear.

Convention 2.2.4. A flow line ℓ : (a, b) → Y of a vector field v on Y is assumed
to be a maximal oriented smooth trajectory R → Y that has been precomposed
with an orientation-preserving reparametrization (a, b)

∼→ R. A partial flow line
is the restriction of a flow line to a subinterval.

Definition 2.2.5. A broken flow line (resp. possibly broken flow line) of a vector
field v on Y is a continuous map ℓ : [a, b] → Y such that there exists an increasing
sequence a = a0 < a1 < · · · < am = b withm > 1 (resp.m ≥ 1) such that ℓ(aj),
j = 0, . . . ,m, are zeros of v and ℓ|(aj ,aj+1), j = 0, . . . ,m− 1, are flow lines of v.
We may also replace [a, b] by half-open or open intervals.

In the rest of this subsection, we present a simple criterion for a vector field to be
Morse which will be useful for our later applications. The corresponding version
for 1-Morse vector fields is left to the reader as an exercise.

Proposition 2.2.6. A vector field v on a closed manifold Y is Morse (resp. 1-
Morse) if and only if the following conditions are satisfied:

(M1) For any point x ∈ Y with v(x) = 0, there exists a neighborhood of x and a
locally defined function f of the form given by Eq. (2.2.1) (resp. Eq. (2.2.1)
or Eq. (2.2.2)) such that v = ∇f .

(M2) For any point x ∈ Y with v(x) ̸= 0, the flow line of v passing through x
converges to zeros of v in both forward and backward time.

(M3) There exist no possibly broken loops, i.e., a possibly broken flow line ℓ :
[0, 1] → Y such that ℓ(0) = ℓ(1).

Proof. The “only if” direction is obvious. To prove the “if” direction, let Z(v) =
{x1, . . . , xk} be the finite set of zeros of v, where the finiteness is guaranteed by
(M1) and the compactness of Y . Then we define a partial order on Z(v) such that
xi ≺ xj if there exists a flow line of v from xi to xj . The fact that ≺ is a partial
order follows from (M3).
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We then construct a handle decomposition of Y starting from the minimal ele-
ments Z0 of Z(v) (note that a minimal element of Z(v) has index 0 by (M2)) and
inductively attaching handles as follows: Starting with a standard neighborhood of
Z0, suppose we have already attached the handles corresponding to Zj . Then we
attach the handles corresponding to the minimal elements of Z(v) − Zj , and then
let Zj+1 be the union of Zj and the minimal elements of Z(v)− Zj . □

2.3. A convexity criterion. The goal of this subsection is to give a sufficient con-
dition for a hypersurface to be Weinstein convex. To this end, we introduce the
notions of Morse and Morse+ hypersurfaces whose characteristic foliations have
particularly simple dynamics.

Definition 2.3.1.
(1) A hypersurface Σ ⊂ (M, ξ) is Morse (resp. 1-Morse) if there exists a rep-

resentative v in the conformal equivalence class of Σξ which is a Morse
(resp. 1-Morse) vector field on Σ. We say Σ is Morse+ (resp. 1-Morse+) if,
in addition, there exist no flow trajectories from a negative singular point
of v to a positive one.

(2) A 1-parameter family of hypersurfaces (Σt)t∈[0,1] is a 1-Morse family, if
((Σt)ξ)t∈[0,1] is represented by a 1-Morse family.

Lemma 2.3.2. If Σ is a Morse hypersurface, then a C∞-small perturbation of Σ
is Morse+.

Proof. Choose a contact form ξ = kerα. It suffices to observe that dα|Σ is non-
degenerate on a neighborhood of the singular points of Σξ. It is a standard fact (see
e.g. [CE12, Proposition 11.9]) that the Morse index ind(x) ≤ n if x is a positive
singular point of Σξ, and ind(x) ≥ n if x is negative. The claim therefore follows
from the usual transversality argument. □

The following proposition gives a sufficient condition for convexity:

Proposition 2.3.3.
(1) A 1-Morse+ hypersurface Σ is convex.
(2) A hypersurface Σ is Weinstein convex if and only if it is Morse+.

Proof. (1) is a straightforward generalization of the usual proof for surfaces due to
Giroux that Σ is convex if it has a Morse+ characteristic foliation.

Let x = {x1, . . . , xm} (resp. y = {y1, . . . , yℓ}) be the positive (resp. negative)
singular points of Σξ. Then dβ is nondegenerate on a small open neighborhood
U(x) of x, where β := α|Σ. Let Wxi be the stable manifold of xi with respect to
the gradient of the 1-Morse function and let the ith skeleton Ski be the closure of
Wx1 ∪ · · · ∪Wxi . We order the points of x so that Wxi+1 intersects the boundary
of a small open neighborhood of Ski along a sphere if xi+1 is a Morse critical
point and along a disk if xi+1 is an embryonic point. In particular we necessarily
have ind(x1) = 0, but we do not require ind(xi) ≥ ind(xj) for i > j. Such an
arrangement is possible thanks to the assumption that there is no flow line of Σξ

going from y to x.
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There exists a conformal modification β ⇝ gβ, where g is a positive function, so
that it becomes Liouville on a tubular neighborhoodU(Skm) of Skm and ∂U(Skm)
is contact: Arguing by induction, suppose that β is Liouville on U(Ski) such that
∂U(Ski) is contact. During the induction we will often reset notation, i.e., modify
β ⇝ gβ and call the result the new β. We will explain the case where xi+1 is
Morse and Wxi+1 ∩ ∂U(Ski) is a Legendrian sphere Λ ⊂ ∂U(Ski); the other
cases are similar. Using the flow of Σξ, we may identify a tubular neighborhood of
Wxi+1 \ (U(Ski) ∪ U(xi+1)) with [0, 1]r × Y , where Y is an open neighborhood
of the 0-section in J1(Λ) such that:

• {0} × Y ⊂ ∂U(Ski);
• {1} × Y ⊂ ∂U(xi+1); and
• ∂r is identified with Σξ.

It follows that one can write β = gλ on [0, 1]× Y , where λ is a contact form on Y
and g is a positive function on [0, 1]× Y . Note that

dβ = ∂rgdr ∧ λ+ dY g ∧ λ+ gdλ

is symplectic if ∂rg > 0. By assumption we have ∂rg > 0 when r is close to 0 or 1.
Rescaling β|U(xi+1) by a large constant K ≫ 0, we can extend β|U(Ski)∪U(xi+1) to
a Liouville form on U(Ski+1). Moreover, we can assume ∂U(Ski+1) is transverse
to Σξ by slightly shrinking U(Ski+1). Hence by induction we can arrange so that
β is a Liouville form on U(Skm).

The treatment of the negative singular points of Σξ is similar. Let Sk′ℓ be the
closure of the union of the unstable manifolds of y. Then by the same argument we
can assume that β is a Liouville form on −U(Sk′ℓ), where the minus sign indicates
the opposite orientation.

Using the flow of Σξ, we can identify Σ\ (U(Skm)∪U(Sk′ℓ)) with Γ× [−1, 1]s
such that:

• Γ× {−1} is identified with ∂U(Skm);
• Γ× {1} is identified with ∂U(Sk′ℓ); and
• R⟨∂s⟩ = Σξ.

We can write β = hη near Γ × {−1, 1}, where η is a contact form on Γ and
h = h(s) is a positive function such that h′(s) > 0 near Γ × {−1} and h′(s) < 0
near Γ×{1}. Extend h to a positive function Γ× [−1, 1] → R such that h′(s) > 0
for s < 0, h′(0) = 0, and h′(s) < 0 for s > 0. Let f = f(s) : Γ × [−1, 1] → R
be a nonincreasing function of s such that f(−1) = 1, f(0) = 0, f(1) = −1,
f ′(0) < 0, and f (n)(−1) = 0 = f (n)(1) for all n ≥ 1. Then define ρ = fdt+ hη
on Rt×Γ× [−1, 1], ρ = dt+β on R×U(Skm), and ρ = −dt+β on R×U(Sk′yℓ

).
We leave it to the reader to check that ρ is contact and that ρ|{0}×Σ agrees with α|Σ
up to an overall positive function. (1) now follows from Lemma 2.1.3.

(2) The “if” direction follows from the proof of (1) and the “only if” direction is
clear. □



CONVEX HYPERSURFACE THEORY IN CONTACT TOPOLOGY 13

3. CONSTRUCTION OF MUSHROOMS IN DIMENSION 3

In order to make a hypersurface Σ ⊂ (M, ξ) Weinstein convex, we would like
to modify the characteristic foliation Σξ so it is directed by a Morse vector field
and then apply Proposition 2.3.3. (Note that going from Morse to Morse+ is a
C∞-generic operation which can always be done by Lemma 2.3.2.) This will be
achieved by certain C0-small perturbations of Σ which we call mushrooms. The
mushrooms are most easily described in dimension 3 and the general case will be
constructed in Section 5 using 3-dimensional mushrooms. It turns out that mush-
rooms alone are enough to make any Σξ Morse if dimΣ = 2. If dimΣ > 2,
then mushrooms are not quite sufficient and we will need an additional technical
construction in Section 7.

The standard model of a mushroom will be constructed in a Darboux chart

(R3
z,s,t, ξ = kerα), α = dz + esdt.

Let Σ = {z = 0} be the surface under consideration with normal orientation ∂z
and characteristic foliation Σξ directed by ∂s. The goal of this section is to “fold”
Σ to obtain another surface Z which coincides with Σ outside of a compact set,
and analyze the change in the dynamics of the characteristic foliations.

In §3.1 we construct a piecewise linear (PL) model ZPL and then in §3.2 we
round the corners of ZPL to obtain a suitably generic smooth surface Z such that
the characteristic foliation Zξ has the desired properties.

Remark 3.0.1. In an earlier version of the paper we constructed a mushroom whose
base was smaller than the cap and discussed “mushroom packing ratios”. In the
current version they approximately have the same size and can be packed tightly.

3.1. Construction of ZPL. Choose a rectangle □ = [0, s0] × [0, t0] ⊂ Σ, where
s0, t0 > 0. We define ZPL to coincide with Σ outside of □.

Remark 3.1.1. The more general case [s−1, s0]× [t−1, t0] can be computed analo-
gously. In what follows we can replace 1− e−s0 by e−s−1 − e−s0 and the s-width
S (ZPL) becomes s0 − s−1.

Choose z0 > 0. We construct three rectangles P0, P2, P4 and two parallelo-
grams P1, P3 in R3, which, together with R2

s,t \□, glue to give ZPL, i.e., we define

• P0 := [0, s0]× [−e−s0/2z0,−e−s0/2z0 + t0] ⊂ {z = z0};
• Pi, i = 1, . . . , 4, are the faces (̸= P0,□) of the convex hull of P0 ∪ □

(which is a parallelepiped), ordered counterclockwise so that P1 ⊂ {s =
0}.

Definition 3.1.2. We define the PL surface

ZPL := (Σ \□) ∪ (∪0≤i≤4Pi).

The rectangle □ ⊂ Σ (resp. P0) is called the base (resp. cap) of the PL mushroom
and ∪0≤i≤4Pi is called the PL mushroom. We refer to the modification Σ ⇝ ZPL

as “growing a PL mushroom”.
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□

P0

s

t

z

FIGURE 3.1.1. The PL model ZPL. Here P0 is the top face; P1

and P3 are the front and back faces, respectively; P2 and P4 are the
right and left faces, respectively; and □ is the bottom face which
is not part of ZPL.

Observe that, away from the corners, the characteristic foliation (ZPL)ξ on ZPL

satisfies
• (ZPL)ξ = R⟨∂s⟩ on Σ \□ and P0;
• on P2 (resp. P4), (ZPL)ξ is directed by ∂s (resp. −∂s) for s ∈ [0, s02 ), is

singular along s = s0
2 , and is directed by −∂s (resp. ∂s) for s ∈ ( s02 , s0];

• (ZPL)ξ is the linear foliation on P1 and P3 with “slopes” −1 and −e−s0 ,
respectively, where “slope” refers to the value of dt/dz = −e−s. See
Figure 3.1.2.

We refer to the singular line segments on P2 and P4 by S− and S+ indicating
their signs.

FIGURE 3.1.2. The linear characteristic foliations on P1 (left)
and P3 (right) where ZPL is sufficiently thin.

We now analyze the dynamics of the PL flow onZPL. Note that the flow lines are
not necessarily uniquely determined by the initial conditions due to the presence
of corners.

We begin by introducing a few quantities which characterize the various sizes
of the mushrooms.

Definition 3.1.3. Given ZPL as above, its z-height, s-width, and t-width are given
by:

Z (ZPL) := z0, S (ZPL) := s0, T (ZPL) := t0.

The following lemma characterizes a key feature of (ZPL)ξ when the parameters
of the mushrooms are appropriately adjusted.

Lemma 3.1.4. Fix s0, z0 > 0. If t0 < (1− e−s0)z0, then
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(1) the unique flow line of (ZPL)ξ passing through (−1, a) ∈ R2
s,t, where

a ∈ (0, t0), either hits P0 ∩ P2 or converges to S− in forward time;
(2) the unique flow line of (ZPL)ξ passing through (s0 + 1, a), a ∈ (0, t0),

either hits P0 ∩ P4 or converges to S+ in backward time; and
(3) all the flow lines of (ZPL)ξ passing through (−1, a), a ̸∈ [0, t0], or (s0 +

1, a), a ̸∈ [0, t0], are unaffected.

Proof. (1) Since t0− z0(1− e−s0) < 0, it follows that the unique flow line passing
through the point (−1, a) ∈ Σ with a ∈ (0, t0) does one of three things in forward
time:

• travels over P0, enters P1, and ends at S−;
• travels over P0 into P0 ∩ P2 (this happens with only one flow line); or
• travels over P0, P1, P2 in that order, enters P1, and ends at S−.

See Figure 3.1.3. (2) is similar and (3) is clear. □

FIGURE 3.1.3. Flow lines of (ZPL)ξ limiting to S− in red (the
generic case) and one flow line limiting to P0 ∩ P2.

3.2. Smoothing of ZPL. In this subsection we construct a smoothing of ZPL.

Construction of the smoothing Z. Choose a small smoothing parameter δ > 0 and
a smooth “profile function” ϕ : [0, z0] → [−δ, δ] such that ϕ(0) = δ, ϕ(z0) = −δ
and has “derivative −∞” at z = 0, z0.

For each z′ ∈ (0, z0), the slices Rz′ := ZPL ∩ {z = z′} are rectangles. When
z′ = 0 or z0, we take Rz′ = ∂(ZPL ∩ {z = z′}). For each δ′ ∈ R with |δ′| small,
let Rδ′

z′ ⊂ {z = z′} be the rectangle concentric to Rz′ and whose side lengths are
δ′ larger. Then let R̃δ′

z′ ⊂ {z = z′} be a smoothing of Rδ′
z′ contained in the closure

of the region between Rδ′
z′ and Rδ′−δ

z′ , which:

(R1) agrees with Rδ′
z′ on the complement of the open δ-neighborhoods of the

edges of Rδ′
z′ parallel to t = const;

(R2) has nonzero curvature on these δ-neighborhoods and is tangent to Rδ′
z′ pre-

cisely at the midpoints of the edges of Rδ′
z′ (i.e., when s = s0/2); and

(R3) is smoothly varying with z′ and δ′.
The ϕ-smoothingZ ofZPL with smoothing parameter δ > 0 and profile function

ϕ is obtained by modifying ZPL as follows:
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(1) replace Rz′ by R̃ϕ(z′)
z′ for z ∈ (0, z0);

(2) remove the bounded component of {z = 0} \ R̃ϕ(0)
0 ; and

(3) adjoin the closure of the bounded component of {z = z0} \ R̃ϕ(z0)
z0 .

The base of the mushroom □̃ ⊂ Σ of Z is the closure of Σ \ Z and the mushroom
is the closure of Z \Σ. By construction □̃ converges to □ when all the parameters
tend to zero.

The following proposition describes the key dynamical properties of Zξ.

Proposition 3.2.1. Given ZPL with parameters s0, z0, t0, ϵ satisfying t0 < (1 −
e−s0)z0, there exists a smoothing Z of ZPL with small smoothing parameter δ >
0 and profile function ϕ : [0, z0] → [−δ, δ] whose vector field Zξ satisfies the
following properties:

(TZ0) Zξ is gradient-like with respect to a Morse function fa : Z̃ → R which
agrees with s outside of □̃.

(TZ1) Zξ has four nondegenerate singularities: a positive source e+ and a posi-
tive saddle h+ near the midpoint of R2

s,t ∩ P4, and a negative sink e− and
a negative saddle h− near the midpoint of R2

s,t ∩ P2.
(TZ2) There is a unique flow line each from e+ to h+, from e+ to h−, from h+

to e−, and from h− to e−, and the four flow lines bound a quadrilateral
whose interior consists of flow lines from e+ to e−.

(TZ3) There exist κ1 > κ2 > κ3 > 0 > κ4 > κ5 > κ6 such that all κi → 0 as
δ → 0 and the following hold:
(1) the stable manifold of h+ (resp. h−) intersects the line {s = −1} at

(−1, t0 + κ2) (resp. (−1, κ4)),
(2) the unstable manifold of h+ (resp. h−) intersects the line {s = s0+1}

at (s0 + 1, t0 + κ3) (resp. (s0 + 1, κ5)),
(3) any flow line passing through (−1, a), a ∈ (κ4, t0+κ2), converges to

e− in forward time,
(4) any flow line passing through (s0+1, a), a ∈ (κ5, t0+κ3), converges

to e+ in backward time,
(5) a flow line passes through (−1, a), a ̸∈ [κ6, t0 + κ1], if and only if it

passes through (s0 + 1, a), a ̸∈ [κ6, t0 + κ1],
(6) a flow line passes through (−1, a), a ∈ (t0 + κ2, t0 + κ1), if and only

if it passes through (s0 + 1, a′), a′ ∈ (t0 + κ3, t0 + κ1),
(7) a flow line passes through (−1, a), a ∈ (κ6, κ4) if and only if it passes

through (s0 + 1, a′), a′ ∈ (κ6, κ5).
(TZ4) The flow lines described in (TZ2) and (TZ3) are all the flow lines that

nontrivially intersect the mushroom.

In words, Zξ blocks all flow lines that pass through an open interval that is close
to {−1}×(0, t0), slightly bends unblocked flow lines that pass through points close
to (−1, 0) and (−1, t0) (with bending → 0 as the smoothing parameter δ → 0),
and leaves all other flow lines passing through s = −1 untouched.
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See Figure 3.2.1 for an illustration of the effect of a mushroom on the charac-
teristic foliation and also the values of t where certain flow lines in (TZ3) intersect
s = −1 or s = s0 + 1.

mushroom
h+ h−

e+

e−

t0 + κ1 t0 + κ2 κ4 κ6

t0 + κ1 t0 + κ3 κ5κ6

FIGURE 3.2.1. The characteristic foliations before and after a
mushroom. The numbers t0 + κ1 etc. are the t-coordinates where
the indicated flow lines intersect s = −1 or s = s0+1; see (TZ3).

Proof. Let Z be the smoothing of ZPL from above.
(TZ1) We determine the singular points of Zξ as follows: The first requirement

for ξ to be tangent to Z is for Z to be tangent to ∂s. Since R̃δ′
z′ is tangent to ∂s

exactly at two points by (R2), i.e., when s = s0/2, the singular points lie on the
restriction of Z to the slice s = s0/2.

We now choose ϕ such that ϕ′ < 0 on (0, c0) and (c1, z0) and ϕ′ > 0 on
(c0, c1), where 0 < c0 < c1 ≪ z0. By the choice of ϕ, there are four points where
Z ∩ {s = s0/2} is tangent to ξ ∩ {s = s0/2}. They occur as described in (TZ1)
since ϕ′ = 0 at z = c0, c1, which are both close to z = 0.

(TZ0), (TZ2)–(TZ5) then follow from Lemma 3.1.4. The conditions κ2 > κ3
and κ4 > κ5 are required since the surface Z was obtained from Σ by pushing in
the positive z-direction. □

The following remark will also be very useful later:

Remark 3.2.2. Proposition 3.2.1 also holds with (TZ1) replaced by:
(TZ1’) Zξ has two singularities: a positive birth-death singularity near the mid-

point of R2
s,t ∩ P4 and a negative birth-death singularity near the midpoint

of R2
s,t ∩ P2.

Moreover, there is a foliated 1-parameter family of surfaces from {z = 0} to a
slight upward translate of Z (i.e., in the z-direction) whose characteristic foliations
have no singularities except for Z. For this Z we take ϕ such that ϕ′ < 0 for z ̸= c0
and ϕ′(c0) = 0. Note that the singularities vanish if we take ϕ such that ϕ′ < 0 for
all z.

Convention 3.2.3. In view of Proposition 3.2.1, from now on we assume that all
mushrooms satisfy t0 < (1− e−s0)z0.
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4. CONVEX SURFACE THEORY REVISITED

The goal of this section is to give elementary, Morse-theoretic proofs of The-
orems 1.2.3 and 1.2.5 in dimension 3 using the folding techniques developed in
Section 3. In dimension 3, Theorem 1.2.3 was proved by Giroux in [Gir91] in a
stronger form where C0 is replaced by C∞. Theorem 1.2.5 can be inferred from
Giroux’s work on bifurcations [Gir00] and the bypass-bifurcation correspondence.
The technical heart of Giroux’s work is based on the study of dynamical systems of
vector fields on surfaces, a.k.a., Poincaré-Bendixson theory. In particular, one in-
vokes a deep theorem of Peixoto [Pei62] to prove theC∞-version of Theorem 1.2.3
and much more work to establish Theorem 1.2.5.

Our proof strategy is the following: First apply a C∞-small perturbation of
Σ ⊂ (M3, ξ) such that the singularities of Σξ become Morse. There exists a finite
collection of pairwise disjoint transverse arcs γi, i ∈ I , in Σ such that any flow
line of Σξ passes through some γi. In §4.1 we will construct a 3-dimensional plug
supported on a small flow boxBi = [0, si]×[0, ti], where γi = { si

2 }×(ϵ, ti−ϵ) and
ϵ > 0 is small, such that no flow line that enters through {0}× (ϵ, ti− ϵ) can leave
through {s0}× [0, ti], i.e., they all necessarily converge to singularities in the plug.
Each plug consists of a large number of mushrooms constructed in Section 3. This
proves Theorem 1.2.3. To prove Theorem 1.2.5, we slice Σ× [0, 1] into thin layers
using Σi := Σ × { i

N }, 0 ≤ i ≤ N , for large N such that the difference between
(Σi)ξ and (Σi+1)ξ is small. (By “small” we mean the vector fields in question are
C0-close to each other. The global dynamics of (Σi)ξ may still drastically differ
from that of (Σi+1)ξ.) Within each layer we insert plugs on Σi as in the case of
a single surface so that the isotopy from Σi to Σi+1 is through a 1-Morse family
of surfaces, i.e., (Σt)ξ is a 1-Morse family for all i

N ≤ t ≤ i+1
N . For technical

reasons, it is desirable to eliminate the plugs created on Σi when we reach Σi+1,
replacing them by new plugs on Σi+1, so that one can inductively run from i = 0
to i = N and make all intermediate surfaces 1-Morse. Then the only obstructions
to convexity occur at finitely many instances where the surface is 1-Morse but not
1-Morse+, corresponding to bypass attachments.

This section is organized as follows: In §4.1 we describe 3-dimensional plugs
and in §4.4 we explain how to “install” and “uninstall” plugs. The higher-dimen-
sional plugs will be described in Section 7. We then use this technology to prove
Theorem 1.2.3 in §4.3 and Theorem 1.2.5 in §4.5.

4.1. 3-dimensional plugs. The construction of a plug is local. Consider M =
[−z0, z0]× [0, s0]× [0, t0] with coordinates (z, s, t), contact form α = dz + esdt,
and contact structure ξ = kerα. Here z0, s0, t0 > 0 are arbitrary, but for most of
our applications, we should think of z0, s0 as being much smaller than t0. In other
words, the condition t0 < (1− e−s0)z0 in Proposition 3.2.1 will not be satisfied.

Consider the surface B = {0}× [0, s0]× [0, t0] with Bξ = R⟨∂s⟩. We will refer
to (M,α) as a standard contact neighborhood of B with parameters s0, t0, z0. Let
∂−B = {0} × {0} × [0, t0] and ∂+B = {0} × {s0} × [0, t0]. Pick a large integer
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N such that N ≡ 3mod 4. Let □k,l ⊂ B be boxes defined by

□k,l :=

[
2l − 1

5
s0,

2l

5
s0

]
×
[
4k + 2l − 1

N
t0,

4k + 2l + 2

N
t0

]
,

where 0 ≤ k < ⌊N/4⌋, l = 1, 2. See Figure 4.1.1. In words, since the mushrooms
can be packed “tightly”, it suffices to arrange two rows of mushrooms.

t

s

FIGURE 4.1.1. Bases of the mushrooms on B. Here N = 15.

Applying Proposition 3.2.1, we install pairwise disjoint mushrooms Zk,l on B
such that the base of each Zk,l approximately equals □k,l. The key property of the
dynamics of the resulting B∨

ξ is as follows: Suppose ϵ > 0 is small and we choose
N ≫ 1/ϵ. Let x = (z(x), s(x), t(x)) ∈ ∂−B.

(1) If t(x) ∈ (ϵ, t0 − ϵ), then the maximal possibly broken flow line of B∨
ξ

passing through x converges to a sink in forward time.
(2) If a flow line passes through x and does not converge to sink, then it exits

along y ∈ ∂+B and |t(y)− t(x)| < ϵ.

4.2. Barricades. In this subsection only, let Σ be a manifold of dimension m and
v a vector field on Σ with only Morse singularities. We also fix a Riemannian
metric on Σ.

Definition 4.2.1. A flow box is an embedded cylinder B = [0, s0] × Dm−1 ⊂ Σ
with coordinates (s, x) over the disk Dm−1 such that v|B = ∂s.

Given ϵ > 0 small, let Bϵ = [ϵ, s0 − ϵ] ×Dm−1
ϵ be a slightly smaller flow box

(called a shrinkage of B), where Dm−1
ϵ ⊂ Dm−1 is a disk such that every point

x ∈ Dm−1 \Dm−1
ϵ has metric distance < ϵ from ∂Dm−1

ϵ and ∂Dm−1.

Definition 4.2.2 (Barricade). A collection BI = {Bi = [0, si] × Dm−1}i∈I of
pairwise disjoint flow boxes for Σ is a barricade for v if for each Bi there exist a
small constant ϵi > 0 and a shrinkage Bϵi

i and the following hold:
(*) each flow line of v intersects some Bϵ

i and for any x ∈ Σ which neither
is a singularity of v nor is contained in any Bϵ

i , the flow line of v passing
through x enters some Bϵ

i or limits to some Morse singularity in forward
time (resp. in backward time).

(**) BI is locally finite, i.e., each compact subset of Σ intersects only a finite
number of Bi.

The following theorem of Wilson [Wil66, Theorem A], slightly adapted to our
situation, guarantees the existence of barricades:
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Theorem 4.2.3 (Wilson). A vector field v on a manifold Σ with only Morse singu-
larities has a barricade BI .

The following lemma on taking refinements is immediate:

Lemma 4.2.4 (Refinement). Given a flow box B = [0, s0] × Dm−1, a properly
embedded submanifold Z ofDm−1, and ϵ, δ > 0 small, there exists a finite disjoint
collection B of flow boxes B1j , j = 1, . . . , k1, and B2j , j = 1, . . . , k2, such that:

(1) B1j ⊂ (0, s0/2)×Dm−1 and B2j ⊂ (s0/2, s0)×Dm−1;
(2) πDm−1(∪k1

j=1B1j) does not intersect Z and πDm−1(∪k2
j=1B2j) is contained

in a δ-neighborhood of Z; and
(3) B is a barricade for the shrinkage Bϵ.

Here πDm−1 : B → Dm−1 is the projection onto the second factor.

4.3. Proof of Theorem 1.2.3 in dimension 3. Given any closed surface Σ ⊂
(M, ξ), it is well-known (see e.g. [Gei08, Section 4.6]) that, after a C∞-small
perturbation, we can assume that Σξ has only Morse type singularities. By Theo-
rem 4.2.3, a barricade BI = {Bi = [0, si] × [0, ti]}i∈I exists for Σξ; moreover I
can be taken to be finite since Σ is closed. EachBi has a standard contact neighbor-
hood with parameters si, ti, zi, where zi > 0 is small and we construct a C0-small
modification Σ∨ of Σ by replacing every Bi by the plug B∨

i . The characteristic
foliation Σ∨

ξ satisfies Conditions (M1)–(M3) of Proposition 2.2.6 and is Morse.
After a further C∞-small perturbation if necessary, Σ∨ can be made Morse+:

If there exists a “retrogradient” flow line ℓ from a negative index 1 singularity to a
positive index 1 singularity, we take a flow box B = {0} × [0, s0] × [0, t0] ⊂ Σ∨

such that ℓ intersects Bϵ exactly once and B has a standard contact neighborhood
with parameters s0, t0, z0. The retrogradient flow line can be eliminated by taking
a small nonnegative function h : B → R≥0 with support on Bϵ/2 and replacing
B by z = h(s, t); the modification has the effect of pushing the holonomy from
s = 0 to s = s0 in the negative t-direction.

Since Σ∨ is now Morse+, it is Weinstein convex by Proposition 2.3.3.

4.4. Installing and uninstalling plugs. The construction of a plug B∨ was suffi-
cient to prove Theorem 1.2.3 in dimension 3. In order to prove Theorem 1.2.5, we
also need to interpolate between B and B∨ with some control of the intermediate
dynamics. We now explain this procedure.

Let (M = [−z0, z0] × [0, s0] × [0, t0], ξ = ker(dz + esdt)) be as before and
let Bz := {z} × [0, s0] × [0, t0]. Replace Bz0/2 by a plug B∨

z0/2
such that its

analogously defined z-height satisfies Z (B∨
z0/2

) ≪ z0
2 and in particular B∨

z0/2
is

still contained in M .
For the moment consider the PL model of the plug B∨

z0/2
, i.e., each mushroom

Z involved in the construction is replaced by the corresponding ZPL. It is fairly
straightforward to foliate the regions bounded between B0 and B∨

z0/2
and between

B∨
z0/2

and Bz0 by a family of PL surfaces; see Figure 4.4.1 for a schematic picture.
Then one can apply the smoothing scheme from §3.2 to smooth the corners of the
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B0

B∨
z0/2

Bz0

FIGURE 4.4.1. The interpolation betweenB0, B
∨
z0/2

andBz0 ; the
z-height of B∨

z0/2
not drawn to scale.

leaves simultaneously and obtain the desired foliation M = ∪0≤a≤z0B̃a, where
B̃0 = B0, B̃z0 = Bz0 , and B̃z0/2 is the smoothed version of B∨

z0/2
.

To analyze the dynamics of (B̃a)ξ for each a ∈ [0, z0], we introduce the partially
defined and possibly multiple-valued holonomy map ρa : ∂−B̃a 99K ∂+B̃a, where
∂+B̃a (resp. ∂−B̃a) is the side s = s0 (resp. s = 0) of B̃a as before: Given
x ∈ ∂−B̃a, if there exists a possibly broken partial flow line of (B̃a)ξ starting from
x and ending at y ∈ ∂+B̃a, then y ∈ ρa(x). Note that such y may not be unique.
If there is no such flow line, then ρa(x) is not defined.

Define the internal discrepancy

∥ρa∥ := sup
x∈∂−B̃a

|t(x)− t(ρa(x))|,

where t(x) refers to the t-coordinate of the point x; |t(x)− t(ρa(x))| = 0 if ρa(x)
is not defined; and the supremum is taken over all possible ρa(x) if ρa is not single-
valued at x.

The following lemma will be important for our applications.

Lemma 4.4.1. The internal discrepancies sup0≤a≤z0∥ρa∥ → 0 as N → ∞.

Proof. The lemma is not a statement about blocking and is rather a statement about
the t-widths of the mushrooms Zk,l: We will treat the case where a ∈ [0, z02 ]. If a
flow line enters a box□k,l along the bottom and exits from the top, the maximum it
is moved in the t-direction is the width 3t0

N of the box. Since a flow line or broken
flow line passes through at most 2 boxes, ∥ρa∥ ≤ 6t0

N . □

We call the foliation from B̃0 = B0 to B̃z0/2 installing a plug and the foliation
from B̃z0/2 to B̃z0 = Bz0 uninstalling a plug. Then Lemma 4.4.1 basically says
that neither installing nor uninstalling a plug affects the local holonomy by much.
For the rest of Section 4, we assume that N ≫ 0 without further mention.

The following is based on the construction of mushrooms in §3.2 and its slight
generalization to 1-parameter families:

Lemma 4.4.2. (B̃a)ξ, a ∈ [0, z0], is gradient-like with respect to a 1-Morse func-
tion fa : B̃a → R which agrees with s on ∂B̃a.
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4.5. Proof of Theorem 1.2.5 in dimension 3. Consider a contact structure ξ on
Σ× [0, 1] such that Σ×{0, 1} is Morse+ in the sense of Definition 2.3.1. The goal
is to show that up to an isotopy relative to the boundary, ((Σt)ξ)t∈[0,1] is a 1-Morse
family, where Σt := Σ× {t}.

Define L := ∪t∈[0,1]{x ∈ Σt | ξx = TxΣt}. Up to a C∞-small perturbation of
ξ, we can assume that L satisfies the following:

(S1) L is a properly embedded 1-submanifold;
(S2) the singularities of (Σt)ξ are 1-Morse for all t; and
(S3) the restricted coordinate function t|L : L → [0, 1] is Morse and all its

critical points have distinct critical values.

Suppose 0 < a1 < · · · < am < 1 are the critical values of t|L, which we assume
to be irrational. For each t ∈ [0, 1] there exists a barricade BIt for Σt; moreover
BIt is a barricade for any vector field that is sufficiently close to (Σt)ξ. By the
compactness of [0, 1], there exists an integerK ≫ 0 such that, for i = 0, 1, . . . ,K,
BIi , Ii = Ii/K , is a barricade for all Σt, t ∈ [ i−1

K , i+1
K ] ∩ [0, 1]. Note that, for each

aj , there exist unique j+, j− such that j+ = j− + 1 and j−
K < aj <

j+
K .

Let π : Σ× [0, 1] → Σ be the projection onto the first factor.
We claim that for each i = 0, . . . ,K − 1 there are refinements of BIi and BIi+1

(by abuse of notation we keep the same notation for the refinements) such that

(4.5.1) π(BIi+1) ∩ π(BIi) = ∅,

and moreover we may choose the refinement so that the newBIi+1 remains a barri-
cade for all Σt, t ∈ [ i

K ,
i+2
K ]∩[0, 1]. The claim follows from viewingBIi andBIi+1

as thin neighborhoods of collections γi and γi+1 of arcs, taking their intersection
Z = γi ∩ γi+1 which we may take to be transverse, and applying Lemma 4.2.4.

We divide the proof into several steps.

STEP 1. From Σ0 to Σ∨
1/(N ′K) where N ′ > 0 is a large integer.

Consider a flow box Bi = [0, s0] × [0, t0] of BI0 . Let ∂+Bi = {s0} × [0, t0]
and ∂−Bi = {0} × [0, t0].

For each positive integer r, define the external holonomy ρ̂i,r : ∂+Bi 99K ∂−Bi

— a multiple-valued, partially defined, rth return map from ∂+Bi to ∂−Bi of (Σ0)ξ
— as follows: For any x ∈ ∂+Bi, a point y ∈ ∂−Bi is in the image ρ̂i,r(x) if there
exists a possibly broken flow line c : [0, 1] → Σ0 such that c(0) = x, c(1) = y, and
c passes through int(Bi) (r− 1) times. Of course ρ̂i,r is not necessarily defined on
all of ∂+Bi and when it is defined, it is not necessarily single-valued.

Since (Σ0)ξ is Morse by assumption, (A) there exists δ > 0 such that

∥ρ̂i,r∥ := inf
x∈∂+Bi

|t(x)− t(ρ̂i,r(x))| > δ,

where we are taking t(ρ̂i,r(x)) = ∞ if ρ̂i,r(x) does not exist. Otherwise, there
is a sequence of points xj ∈ ∂+Bi such that |t(xj) − t(ρ̂i,r(xj))| → 0 and the
compactness of the sequence of broken flow lines gives us x∞ ∈ ∂+Bi such that
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|t(x∞)− t(ρ̂i,r(x∞))| = 0, which contradicts (M3) from Proposition 2.2.6. More-
over, the Morse condition implies that (B) there exists r0 > 0 finite such that
∥ρ̂i,r0∥ = ∞ for all i ∈ I .

We then install plugs B∨
I0

on BI0 as described in §4.1 and §4.4 and obtain a
foliation between Σ0 and Σ∨

0 . As long as we take N ≫ 0, i.e., the individual
mushrooms are very small, the internal discrepancies are ≪ δ by Lemma 4.4.1.
Together with (A) and (B), it follows that all the leaves of the foliation are Morse.

For convenience we assume that Σ∨
0 agrees with Σ0 on the complement of BI0 ,

and that the difference is contained in a small invariant neighborhood ofBI0 . Also,
below we construct 1-parameter families of embedded surfaces that are disjoint
away from a subset on which they all agree; the perturbation into a family of
disjoint embedded surfaces is done by flowing in the transverse direction for a
short time and will not be done explicitly.

In order to interpolate between Σ∨
0 and Σ∨

1/(N ′K) for a large integer N ′ > 0

which we take to be odd, we use BI1 satisfying Eq. (4.5.1). If N ′ ≫ 0, then there
is a 1-parameter family of embedded surfaces Fs ⊂ Σ× [0, 1

N ′K ], s ∈ [0, 1], such
that F0 = Σ0\N(BI0), F1∩Σ1/(N ′K) ⊃ N(BI1)×{ 1

N ′K }, ∂Fs = ∂N(BI0)×{0}
for all s ∈ [0, 1], the interiors of Fs are disjoint, and the (Fs)ξ, s ∈ [0, 1], are ϵ-close
to one other so that BI0 is a barricade for all (N(BI0) × {0}) ∪ Fs; in particular,
no new singularities are introduced in this process. The barricading condition can
be guaranteed by having chosen N ′ ≫ 0. See the upper-left corner of Figure 4.5.1
for an illustration of this procedure. By the barricading condition the surfaces
(N(BI0) × {0})∨ ∪ Fs are Morse for all s ∈ [0, 1], where (N(BI0) × {0})∨ is
N(BI0)× {0} with B∨

I0
installed.

0

1
N ′K

FIGURE 4.5.1. Interpolation between Σ0 and Σ∨
1/(N ′K) by Morse

surfaces. The blue parts represent BIi , i = 0, 1.

Next we install a plug on BI1 ×{ 1
N ′K } ⊂ (N(BI0)×{0})∨ ∪F1, uninstall the

plug on B∨
I0

, and lift the resulting surface up to Σ1/(N ′K), as shown in the upper-
right, lower-right, and lower-left corners of Figure 4.5.1, respectively. Moreover
all the intermediate surfaces are Morse by analogous reasons. This finishes our
construction of the foliation from Σ0 to Σ∨

1/(N ′K).
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STEP 2. From Σ∨
1/(N ′K) to Σ∨

1−/K , where 1−/K < a1 < 1+/K.

Switching back and forth between BI0 and BI1 , we similarly construct the
Morse foliation from Σ∨

1/(N ′K) to Σ∨
2/(N ′K), from Σ∨

2/(N ′K) to Σ∨
3/(N ′K), and so

on as in Step 1, until we get to Σ∨
1/K . Between Σ∨

1/K and Σ∨
2/K we use BI1 and

BI2 . Continuing in this manner we get to Σ∨
1−/K .

STEP 3. From Σ∨
1−/K to Σ∨

1+/K .

The only modification needed in this step is due to the fact that the vector fields
(Σ1−/K)ξ and (Σ1+/K)ξ are notC∞-close to each other in the usual sense. Rather,
one observes either the birth or the death of a pair of nearby Morse singularities as
we go from (Σ1−/K)ξ to (Σ1+/K)ξ. In either case, we slightly modify the notion
of barricadesBI1±

so that the unique (short) flow line connecting the pair of Morse
singularities is the only flow line that does not pass through BI1±

. Similar remarks
apply to all ai, 1 ≤ i ≤ m.

STEP 4. From Σ∨
(K−1)/K to Σ1.

In this final step, the only new ingredient is to uninstall the plugs as we go from
Σ∨
1 to Σ1. By assumption Σ1 is Morse and in fact convex. Hence by the same

holonomy bound as in Step 1, all the intermediate surfaces are Morse.

Finally we have foliated Σ × [0, 1] by surfaces of the form Σt which are all
Morse. The only obstruction to convexity occurs when (Σt)ξ is Morse but not
Morse+ and this corresponds to a bypass attachment (see Proposition 8.3.2). This
concludes the proof of Theorem 1.2.5 in dimension 3.

4.6. Further remarks. Compared to earlier groundbreaking works of Bennequin
[Ben83] and Eliashberg [Eli92], convex surface theory is a more systematic frame-
work for studying embedded surfaces in contact 3-manifolds. It is sufficiently
powerful that basically all known classification results of contact structures or Leg-
endrian knots in this dimension follow from this theory.

The only “drawback” of convex surface theory, at least in its original form
[Gir91, Gir00], is that the monster of dynamical systems on surfaces is always
lurking behind the story. More precisely, if one just wants to classify contact struc-
tures or Legendrian knots up to isotopy, then the problem often reduces to a com-
binatorial one by combining Giroux’s theory with, say, the bypass approach of
[Hon00]. However, if one wants to obtain higher homotopical information of the
space of contact structures (say πn for n ≥ 1), then some serious work on higher
codimensional degenerations of Morse-Smale flows seems inevitable.

As an example, in [Eli92] Eliashberg outlined the proof that the space of tight
contact structures on S3 is homotopy equivalent to S2. This particular result is
based on the study of characteristic foliations on S2 ⊂ S3, which is particularly
simple since we never have periodic orbits. In more general contact manifolds
such as T 3, one cannot necessarily rule out periodic orbits from characteristic fo-
liations, and hence the bifurcation theory quickly becomes unwieldy (the work
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[Ngo] probably comes close to the limit of what one can do). However, in light
of our reinterpretation/simplification of Giroux’s theory, it suffices to understand
the space of Morse gradient vector fields, instead of general Morse-Smale vector
fields.

We hope our techniques can be applied to future studies of homotopy types of
the space of contact structures. This topic however will not be pursued any further
in this paper.

5. CONSTRUCTION OF MUSHROOMS IN DIMENSION > 3

The goal of this section is to generalize the construction of mushrooms in di-
mension 3 in Section 3 to higher dimensions.

Notation. Throughout this section, we will write Z3 ⊂ R3 for the mushroom
constructed in Section 3 and write Z for the higher-dimensional mushroom to be
constructed.

5.1. Introduction. We first introduce some notation which will be used through-
out this paper.

Definition 5.1.1 (Contact handlebodies and generalized contact handlebodies).
(1) A contact handlebody over a Weinstein domain (X,µ) is a contact mani-

fold contactomorphic to

([0, C]t ×X, ker(dt+ µ)),

where C > 0 is the thickness of the handlebody.
(2) A generalized contact handlebody over a Weinstein domain (X,µ) is a

contact manifold contactomorphic to

{(t, x) | f0(x) < t < f1(x)} ⊂ (Rt ×X, ker(dt+ µ)),

where there exists a 1-parameter family ft : X → R, t ∈ [0, 1], of smooth
functions such that ft(x) < ft′(x) for all t < t′, x ∈ X and the graphs
{t = ft0(x)} are Weinstein for all t0 ∈ [0, 1].

A contact handlebody is a compact contact manifold with a contact form such
that all its Reeb orbits are chords of the same length and a generalized contact
handlebody is one such that that all the Reeb orbits are chords but they need not
have the same length.

Let (W,λ) be a complete Weinstein manifold of dimension 2n − 2 > 0 and
Rt ×W be the contactization of W with contact form β = dt+ λ. Let W c ⊂ W
be a compact subdomain such that W = W c ∪ ([0,∞)τ × Γ), Γ := ∂W c is the
contact boundary, and [0,∞)τ × Γ is the positive half-symplectization of Γ. Let
η := λ|Γ be the contact form on Γ; then λ|[0,∞)×Γ = eτη. For τ ′ > 0 we also
define

(5.1.1) W c
τ ′ :=W c ∪ ([0, τ ′]× Γ).
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The ambient contact manifold of a mushroom is

(M = R3
z,s,t ×W, ξ = kerα), α = dz + esβ.

The hypersurface on which we construct the mushroom is Σ = {z = 0} ⊂ M
with characteristic foliation Σξ = ∂s.

Remark 5.1.2. For ease of notation, we will not distinguish between the charac-
teristic foliation, which is an oriented singular line field, and a trivializing vector
field.

A mushroom Z with contact handlebody profile H = ([0, t0] ×W c
τ0 , dt + λ),

τ0 > 0, is constructed by first taking the product hypersurface Z3 ×W c, where
Z3
PL has base [0, s0] × [0, t0], and then damping out the Z3-factor on W c

τ0 −W c.
Roughly speaking, the goal is to fold Σ using Z, so that the resulting characteristic
foliation cannot pass through a region which approximates H .

Remark 5.1.3. One can think of the constructions in Section 3 as a special case
where W is a point and H = [0, t0] is equipped with the contact form dt.

5.2. Product hypersurface. Recall that in Section 3 we constructed the mush-
room

Z3 ⊂ (R3
z,s,t, ker(dz + esdt))

which agrees with R2
s,t outside of a rectangle □ = [0, s0] × [0, t0]. Let Z3

ξ be the
characteristic foliation on Z3.

We will compute the characteristic foliation Z ′
ξ on the product hypersurface

Z ′ := Z3 ×W c ⊂M .
Choose vector fields v on Z3, defined away from the singularities of Z3

ξ , such
that α|Z3(v) = 1 and w on W c, defined away from the zero set of λ, such that
λ(w) = 1.

Lemma 5.2.1. Away from the zeros of α|Z3 and λ, the characteristic foliation Z ′
ξ

is given by

(5.2.1) Z ′
ξ = R⟨Z3

ξ + dz ∧ ds(Z3
ξ , v)Xλ⟩,

where Xλ is the Liouville vector field of λ.

Proof. One can easily check that

T (Z3 ×W c) ∩ ξ = R⟨Z3
ξ , w − esv, kerλ⟩.

Basically the calculation of Z ′
ξ is reduced to computing the kernel K = aX +

bY + cZ of the 3-dimensional vector space R⟨X,Y, Z⟩ with a maximally nonde-
generate alternating 2-form ⟨·, ·⟩. One can easily verify that

K = ⟨Y, Z⟩X + ⟨Z,X⟩Y + ⟨X,Y ⟩Z

works. We have e−sdα = ds∧dt+ds∧λ+dλ, and if we write ⟨·, ·⟩ := e−sdα(·, ·)
and Z ′

ξ = aX + bY + cZ + dA, where X = Z3
ξ , Y = Xλ, Z = w − esv, and

A ∈ kerλ and is not parallel to Xλ, then d = 0 since otherwise there exists



CONVEX HYPERSURFACE THEORY IN CONTACT TOPOLOGY 27

B ∈ kerλ such that ⟨A,B⟩ ≠ 0 and ⟨w,B⟩ = 0. The remaining/relevant part of
the pairing is given as follows:

⟨Z3
ξ , Xλ⟩ = 0,

⟨Z3
ξ , w − esv⟩ = ds(Z3

ξ )− esds ∧ dt(Z3
ξ , v),

⟨Xλ, w − esv⟩ = 1.

Hence Z ′
ξ = K = Z3

ξ − (ds(Z3
ξ )− esds ∧ dt(Z3

ξ , v))Xλ.

Finally, since α− (dz + esdt) = 0 when evaluated on vectors on Z3 and hence

(ds ∧ α+ dz ∧ ds− esds ∧ dt)(Z3
ξ , v) = 0,

it follows that Z ′
ξ = Z3

ξ + dz ∧ ds(Z3
ξ , v)Xλ. □

At the zeros of α|Z3 and λ, Eq. (5.2.1) can be interpreted as saying that Z ′
ξ

contains the limit of the right-hand side as the points on Z3 ×W c approach the
zero.

Remark 5.2.2. Lemma 5.2.1 is rather general and holds for Z3 replaced by any
surface in R3

z,s,t.

5.3. Dynamics of Z ′
ξ. We now investigate the dynamics of Z ′

ξ.
Let us first consider the PL case Z ′

PL = Z3
PL ×W c.

Lemma 5.3.1. The flow lines of (Z ′
PL)ξ passing through {−1}s × (0, t0)t ×W c

eventually limit to a negative singularity of (Z ′
PL)ξ and in particular do not leave

Z ′
PL.

Proof. The lemma follows from two observations: (i) Since dz ∧ ds((Z3
PL)ξ, v)

is positive on P4, negative on P2, and vanishes on P0 ∪ P1 ∪ P3, the term dz ∧
ds((Z3

PL)ξ, v)Xλ in Eq. (5.2.1) is a positive multiple of Xλ on P4, a negative
multiple ofXλ on P2, and zero on P0∪P1∪P3. [Sample sign calculation on P4 (it is
useful to refer to Figure 3.1.2): (Z3

PL)ξ = −∂s and v, which we take to be parallel
to the zt-plane, has positive ∂z-component. Hence dz∧ds((Z3

PL)ξ, v) > 0 on P4.]
(ii) By Lemma 3.1.4, if a flow line of (Z ′

PL)ξ passes through {−1}s×(0, t0)t×W c,
then its projection to Z3

PL only passes through P0, P1, P2, and P3. □

Next we describe the smoothed version Z ′
ξ. We identify the singular points of

Z ′
ξ: Recall from Lemma 3.1.4 that Z3

ξ has four singular points e±, h±. By the sign
calculations of dz ∧ ds((Z3

PL)ξ, v) from the proof of Lemma 5.3.1 and continuity,
dz ∧ ds(Z3

ξ , v) > 0 on neighborhoods of e+, h+ and < 0 on neighborhoods of
e−, h−. Hence for each singular point x ∈ W c of the Liouville vector field Xλ,
there exist four singular points ex±, h

x
± of Z ′

ξ whose Morse indices are given by:

ind(ex+) = indW (x), ind(hx+) = indW (x) + 1,

ind(ex−) = 2n− indW (x), ind(hx−) = 2n− 1− indW (x),

where indW (x) is the Morse index of x ∈ W c ⊂ W and we recall that dimW =
2n− 2.
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See the top left figure in Figure 5.3.1 for Z3
ξ and the regions indicating the signs

of dz∧ds(Z3
ξ , v). The red (resp. blue, white) region indicates where dz∧ds(Z3

ξ , v)

or dz ∧ ds(Sτ,ξ, v) is positive (resp. negative, zero).

Remark 5.3.2. In view of Remark 3.2.2, we may replace the nondegenerate sin-
gular points by birth-death singularities as in the top right of Figure 5.3.1. The
advantage of the birth-death singularities is that Lemma 5.3.3 still holds but the
singular points can be immediately eliminated; this will be useful for example
when damping out in Section 5.4.

FIGURE 5.3.1. The top left is Z3
ξ and the top right is an alternate

perturbation of Z3
PL,ξ corresponding to τ = 0. The top right,

bottom right, and bottom left are Sτ,ξ for some as τ goes from 0
to τ0.

Let Sk(W ) be the isotropic skeleton of W c with respect to Xλ. Let κ1 > κ2 >
κ3 > 0 > κ4 > κ5 > κ6 with all κi small as in Proposition 3.2.1, and let a ≥ 0 be
small. We define

I−a := {−1} × [κ4, t0 + κ2 − a] ⊂ R2
s,t,

I+a := {s0 + 1} × [κ5 − a, t0 + κ3] ⊂ R2
s,t,

so that I−0 (resp. I+0 ) is the maximal interval with the property that any flow line of
Z3
ξ passing through the interval converges to a singularity of Z3

ξ in forward (resp.
backward) time.

We now give a description of all the flow lines passing through Z3 ×W c:

Lemma 5.3.3 ( Description of all flow lines passing through Z3×W c). There exist
functions σ−0 , σ

+
0 :W c → R≥0, which vanish exactly on Sk(W ) such that:
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(1) each flow line of Z ′
ξ passing through I−0 × Sk(W ) (resp. I+0 × Sk(W ))

converges to a singularity of Z ′
ξ in forward (resp. backward) time;

(2) for x ∈ W c \ Sk(W ), each flow line passing through I−
σ−
0 (x)

× {x} (resp.

I+
σ+
0 (x)

×{x}) converges to a singularity of Z ′
ξ in forward (resp. backward)

time;
(3) for x ∈W c \ Sk(W ), each flow line passing through (I−0 \ I−

σ−
0 (x)

)× {x}
(resp. (I+0 \I+

σ+
0 (x)

)×{x}) exits Z3×W c along Z3×∂W c in finite forward

(resp. backward) time;
(4) for x ∈W c, each flow line passing through {−1}×(t0+κ2, t0+κ1]×{x}

(resp. {s0+1}× [κ6, κ5)×{x}) exits from either {s0+1}× (t0+κ3, t0+
κ1] ×W c (resp. {−1} × [κ6, κ4) ×W c) or Z3 × ∂W c in finite forward
(resp. backward) time; in the former case, the W c-coordinate x′ of the exit
point of the flow line is on the time ≥ 0 flow line of Xλ starting at x;

(5) for x ∈ W c, each flow line passing through {−1} × [κ6, κ4)× {x} (resp.
{s0 +1}× (t0 + κ3, t0 + κ1]×{x}) exits from {s0 +1}× [κ6, κ5)×W c

(resp. {−1} × (t0 + κ2, t0 + κ1]×W c) in finite forward (resp. backward)
time; the W c-coordinate x′ of the exit point of the flow line is on the time
≤ 0 flow line of Xλ starting at x;

(6) each flow line outside of Rs × [κ6, t0 + κ1]×W c has trivial holonomy;
(7) all other flow lines are (i) flow lines between singularities, (ii) flow lines

from a singularity to Z3 × ∂W c, or (iii) flow lines from Z3 × ∂W c to a
singularity.

Moreover, as Z3 → Z3
PL, all κi → 0 and |σ±0 |C0 → 0.

Proof. This is an immediate consequence of Lemmas 5.2.1 and 5.3.1, taking the
limit Z3 → Z3

PL, and a case-by-case analysis of the various regions of the top left
figure of Figure 5.3.1.

Suppose the flow line passes through the red region times W c. Then either the
flow line exits from Z3 × ∂W c or escapes to the white region times W c. Once in
the white region, the flow line either reaches s = s0 + 1 or enters the blue region
times W c and reaches a negative singularity.

Suppose the flow line passes through the white region (e.g., passes through s =
−1). Then the flow line reaches s = s0 + 1, enters the blue region times W c (and
hence reaches a negative singularity), or enters the red region times W c (already
considered).

All κi → 0 and |σ±0 |C0 → 0 as Z3 → Z3
PL by construction. □

Technically, the functions σ±0 account for the speed of convergence of flow lines
of (Z3)ξ towards its singularities and those of Xλ in W c towards Sk(W ).

5.4. Damping. In order for the mushroom to be the image of a continuous map
Σ → M , one must damp out the Z3-fiber over W c

τ0 \ int(W
c) = [0, τ0] × Γ as τ

grows. Recall the notation from Section 5.1.
The damping procedure amounts to choosing an isotopy of surfaces Sτ , τ ∈

[0, τ0], in R3
z,s,t from S0 = Z3 to the flat Sτ0 = R2

s,t. We take S0 = Z3 to have
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birth-death type singular points as in Figure 5.3.1; see Remark 5.3.2. In practice
we also take τ0 > 0 to be arbitrarily small. We then set

I0 := ∪0≤τ≤τ0(Sτ × {τ}) ⊂ R4
z,s,t,τ

and the actual hypersurface in M will be I0 × Γ.
The PL model of Sτ is obtained by replacing P0 by the rectangle [0, s0] ×

[−e−s0/2z,−e−s0/2z + t0] as in Section 3.1, where the parameter z ranges from
z0 to 0 as τ goes from 0 to τ0 (in other words, we are pushing the top face of the
parallelepiped into the parallelepiped); its smoothing for τ > 0 will use a profile
function ϕ such that ϕ′ < 0 everywhere so that there are no singularities of the
characteristic foliation. We have

TI0 = R⟨TSτ , ∂τ + fw0⟩,
where w0 = ∂z−K0∂t is parallel to P2 and P4 and f ≤ 0 is a τ -dependent smooth
function on R3

z,s,t which vanishes when τ is close to {0, τ0} or z = 0.
We are now ready to compute the characteristic foliation (I0×Γ)ξ. Let Sτ,ξ be

the characteristic foliation on Sτ , i.e., α|R3(Sτ,ξ) = 0, and let v be a vector field
on Sτ , defined away from the singularities of Sτ,ξ, such that α|R3(v) = 1.

Lemma 5.4.1. The characteristic foliation (I0 × Γ)ξ is given by

(I0 × Γ)ξ = Sτ,ξ + dz ∧ ds(Sτ,ξ, v)(∂τ + fw0) + f (ds(Sτ,ξ)v − ds(v)Sτ,ξ)

(5.4.1)

+ e−τf(−ds ∧ dt(Sτ,ξ, v) +K0dz ∧ ds(Sτ,ξ, v))Rη,

on the subset of I0 × Γ where v is defined. Here Rη is the Reeb vector field of η.

Proof. This is similar to the calculation of Lemma 5.2.1. We compute

T (I0×Γ)∩ξ = R⟨Sτ,ξ, eτ+sv−Rη, ∂τ +fw0+(−e−τ−s+K0e
−τ )fRη, ker η⟩.

Next we have

α = dz + es(dt+ eτη),

e−sdα = ds ∧ dt+ eτds ∧ η + eτ (dτ ∧ η + dη).

Setting X = Sτ,ξ, Y = eτ+sv −Rη, Z = ∂τ + fw0 + (−e−τ−s +K0e
−τ )fRη,

⟨X,Y ⟩ = eτ+sds ∧ dt(Sτ,ξ, v)− eτds(Sτ,ξ) = eτ (dz ∧ ds(Sτ,ξ, v)),
⟨X,Z⟩ = eτds(Sτ,ξ)(−e−τ−sf) = −e−sfds(Sτ,ξ),

⟨Y,Z⟩ = eτ+s(eτds(v)(−e−τ−sf)) + eτ = eτ (1− fds(v)).

(I1 × Γ)ξ = (1− fds(v))Sτ,ξ + e−τ−sfds(Sτ,ξ)(e
τ+sv −Rη)

+ dz ∧ ds(Sτ,ξ, v)(∂τ + fw0 + (−e−τ−s +K0e
−τ )fRη).

A rearrangement of the terms gives the lemma. □

Note that Eq. (5.4.1) agrees with Eq. (5.2.1) at τ = 0. The first two terms
of (I0 × Γ)ξ are analogous to those of Z ′

ξ; see Lemma 5.2.1. The third term
f(ds(Sτ,ξ)v − ds(v)Sτ,ξ) lies in ker ds and, away from the corners,
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• vanishes on P1 ∪ P3,
• has negative ∂t-component on P0 ∪ P4, and
• has positive ∂t-component on P2.

See Figure 5.4.1. In other words, the third term, when we project out the s- and
W -directions, is a flow in the clockwise direction around ∂P1 as seen in the pic-
ture. The last term of Eq. (5.4.1) has a substantial contribution in the Rη-direction
when the damping happens quickly, i.e., when τ0 is small and f is large. This is
something we need to be careful about, but ultimately can be finessed away by
stacking the mushrooms in a particular way in Section 7.

t
s

z

FIGURE 5.4.1. The vector field f(ds(Sτ,ξ)v − ds(v)Sτ,ξ) is de-
picted in blue.

5.5. Description of the characteristic foliation of the mushroom. In this sub-
section we summarize the dynamics of the characteristic foliation of the mushroom
ZH of Σ = {z = 0} ⊂M = R3

z,s,t ×W with profile H = [0, t0]×W c
τ0 .

Definition 5.5.1. The mushroom of Σ with profile H is the hypersurface

(5.5.1) ZH :=
(
Σ \ (□×W c

τ0)
)
∪ Z ′

PL ∪ (I0 × Γ)PL,

modulo smoothing. (The smoothed versions do not have the subscripts PL.) The
region□×W c

τ0 ⊂ Σ, where□ = [0, s0]× [0, t0], is the base of ZH , and the region
I0 × Γ is the damping region.

Let τ ′0 ∈ (0, τ0), let κ1 > κ2 > κ3 > 0 > κ4 > κ5 > κ6 with all κi small as in
Proposition 3.2.1, and let σ±1 , σ

±
2 :W c

τ ′0
→ R≥0 be functions such that:

• σ±1 vanishes exactly on Sk(W ) and σ±2 vanishes on W c;
• on {0 ≤ τ ≤ τ ′0}, both σ±1 = σ±1 (τ) and σ±2 = σ±2 (τ) are strictly increas-

ing and reach their maximum at τ = τ ′0;
• σ−1 (τ

′
0) + σ−2 (τ

′
0) = t0 + κ2 − κ4 and σ+1 (τ

′
0) + σ+2 (τ

′
0) = t0 + κ3 − κ5.

As the smooth version of ZH limits to the PL version, all κi → 0 and |σ±i |C0 →
0 on W c

τ0 .
We then define the compact submanifolds

Hin := {(t, x) | x ∈W c
τ ′0
, κ4 + σ−2 (x) ≤ t ≤ t0 + κ2 − σ−1 (x)},(5.5.2)

Hout := {(t, x) | x ∈W c
τ ′0
, κ5 + σ+1 (x) ≤ t ≤ t0 + κ3 − σ+2 (x)},(5.5.3)
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which approximateH when all the smoothing parameters involved in the construc-
tion tend to 0. See Figure 5.5.1. We use the notation X◦ (and also int(X)) as in
H◦

in to denote the interior of a space X .
Note that ∂H (which we assume has rounded corners) is convex; this follows

from observing that ([−1, 1]t ×W,dt+ λ) has contact vector field t∂t +Xλ.

Proposition 5.5.2. Assuming all the corner rounding parameters are sufficiently
small, there exists a tubular neighborhood [−ϵ, ϵ]ℓ × ∂H of ∂H = {0} × ∂H and
Hin and Hout that approximate H such that:

(Z1) ∂Hin, ∂Hout ⊂ [−ϵ, ϵ]× ∂H are graphical over ∂H .
(Z2) ZH,ξ is “1-Morse” in the following sense: it satisfies (M1) and (M3) of

Proposition 2.2.6 and
(M2’) every flow line passing through x ∈ ZH with ZH,ξ(x) ̸= 0 converges

to a singularity or goes to {s = +∞} in forward time and converges
to a singularity or goes to {s = −∞} in backward time.

(Z3) Any flow line of ZH,ξ that passes through H◦
in ⊂ {s = −1} converges to

a negative singularity of ZH,ξ in forward time. Similarly, any flow line of
ZH,ξ that passes through H◦

out ⊂ {s = s0 + 1} converges to a positive
singularity of ZH,ξ in backward time.

(Z4) Any flow line of ZH,ξ that does not pass through H ∪ ([−ϵ, ϵ] × ∂H) ⊂
{s = −1} has trivial holonomy.

(Z5) There exists a Morse function F on ∂H such that ∂Hξ is gradient-like for
F (and hence flows “from R+(∂H) to R−(∂H)”) and such that any flow
line of ZH,ξ that passes through (ℓ, x) ∈ [−ϵ, ϵ] × ∂H ⊂ {s = −1} and
does not converge to a singularity of ZH,ξ:
(1) passes through (ℓ′, y) ∈ [−ϵ, ϵ] × ∂H ⊂ {s = s0 + 1} with F (y) ≥

F (x); and
(2) is parallel to Xλ (resp. −Xλ) on [−ϵ, ϵ] ×W c

+ (resp. [−ϵ, ϵ] ×W c
−)

when projected to [−ϵ, ϵ]× ∂H .
Here W c

+ is the portion of ∂H corresponding to {t0}×W c and W c
− is the

portion corresponding to {0} ×W c.

Proof. (Z1) is by construction. (Z4) is clear. (Z2)–(Z5) follow from Lemmas 5.3.3
and 5.4.1. In (Z5) we take {τ} × Γ to be level sets of F so that the component of
ZH,ξ in the direction of the Reeb vector field Rη vanishes on dF . □

6. QUANTITATIVE STABILIZATION OF AN OPEN BOOK DECOMPOSITION FOR
S2n−1

6.1. Some definitions. LetM be a closed manifold. An open book decomposition
(abbreviated OBD) of M is a pair (B, π), where B ⊂ M is a closed codimension
2 submanifold and

π :M \B → S1 ⊂ C
is a fibration which agrees with the angular coordinate θ on a neighborhoodB×D2

of B = B × {0}. We call Sθ := π−1(eiθ), eiθ ∈ S1, the pages of the OBD, and
call B the binding.



CONVEX HYPERSURFACE THEORY IN CONTACT TOPOLOGY 33

Hin Houtt

κ4

t0 + κ2

τ τSk(W )

κ5

t0 + κ3

FIGURE 5.5.1. The shaded regions are Hin and Hout, respec-
tively. The area of the complements of Hin and Hout in the rect-
angles tend to 0 as all the parameters involved in the construction
tend to 0.

Let ξ be a contact structure on M .

Definition 6.1.1.
(1) An OBD (B, π) is ξ-compatible if there exists a contact form α for ξ, called

an adapted contact form, such that the Reeb vector field Rα of α is trans-
verse to all the pages and is tangent to B, and α|B is a contact form on
B. We also say “α-compatible” or simply “compatible” if the contact
structure is understood.

(2) An α-compatible (B, π) is strongly Weinstein if all its pages (Sθ, α|Sθ
) are

Weinstein.

Let (B, π) be an α-compatible OBD. Let arg : S1 → R/2πZ be the map
eiθ 7→ θ. Then define ρ :M \B → R>0 by

(6.1.1) ρ(x) = d(arg ◦π)(Rα(x)).

Roughly speaking, ρ(x) measures infinitesimally how fast the orbit of Rα through
x traverses the pages.

Definition 6.1.2. The infinitesimal variation on the page Sθ is

(6.1.2) Vθ := sup
x∈Sθ

ρ(x)/ inf
x∈Sθ

ρ(x) ∈ [1,∞),

and the total infinitesimal variation is V := supθ∈[0,2π] Vθ.

The following is standard:

Lemma 6.1.3. If V ≡ 1, then M \ S0 is the interior of a contact handlebody.

Proof. Let t be the coordinate obtained by flowing in the direction of Rα starting
from S0. Then M \ S0 ≃ (0, C)t × S0 and α = ftdt+ βt, where ft (resp. βt) is a
function (resp. 1-form) on S0 that depends on t.

We claim that Rα = ∂t implies that ft = 1 and β̇t = 0, where the dot denotes
the derivative in the t-direction: Since α(Rα) = 1, we have ft = 1. Then dα
becomes dt ∧ β̇t + dS0βt, where dS0 is the exterior derivative in the S0-direction.
Finally, iRαdα = 0 forces β̇t = 0. □
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6.2. Quantitative stabilization for S2n−1. Before starting, we warn the reader
that the type of stabilization in this section is different from the notion of stabiliza-
tion of an OBD in the Giroux correspondence which involves changing the topology
of the page by a handle attachment and composing the monodromy with a suitable
Dehn twist.

Let ξstd be the standard contact structure on S2n−1 = {|z1|2 + · · · + |zn|2 =
1} ⊂ Cn given by the restriction of α = 1

2

∑n
i=1(xidyi − yidxi) which we denote

by αstd. The standard OBD for ξstd can be constructed as follows: Starting with
z1 : S

2n−1 → C which is a submersion away from |z1| = 1, we set B = z−1
1 (0) =

S2n−3 = {|z2|2 + · · ·+ |zn|2 = 1} and

π = z1
|z1| : S

2n−1 \B → S1 ⊂ C.

The pages Sθ are Weinstein (2n− 2)-disks and the Reeb vector field is

Rαstd
=

∑n
i=1(xi∂yi − yi∂xi) =

∑n
i=1 ∂θi ,

where θi is the ith angular coordinate. Then ρ(z1, . . . , zn) = dθ1(∂θ1) = 1, V ≡ 1,
and S2n−1 \ S0 is the interior of a genuine contact handlebody of thickness 2π by
Lemma 6.1.3. Note that B has an analogous OBD derived from z2 : S2n−3 =
{|z2|2 + · · ·+ |zn|2 = 1} → C.

Lemma 6.2.1. For any positive integer k > 0 and ϵ′ > 0 small, there exists an
αstd-compatible, strongly Weinstein OBD (Bk, πk) of S2n−1 such that each page
is C∞-close to

Sθ0 ∪ Sθ0+2π/k ∪ · · · ∪ Sθ0+2π(k−1)/k

(i.e., the union of k evenly spaced pages for some θ0) outside an ϵ′-small neigh-
borhood of B (with respect to the standard Euclidean metric on Cn) and such
that S2n−1, cut open along a new page, is the interior of a contact handlebody of
thickness 2π/k.

Proof. We would like to “stabilize” (B, π) by replacing z1 by zk1 . However, since
0 is not a regular value of zk1 , we use

fk := zk1 + ϵzk2 + ϵ2zk3 + · · ·+ ϵn−1zkn,

where ϵ > 0 is small. We are thinking of fk as inductively defined as zk1 plus ϵ
times fk corresponding to the binding |z2|2+· · ·+|zn|2 = 1. We writeR = Rαstd

.

Step 1. Verification that 0 is a regular value of fk. Let Fk be fk viewed as a
map Cn → C. Then dFk(z1, . . . , zk) = k(zk−1

1 , ϵzk−1
2 , . . . , ϵn−1zk−1

n ). Next
we precompose with the derivative of the inclusion map i : S2n−1 ↪→ Cn. Let
z = (z1, . . . , zn) ∈ S2n−1. Suppose there exists zj ̸= 0, 1. Then there exists
v ∈ TzS

2n−1 with a nontrivial component in the zj-direction and dfk is surjective
since ϵj−1zk−1

j ̸= 0. Otherwise, some zj = 1 and zi = 0 for all i ̸= j. Then
fk(z) = ϵj−1zkj ̸= 0. Hence 0 is a regular value of fk.

We set Bk = f−1
k (0) πk = fk

|fk| : S
2n−1 \Bk → S1, and Sk,θ = π−1

k (θ).
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Step 2. Computation of dfk(R). For (z1, . . . , zk) ∈ S2n−1 \ Bk, we use polar
coordinates (ri, θi) for zi and compute:

dfk(R) = d(rk1e
ikθ1 + ϵrk2e

ikθ2 + · · ·+ ϵn−1rkne
ikθn)(

∑n
j=1 ∂θj )

= ik(rk1e
ikθ1 + ϵrk2e

ikθ2 + · · ·+ ϵn−1rkne
ikθn) = ikfk.(6.2.1)

Observe that this equation is the version of the equation in [Gir00, p.411, last line]
when Fk is holomorphic.

Step 3. Verification of the properties. Eq. (6.2.1) implies thatR is tangent toBk and
transverse to Sk,θ and that πk is a fibration. Moreover, for (Bk, πk), ρ(z) = 1 and
V ≡ 1, and S2n−1 \Sk,0 is the interior of a contact handlebody of thickness 2π/k.
Since R is tangent to Bk, for each z ∈ Bk, dfk(kerαstd(z)) = C. This, together
with the invariance of kerαstd under the standard almost complex structure on Cn,
implies that Bk is a codimension two contact submanifold of kerαstd.

Next we apply Lemma 6.3.1, proved in §6.3, to show that Sk,θ is Weinstein after
perturbing fk by adding

∑n
i=1 ciz

k
i for ci small. Using the notation from §6.3, we

have dθ(R) = 1 and dϕ(R) = 0; hence dϕ(Xβ) = 0 if and only if dϕ = 0,
where ϕ is viewed as a function on Sk,θ=0. One can compute that if z ∈ Sk,0 is a
critical point of ϕ, then all |zi| ̸= 0; at such a point d(zk1 ), . . . , d(z

k
n) are linearly

independent. This provides enough perturbations to make ϕ Morse.
Finally, the C∞-closeness property is immediate from taking ϵ > 0 small. □

6.3. Verification of the Weinstein property. Let f : Cn → C be a holomorphic
function such that f(0) = 0 with an isolated critical point at the origin. For κ > 0
sufficiently small, f defines an OBD (B, θ) of the sphere Sκ of radius κ, where
B = Sκ ∩ f−1(0) and θ = arg f : Sκ \ B → R/2πZ. Also let ϕ := − log |f | on
Sκ \B.

Let

• α = 1
2

∑n
i=1(xidyi − yidxi) = 1

2

∑n
i=1 r

2
i dθi be the standard Liouville

form on Cn with Liouville vector field Xα = 1
2

∑n
i=1 ri

∂
∂ri

, where (ri, θi)

are polar coordinates corresponding to (xi, yi);
• αstd be the induced contact form on Sκ for κ > 0 small andR = 2

r2
∑

i
∂
∂θi

be the Reeb vector field on Sκ, where r2 =
∑

i r
2
i (note that R is defined

on all of Cn, not just on Sκ);
• β be the 1-form induced by αstd on any page of the OBD with Liouville

vector field Xβ; we view Xβ as a vector field on Sκ \ B that is tangent to
the pages;

• Xθ be the Hamiltonian vector field of θ (satisfying iXθ
dα = dθ), viewed

as a function on Cn \ f−1(0); and
• J be the standard complex structure on Cn.

The following is due to Emmanuel Giroux (presented here with his permission):

Lemma 6.3.1 (Giroux). On Sκ \B, if dϕ(R) ≡ 0, then dϕ(Xβ) =
1

dθ(R) |dϕ|
2.
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Proof. We first claim that, at every point of Sκ \B, the following identity holds:

(6.3.1) Xα = Xβ + aXθ + bR,

where a = 1
dθ(R) and b = dθ(Xα)

dθ(R) . First note that the dα-symplectic orthogonal
complement of the tangent space TS of a page S is spanned by R and Xθ. [Verifi-
cation: dα(R, TS) = 0 since R, TS are tangent to Sκ; dα(Xθ, TS) = dθ(TS) =
0; and dα(Xθ, R) = dθ(R) > 0.] Hence we can write Xα = Y + aXθ + bR for
some Y ∈ TS. Evaluating on TS gives Y = Xβ . We can then determine a and
b by applying dθ and d(r2) to Eq. (6.3.1): d(r2)(Xα) = 2rdr(12

∑
i ri

∂
∂ri

) = r2

and d(r2)(Xα) = ad(r2)(Xθ) = −adθ(Xr2) = −adθ(−r2R), so a = 1
dθ(R) .

Similarly, dθ(Xα) = bdθ(R), so b = dθ(Xα)
dθ(R) .

It follows from Eq. (6.3.1) that

dϕ(Xβ) = −dϕ(Xθ)
dθ(R) + dϕ(Xα)− dϕ(R)dθ(Xα)

dθ(R) .

Now, since the function −ϕ + iθ is holomorphic when viewed as a function on
Cn \ {f = 0}, we have dϕ ◦ J = dθ. Hence

dϕ(Xα) = −dϕ ◦ J(JXα) = −dθ(12
∑

i
∂
∂θi

) = − r2

4 dθ(R),

dϕ(Xθ) = −dϕ ◦ J(JXθ) = −dθ(JXθ) = −dα(Xθ, JXθ)

= −|Xθ|2 = −|dθ|2 = −|dϕ|2,
dϕ(R) = −dθ(JR) = dθ( 4

r2
Xα),

and
dϕ(Xβ) =

1
dθ(R)(|dϕ|

2 − (dϕ( r2R))
2 − (dϕ(2rXα))

2).

Observe that 2
rXα and r

2R are orthonormal unit vectors. Finally, since dϕ(R) = 0,
dϕ(Xβ) =

1
dθ(R) |dϕ|

2 on each page. □

7. CONSTRUCTION OF THE PLUG

The goal of this section is to generalize the 3-dimensional plug constructed in
§4.1 to higher dimensions. This is the key construction that will allow us to prove
Theorems 1.2.3 and 1.2.5 in Section 9 in essentially the same way as in the 3-
dimensional case.

7.1. Definition of a plug. Let us rephrase the 3-dimensional case considered in
§4.1 in a way that is amenable to higher-dimensional generalization. Consider the
standard contact space (R3, ker(dz + esdt)) and the surface Σ = {z = 0} ⊂ R3.
The plug is obtained by growing a mushroom along a boxU = [0, s0]×[0, t0] ⊂ Σ,
where we are viewing U as the truncated symplectization of the 1-dimensional
compact contact manifold ∂−U = {0} × [0, t0] with contact form dt.

In higher dimensions, let (Y, ker η) be a compact contact manifold of dimension
2n− 1 with convex boundary. Let

(Nϵ0(Y ) := Y ∪ ([0, ϵ0]× ∂Y ), ker η)
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be a small extension of (Y, ker η). Now we consider

(M2n+1 := R2
z,s ×Nϵ0(Y ), ξ = ker(dz + esη))

and the hypersurface Σ := {z = 0}. Let U := [0, s0]×Nϵ0(Y ) and let

∂−U := {−1} ×Nϵ0(Y ) and ∂+U := {s0 + 1} ×Nϵ0(Y ).

From now on, we fix a Riemannian metric on M , which induces a metric on any
submanifold and such that [0, ϵ0]×∂Y has thickness ϵ0 with respect to this metric.

Definition 7.1.1. A Y -shaped plug with parameter ϵ > 0 is a C0-small perturba-
tion Ũ of U supported in the interior U◦ of U such that:

(1) all the flow lines of Ũξ that pass through {−1} × Y ◦ flow to a negative
singularity;

(2) all the flow lines of Ũξ that pass through {s0+1}×Y ◦ flow from a positive
singularity;

(3) for all possibly broken flow lines of Ũξ that go from ∂−U to ∂+U , the
holonomy map is ϵ-close to the identity when defined;

(4) Ũξ is gradient-like with respect to a Morse function f : Ũ → R which
agrees with s on ∂Ũ ; in particular there are no possibly broken loops of
Ũξ.

Definition 7.1.2. A Y -shaped pre-plug Ũ satisfies Definition 7.1.1 with (3) re-
placed by:

(3’) for each possibly broken flow line of Ũξ that goes from ∂−U to ∂+U , the
holonomy map is obtained by following a small perturbation of (∂Y )ker η.

7.2. A Peter-Paul contactomorphism. Let (Y, η) be a contact manifold with a
fixed choice of contact form η. Let S be a hypersurface of Y transverse to the
Reeb vector field Rη. Then S has a neighborhood S × [−ϵ, ϵ]τ ⊂ Y on which
Rη = ∂τ .

The following is well-known:

Lemma 7.2.1. If Rη = ∂τ on S × [a, b]τ ⊂ Y , a < b, then η = dτ + β, where β
is the pullback of a 1-form on S. Moreover, dβ is symplectic on S.

In other words, η is the contactization of (S, β). In particular, if (S, β) is Wein-
stein then S × [a, b] is a contact handlebody.

Proof. We first write η = fdτ+β, where f(τ) ∈ Ω0(S) and β(τ) ∈ Ω1(S). Since
η(Rη) = 1, we have f = 1. Also, since LRηη = 0, β(τ) must be τ -independent.
Finally, dβ is symplectic on S due to the contact condition on Y . □

Given (Y, η), let (M,α) = (R2
z,s × Y, dz + esη) and let ϕt : Y

∼→ Y be the
time-t flow of Rη.

Lemma 7.2.2. The diffeomorphism

Ψ :M
∼→M, (z, s, y) 7→

(
e(−1+1/C)s · Cz, s/C, ϕ(1−C)e−sz(y)

)
,(7.2.1)

where C > 0, is a contactomorphism.
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Proof. We compute

Ψ∗(α) = d(e(−1+1/C)s · Cz) + es/C(η + d((1− C)e−sz))

= e(−1+1/C)s(1− C)zds+ e(−1+1/C)sCdz + es/Cη

− es/C(1− C)e−szds+ es/C(1− C)e−sdz

= e(−1+1/C)s(dz + esη) = e(−1+1/C)sα.

We explain the first line: By Lemma 7.2.1, η can locally be written as dτ+β, where
β is a 1-form on a hypersurface S ⊂ Y transverse to Rη = ∂τ . (Note that we can
use the immersion i : S × Rτ → Y with i∗Rη = ∂τ instead in Lemma 7.2.1.)
Then ϕ(1−C)e−sz(τ, x) = (τ + (1 − C)e−sz, x), where x is the coordinate on S,
and ϕ∗(1−C)e−szη = η + d((1− C)e−sz). □

Let M(z0,s0) = [−z0, z0] × [0, s0] × Y ⊂ (M,α). As an immediate corollary,
by taking C ≫ 0, we have:

Lemma 7.2.3. For any 0 < s′0 ≤ s0 and z′0 > 0, there exists 0 < z0 ≤ z′0,
such that M(z0,s0) contactly embeds into M(z′0,s

′
0)

and takes {z = 0} ∩M(z0,s0) to
{z = 0} ∩M(z′0,s

′
0)

.

We call the contactomorphism Ψ given by (7.2.1) a Peter-Paul contactomor-
phism for the following reason: In Lemma 7.2.3, Σ = {0}× [0, s]× Y ⊂M(z0,s0)

is the hypersurface on which we want to create mushrooms. The length of the in-
terval [−z0, z0] can be regarded as the given size of a neighborhood of Σ. The map
Ψ then allows us to rob the (already small) size of the neighborhood of Σ to pay
for a large size in the s-direction.

Observe that the Peter-Paul contactomorphism was not needed in Section 4 to
make any 2-dimensional surface convex.

7.3. A pre-plug. Given a standard Darboux ball (Y 2n−1, η′) with convex bound-
ary, we explain how to construct a Y -shaped pre-plug Ũ on

Σ := {z = 0} ⊂M = R2
z,s ×Nϵ0(Y ).

The Y -shaped pre-plug will be upgraded to a Y -shaped plug with parameter ϵ > 0
in the next two subsections.

Modulo corner rounding, we may assume that (Y, ker η′) is contactomorphic to
(Y0 ∪ Y1, ker η) such that:

(1) Y0 = (z−1
1 ({|ζ| ≤ ϵ′}), η = αstd), where z1 : S2n−1 → Cζ and αstd =

1
2

∑
i(xidyi − yidxi) are as in §6.2 and ϵ′ > 0 is small;

(2) Y1 = ([0, 2π]t × D2n−2, η = dt + βD2n−2), where βD2n−2 is a standard
Liouville form on D2n−2 with one elliptic singular point; and

(3) for each t ∈ [0, 2π], {t}×∂D2n−2 is glued to z−1
1 (ϵ′eit) so that the contact

forms (and the Reeb vector fields) match.
(In particular, Y0∪Y1 has a partial open book structure, where Y0 is a neighborhood
of the binding and {t} ×D2n−2 is a retraction of a page; see Definition 8.4.2.)
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We now apply the Peter-Paul contactomorphism to realize (Y0 ∪ Y1, η) as a
transverse slice (i.e., transverse to the characteristic foliation) on Σ; we then blur
the distinction between Y and Y0 ∪ Y1 and write Y = Y0 ∪ Y1. The price that we
pay is that we lose control of the z-height. (Recall that the z-height restricts the
thickness of the contact handlebody of the mushroom that we want to grow.)

To remedy this we apply quantitative stabilization (Lemma 6.2.1) with k ≫ 0
and 0 < ϵ ≪ ϵ′ to Y0 to obtain πk : Y0 → S1. After a C∞-small perturbation
of Y1 whose size depends on k and which we still denote by Y1, there is a smooth
extension πk : Y → S1 which agrees with (t, x) 7→ kt on Y1.

Choose a finite number, say N = 5, and a small constant 0 < ϵ′′ < ϵ′. Then,
for j = 0, . . . , 4, let H ′

j be the sector π−1
k ([2πj5 , 2π(j+1)

5 ]). Assuming we chose a
suitable extension of πk, H ′

j is a (complete) contact handlebody of thickness 2π
k .

Next let Hj be a slight modification of H ′
j , j = 0, . . . , 4, obtained by removing

an ϵ′′

2 -neighborhood π−1
k ({z ≤ ϵ′′

2 }) ∩ Y0 of the binding Bk and thickening the
contact handlebody by flowing forward and backward by ϵ′′

k in the Reeb direction.
Finally, we slightly (i.e., in a C∞-small manner) modify η by “shifting the bind-

ing” Bk away from H0 using a contactomorphism ϕ and construct the analogous
contact handlebody ϕ(H0) of thickness 2π+2ϵ′′

k such that ϕ(H0) contains the ϵ′′-
neighborhood of Bk, as follows:

Brief explanation of “shifting the binding”. By flowing along the characteristic
foliation of each page, one can normalize αstd on a small neighborhood Bk ×D2

of the binding Bk as

αstd = fβ + g(xdy − ydx),

where D2 is a disk with Euclidean/polar coordinates (x, y)/(r, θ) and small radius;
β = αstd|Bk

; f = f(r) and f(0) = 1; g = g0r
2 +O(r3) and g0 is a nonvanishing

function on Bk; and the pages are still θ = const. Letting

α := f−1αstd = β + h(xdy − ydx), where h = f−1g,

and X = ∂
∂x − hyRβ , where Rβ is the Reeb vector field of β, we compute:

dα = dβ + dh ∧ (xdy − ydx) + 2hdxdy,

iXdα = 2hdy +O(r), d(α(X)) = −2hdy +O(r),

and hence LXα = O(r). Therefore, the translation by aX , a < 0 small, on
Bk × D2 (where defined), is close to a contactomorphism and the modification
needed to make it into a contactomorphism ϕ is on the order of a · O(r), which is
an order of magnitude smaller. Hence ϕ(H0) has the property of being close to the
x 7→ x + a-translate of H0 with error much smaller than a; in particular ϕ(H0)
contains the ϵ′′-neighborhood of Bk. Finally, one may adjust the contact form on
ϕ(H0) by multiplying by a function that is close to 1 so that ϕ(H0) becomes a
contact handlebody.

In what follows we abuse notation and refer to ϕ(H0) by H0.
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The pre-plug Ũ consists of mushrooms Zj , 0 ≤ j ≤ 4, with bases

Bj := [8−2j
10 , 9−2j

10 ]s ×Hj ;

see Figure 7.3.1. (Strictly speaking, the base B0 is obtained by shifting B′
0 =

[ 810 ,
9
10 ]×H0 by the map (s, x) 7→ (s+ f0(x), x), where f0 is a C0-small smooth

function on H0. We will assume that we started with a slightly smaller B′
0 =

[ 810 +δ,
9
10 −δ]×H0 and that the base for the contact handlebodyH0 containsB0.)

We also require the damping of Z1, . . . , Z4 to occur inside the 3ϵ′′

4 -neighborhood
of Bk so that the damping regions of H1, . . . ,H4 are contained in H0 and the
damping region of H0 to occur inside H2.

s

θ

FIGURE 7.3.1. H0, . . . ,H4, from top to bottom.

Verification of (3’) in Definition 7.1.2. This is a direct consequence of Proposi-
tion 5.5.2 and our choice of the ordering of the mushrooms in the s-direction.

We first give names to regions of ∂−U : Viewing Hj as a subset of ∂−U , let H̃j

be the closure of the union ofHj and the set of points such that the holonomy from
s = 8−2j

10 − δ to 9−2j
10 + δ (for δ > 0 small) is not trivial or does not exist; note that

H̃j is contained in a small neighborhood of Hj . We denote the portion of H̃j that
closely approximates it and acts as a sink by Hj,in and H̃j \Hj,in by Hj,∂ , and the
corresponding products with [8−2j

10 , 9−2j
10 ] by Bj,in and Bj,∂ .

The dynamics of Ũ in forward time is described as follows: Let x ∈ ∂−U and
let ℓx be the flow line of Ũ passing through x.

(A) If ℓx enters Bj,in, j = 0, . . . , 4, then ℓx converges to a singularity in Zj .

(B) If ℓx enters Bj,∂ , then ℓx exits Zj at a point near ∂Hj — recall that as ℓx
passes through Zj it flows “from R+(∂Hj) to R−(∂Hj)” in the sense of (Z5) of
Proposition 5.5.2 with possibly large nontrivial components in the Reeb direction
of Γ∂Hj

on the damping region — and one of the following will happen:



CONVEX HYPERSURFACE THEORY IN CONTACT TOPOLOGY 41

(1) ℓx follows ∂s until {s = 1} and exits the plug; the holonomy map is ob-
tained by following a small perturbation of (∂Y )ker η;

(2) ℓx follows ∂s until Bi,in for i < j; we then apply (A) after letting the new
j equal i;

(3) ℓx follows ∂s until Bi,∂ for i < j; we then apply (B) after letting the new
j equal i.

Note that H0 was chosen so that Z0 captures all the trajectories that enter ∂−U ,
“survives to” s = 8

10 , and is not close to ∂Y . A similar analysis can be applied to
the dynamics of Ũ in backward time and Definition 7.1.2(3’) then holds.

In light of Proposition 2.2.6 and Lemma 2.3.2, we conclude that Ũ is Morse.

7.4. ϵ-short hypersurfaces. In this subsection we strengthen Theorem 1.2.3 in a
quantitative way. Namely, in addition to requiring that Σξ be Morse+ or 1-Morse+,
we also require all the smooth flow lines of Σξ to be short.

Definition 7.4.1. A closed hypersurface Σ ⊂ (M, ξ) is ϵ-short if the length of any
smooth flow line of Σξ is shorter than ϵ with respect to the induced metric on Σ.

Observe that any closed Morse+ hypersurface Σ is ϵ-short for a sufficiently large
ϵ which depends on Σ. For our purposes we take ϵ > 0 to be a small number
which is independent of the choice of convex hypersurface. Theorem 1.2.3 can be
strengthened as follows:

Theorem 7.4.2. Given ϵ > 0, any closed hypersurface Σ in a contact manifold can
be C0-approximated by an ϵ-short and Morse+ one. Moreover, if Σ is Weinstein
convex, then there exists a t-invariant neighborhood [−δ, δ]t × Σ of {0} × Σ and
a 1-parameter family of pairwise disjoint embeddings ϕt : Σ → [−δ, δ] × Σ,
t ∈ [−δ, 0], such that:

(1) ϕ−δ(Σ) = {−δ} × Σ,
(2) ϕt(Σ) is C0-close to {t} × Σ for all t ∈ [−δ, 0],
(3) ϕ0(Σ) is 1-Morse+ and ϵ-short, and
(4) ϕt(Σ) have the same number and type of singular points for all t ∈ [−δ, 0)

and the whole family ϕt(Σ), t ∈ [−δ, 0] is Weinstein convex.

In words, what (3) and (4) are saying is that the singular points of the charac-
teristic foliation of ϕt(Σ) remain the same for t < 0 and all the singular points —
necessarily of birth-death type — are created at the same time when t reaches 0.

Theorem 7.4.2 holds in dimension 3 by §4.3, together with a slightly more care-
ful analysis of the characteristic foliation when installing a mushroom. This will
be the base case of our inductive argument.

7.5. Construction of the plug. The goal of this subsection is to prove the follow-
ing:

Theorem 7.5.1. Let Y be the standard Darboux ball of dimension 2n − 1 with
convex boundary. Then for any ϵ > 0 small there exists a Y -shaped plug with
parameter ϵ, provided Theorem 7.4.2 holds for contact manifolds of any dimension
≤ 2n− 1.
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We adopt a simplification due to Eliashberg, Fauteux-Chapleau, and Pancholi,
used with their permission, while retaining certain elements of the original version
of the paper.

Proof. Given ϵ > 0 small, choose 0 < ϵ0 ≪ ϵ. Let Σ be the pushoff of ∂Y towards
∂Nϵ0(Y ) such that Σ is the standard Weinstein convex sphere, which we take to
satisfy:

(Sph1) Σ ≃ S2n−2 and Γ(Σ) ≃ S2n−3, where ≃ means “diffeomorphic”;
(Sph2) R±(Σ) ≃ D2n−2 is a Weinstein domain with precisely one singular point,

and the singular point on R+(Σ) (resp. R−(Σ)) has index 0 (resp. index
2n− 2).

Applying Theorem 7.4.2, there exists a foliation by Σ′
t := ϕt(Σ) for t ∈ [−δ, 0]

satisfying (1)–(4). We are starting with Σ′
−δ which is the standard Weinstein con-

vex sphere by (1); for t ∈ [−δ, 0), Σ′
t remains the standard Weinstein convex sphere

by (4); and for t = 0, Σ′
0 is ϵ-short and Weinstein convex with birth-death singular

points by (3).

Setup for Ũ . The Y -shaped plug Ũ consists of two mushrooms Z0, Z2 with
contact handlebody profiles H0, H2; a pre-plug Z1 with profile H1; and bases
[2j6 s0,

2j+1
6 s0]×Hj (i.e., Z0 has the smallest s-value, followed by Z1, and then by

Z2), such that the following hold:

(P1) Nϵ0(Y ) ⊃ H0 ∪H1 ∪H2 ⊃ Y and H0 ∩H2 = ∅;
(P2) the damping region of H0 is a subset of H1,in and the damping region of

H2 is a subset of H1,out.

Note that H1 does not need a damping region. See Figure 7.5.1. Recall that on
the damping regions the characteristic foliation may have large components in the
Reeb direction of the dividing set. Since these can potentially create trouble with
the ϵ-shortness, we require (P2).

H0

H1

H2

FIGURE 7.5.1. A schematic diagram of the plug, with the s-
direction projected out (the boundaries on the right-hand side do
not actually exist). The arrows indicate the direction of the flow
along the characteristic foliations of the handlebodies (i.e., from
the positive side to the negative side). The circular region repre-
sents N(Γ) and the shaded regions are the damping regions.



CONVEX HYPERSURFACE THEORY IN CONTACT TOPOLOGY 43

Analysis of the dynamics of Ũξ. We will specify H0, H1, H2 later, but for the
moment we analyze the effect of the plug Ũ when we stack the mushrooms as
above.

(1) Given a flow line of Ũξ that enters Z0, either it flows to a negative singu-
larity of Z0 or passes through Z0 after flowing parallel to the characteristic
foliation of ∂H0 as given by (Z5) of Proposition 5.5.2.

(2) Given a flow line of Ũξ that enters Z1 (including one that exits Z0 in the
previous step), either it flows to a negative singularity of Z1 or passes
through Z1 after flowing parallel to the characteristic foliation of ∂H1. No-
tice that all the potentially problematic orbits that had large components in
the Reeb direction in Z0 (i.e., those that flowed out of the damping region
of H0 or near R−(∂H0)) flow to a negative singularity of Z1 by (P2).

(3) A similar consideration holds for a flow line of Ũξ that enters Z2 (including
one that exits Z1 in the previous step).

(4) Backwards flow lines can be analyzed similarly.

The orbits that pass through Ũ flow along the characteristic foliations of ∂H0, ∂H1,
and ∂H2 without ever entering damping regions; this means they flow closely along
∂(H0 ∪H1 ∪H2).

Description of H0, H1, H2. Let us write Γ = Γ(Σ′
0) and let N(Γ) = Γ ×D2

ρ,θ be

a tubular neighborhood of Γ with contact form βΓ+C(ρ
2

2 dθ) for C > 0 small and
such that the thickness in the D2-direction is ≤ ϵ′′ for ϵ′′ > 0 small. We take H0

(resp. H2) to be a thin contact handlebody over an ϵ′′′-retraction of R+(Σ
′
0) (resp.

R−(Σ
′
0)), where 0 < ϵ′′′ ≪ ϵ′′, and take the damping region to be small. There

exists δ′0 > 0 small such that

R+(Σ
′
−δ0) \N(Γ) ⊂ H0,out and R−(Σ

′
−δ0) \N(Γ) ⊂ H2,in.

We then take H1 to be union of N(Γ) and the region of Nϵ0(Y ) bounded by Σ′
−δ0

.
There is some flexibility in choosing the dividing set and we take Γ∂H1 and also
the damping region to be a subset of H2,in. (P1) and (P2) hold by construction and
also ∂(H0 ∪H1 ∪H2) is ϵ-short.

Lemma 7.5.2. H1, after a C∞-small perturbation, is contactomorphic to a stan-
dard Darboux ball with convex boundary.

Proof of Lemma 7.5.2. Let H ′
1 := [0, 1]t ×D, where D = D2n−1, and let Dt :=

{t} ×D. We sketch the proof that if α is a contact form on H ′
1 such that:

(1) on a neighborhood of [0, 1]× ∂Dt, α = dt+ β, where β is independent of
t and is the symplectization of a standard contact form on ∂D.

(2) the characteristic foliation on each Dt consists of a positive elliptic singu-
larity et and all its trajectories go from et to ∂Dt;

then (H ′
1, kerα) is contactomorphic to (H ′

1, ker(dt + β)) for some extension of
β to D. The assumptions imply that α = ftdt + βt, where ft is a function on
Dt and βt is a 1-form on Dt. We slightly perturb α so that the (N(et), βt|N(et))
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are all diffeomorphic, where N(et) ⊂ Dt is a neighborhood of et, and apply a 1-
parameter family of diffeomorphisms to straighten the characteristic foliation and
make βt independent of t, which we now write as β′. The contact condition implies
that ft > 0; applying the Reeb flow gives the normalization fdt+β′; and we divide
by f .

The lemma then follows modulo adjusting/rounding corners. □

In view of Lemma 7.5.2 and the construction of a pre-plug from §7.3, Ũ is a
Y -shaped plug with parameter ϵ.

□

8. BIFURCATIONS OF CHARACTERISTIC FOLIATIONS AND BYPASS
ATTACHMENTS

The goal of this section is to relate certain codimension 1 degenerations of
Morse+ hypersurfaces to bypass attachments introduced in [HH]. Such a corre-
spondence is fundamental in bridging the more dynamical approach [Gir91, Gir00]
and the more combinatorial approach [Hon00] of convex surface theory in dimen-
sion 3. Unfortunately the details have never existed in the literature.

To this end, we slightly repackage the Morse theory on Morse hypersurfaces
from Section 2 in terms of folded Weinstein hypersurfaces.

8.1. Definitions and examples. In this subsection we define folded Weinstein hy-
persurfaces and examine a few examples.

Definition 8.1.1. An oriented hypersurface Σ ⊂ (M, ξ) is a folded Weinstein
hypersurface if the characteristic foliation Σξ satisfies the following properties:
(FW1) There exist pairwise disjoint closed codimension 1 submanifolds Ki ⊂ Σ,

i = 1, . . . , 2m− 1, which cut Σ into 2m pieces, i.e.,

Σ =W1 ∪K1 · · · ∪K2m−1 W2m,

where Wi are compact with boundary ∂Wi = Ki ∪ Ki−1. Here we are
setting K0 = K2m = ∅. We call Ki the folding loci of Σ.

(FW2) The singular points of Σξ in each Wi have the same sign, and the sign
changes when crossing Ki. We assume the singular points in W1 are posi-
tive and that each Wi has at least one singular point.

(FW3) There exists a Morse function fi on each Wi such that Ki−1 and Ki are
regular level sets and (Wi)ξ is gradient-like with respect to fi. In particu-
lar, Σξ is transverse to all the Ki.

Observe that if Σ = W1 ∪ · · · ∪W2m ⊂ (M, ξ) is a folded Weinstein hyper-
surface, then there exists a contact form α for ξ whose restriction to the interior of
each Wi defines a Weinstein cobordism (the argument is similar to that of Propo-
sition 2.3.3). Moreover, the orientation on Wi given by the Weinstein structure
agrees with (resp. is opposite to) the orientation inherited from Σ if the singular
points of (Wi)ξ are positive (resp. negative). We say a folding locus Ki is maximal
(resp. minimal) if the Liouville vector fields on Wi and Wi+1 are pointing towards
(resp. away from) Ki.
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K2m−1 K3 K2 K1

W1W2W3. . .W2m−1W2m

Σξ

+−++−

FIGURE 8.1.1. A schematic picture of a folded Weinstein hyper-
surface Σ. The top arrows indicate the direction of the Liouville
vector fields on the Wi and the bottom arrow indicates the direc-
tion of the characteristic foliation.

Note that by definition any folded Weinstein hypersurface is Morse, and any
Morse hypersurface can be equipped with the structure of a folded Weinstein hy-
persurface.

We now give examples of folded Weinstein hypersurfaces and explain why they
are called “folded”.

Example 8.1.2. If Σ is a convex hypersurface such that R±(Σ) are Weinstein
manifolds, then Σ can be given the structure of a folded Weinstein hypersurface
where the folding locus coincides with the dividing set ΓΣ and is maximal. On the
other hand, a folded Weinstein hypersurface is not always convex because there
may exist trajectories of Σξ from a negative singularity to a positive one. Nev-
ertheless, since a C∞-small perturbation of a Morse hypersurface is Morse+ by
Lemma 2.3.2, any folded Weinstein hypersurface is C∞-generically convex by
Proposition 2.3.3.

Example 8.1.3. Consider (R2n+1, ξstd) with contact form α = dz +
∑n

i=1 r
2
i dθi.

The unit sphere S2n is convex with respect to the contact vector field 2z∂z +∑n
i=1 ri∂ri .
We slightly generalize this example as follows, which motivates our definition

of a “folded” Weinstein hypersurface: We refer the reader to Definition A.3.1 for
the definition of a v-folded hypersurface and a seam, where v is a vector field; for
example, the graph of y = x2 is a ∂x-folded hypersurface in R2. Taking v to be
Rα = ∂z , we consider closed Rα-folded hypersurfaces Σ ⊂ R2n+1 with seam C
and decomposition Σ \C = Σ+ ∪Σ− such that Rα is positively (resp. negatively)
transverse to Σ±. It follows that Σ± are naturally exact symplectic manifolds with
symplectic forms dα|Σ± .

Now consider the following nontrivial condition:

(WC) Each component of Σ± is a (completed) Weinstein cobordism.

For example (WC) holds if each component of C is contained in {z = const} ∼=
R2n and is transverse to the radial vector field. Moreover, Σ± are graphical over
R2n and are Weinstein homotopic to subdomains of (R2n, ωstd).
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Any Rα-folded hypersurface satisfying (WC) is clearly folded Weinstein with
the folding locus equal to C, and hence can be made convex by a C∞-small pertur-
bation. Note, however, that if Σ happens to be convex, R±(Σ) ̸= Σ± in general.

This explains our terminology but at the same time raises a hard problem:

Question 8.1.4. Characterize or classify convex hypersurfaces (e.g., spheres) in a
Darboux chart.

Any answer to this question will be of fundamental importance in understanding
contact manifolds. See [Eli92] for a complete answer to this question in the case
S2 ⊂ (R3, ξstd).

8.2. Normalization of contact structure near a folded Weinstein hypersurface.
Recall that if Σ ⊂ (M, ξ) is a convex hypersurface, then there exists a “standard”
tubular neighborhood U(Σ) ≃ Rt × Σ of Σ such that ξ|U(Σ) = ker(fdt + β),
where f ∈ C∞(Σ) and β ∈ Ω1(Σ).

The goal of this subsection is to generalize this to folded Weinstein hypersur-
faces, namely associate to a folded Weinstein surface Σ ⊂ (M, ξ = kerα) a
standard tubular neighborhood, i.e., a tubular neighborhood U(Σ) of Σ and a con-
tactomorphism ϕ : U(Σ)

∼→ ((−ϵ, ϵ)t × Σ, kerαΣ), where αΣ is a normalized
contact form (specified below), ϵ > 0 is sufficiently small, and ϕ(Σ) = Σ0. Here
Σt := {t} × Σ.

In the following three steps we construct the normalized contact form αΣ on
R×Σ such that αΣ|Σ = α|Σ0 , up to rescaling by a positive function. Lemma 2.1.3
then gives the desired contactomorphism.

Following Definition 8.1.1, we write Σ =W1 ∪K1 ∪ · · · ∪K2m−1 W2m. Choose
a tubular neighborhood U(Ki) for each Ki and identify it with [−1, 1]τ ×Ki such
that Σξ is directed by ∂τ onU(Ki). (In particular, this means that {−1}×Ki ⊂Wi

and {1} ×Ki ⊂Wi+1.)

STEP 1. Construct the contact form on R× (Σ \ ∪2m−1
i=1 U(Ki)).

Let W ◦
i := Wi \ (U(Ki−1) ∪ U(Ki)). After possibly rescaling α by a positive

function as in Proposition 2.3.3, we may assume that βi := α|W ◦
i

is Liouville for
all i. (Here dβi > 0 for i odd and dβi < 0 for i even.) Moreover, we can arrange
so that the Liouville vector field Xβi

equals ∂τ/(2τ) near ∂U(Ki) if i is even, and
equals −∂τ/(2τ) if i is odd. (This is a purely technical arrangement which makes
the gluing of contact forms below easier.) We define

(8.2.1) αΣ := (−1)i+1dt+ βi

on R× (Σ \ ∪2m−1
i=1 U(Ki)).

STEP 2. Construct the contact form on R× U(Ki) for i even.

In this case Ki is minimal. Assume without loss of generality that α|U(Ki) =

eτ
2
λ, where λ is a contact form on Ki. We will choose αΣ of the form

(8.2.2) αΣ = −f(τ)dt− tg(τ)dτ + eτ
2
λ
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on R×U(Ki). Clearly αΣ|U(Ki) = α|U(Ki). A straightforward computation shows
that αΣ is positively contact if and only if

(8.2.3) f ′ − 2τf − g > 0.

We choose f to be a decreasing odd function which equals ±1 when τ is close to
∓1, and then choose g to be a nonpositive even function which equals 0 when τ is
close to ±1, subject to (8.2.3); see Figure 8.2.1.

−1 1

−1

1

−1 1τ τ

f(τ)

g(τ)

FIGURE 8.2.1. The graph of functions used in the contact form
given by Eq. (8.2.2).

For later use, note that αΣ restricts to the Liouville form βi,t = −tg(τ)dτ+eτ2λ
on {t} × (U(Ki) \Ki) for any t ∈ R. We compute the Liouville vector fields

Xβi,t
= 1/(2τ)(∂τ + te−τ2g(τ)Rλ),

where Rλ denotes the Reeb vector field on (Ki, λ).
It follows that

(8.2.4) U(Ki)t,ξ := ({t} × U(Ki))ξ = ∂τ + te−τ2g(τ)Rλ.

STEP 3. Construct the contact form on R× U(Ki) for i odd.

In this case Ki is maximal. This step is analogous to the construction of the
contact form on Γ× [−1, 1] in the proof of Proposition 2.3.3. Assume without loss
of generality that α|U(Ki) = e−τ2λ. We define the 1-form

(8.2.5) αΣ = f(τ)dt+ e−τ2λ

on R×U(Ki). Since αΣ is positively contact if and only if −f ′−2τf > 0, taking
f(τ) as in Figure 8.2.1 suffices.

We compute the Liouville vector fields Xβi,t
= −1/(2τ)∂τ on {t} × (U(Ki) \

Ki), and note that it is independent of t. In fact U(Ki) is convex with respect to
the contact vector field ∂t.

Combining (8.2.1), (8.2.2), and (8.2.5), we obtain a contact form αΣ on R × Σ
such that αΣ|Σ = α|Σ0 , up to rescaling by a positive function.

Remark 8.2.1. A crucial difference between the normal forms of contact structures
near a convex hypersurface and a folded Weinstein hypersurface is the following:
For convex hypersurfaces, since ∂t is a transverse contact vector field, any small
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neighborhood of Σ is in fact contactomorphic to the entire Rt × Σ. On the other
hand, the above-constructed αΣ is not t-invariant, and hence only specified by the
data on Σ for |t| sufficiently small.

8.3. Bypass attachment as a bifurcation. Let ξ be a contact structure on Σ ×
[0, 1] such that Σ×{0, 1} are Weinstein convex, or equivalently Morse+. Then by
Proposition 2.3.3, Σt is Morse+ for all t ∈ [0, ϵ) ∪ (1 − ϵ, 1] with ϵ > 0 small.
It will be shown in Section 9 that after a boundary-relative isotopy, Σt is 1-Morse
for all t ∈ [0, 1]. However, the 1-Morse+ condition may fail at isolated instances.
In particular, there may exist a first instance t0 > 0 such that Σt is convex for any
t ̸= t0 sufficiently close to t0 but there exists a “retrogradient” flow line of (Σt0)ξ
from a negative index n singularity to a positive one. Such a phenomenon is called
a bifurcation of the characteristic foliation in [Gir00].2 As we will see, crossing
such t0 corresponds precisely to a bypass attachment as introduced in [HH].

To set up the “bypass–bifurcation correspondence”, it is convenient to reformu-
late the bypass attachment in the language of folded Weinstein hypersurfaces.

8.3.1. Bypass attachments. We briefly review bypass attachments from [HH], leav-
ing the details of contact handle attachments and Legendrian (boundary) sums to
[HH].

Let Σ be a Weinstein convex hypersurface with the usual decomposition Σ \
Γ = R+ ∪ R−. A bypass attachment data (Λ±;D±) is given as follows: Let
D± ⊂ R± be Lagrangian disks with cylindrical ends which are regular in the sense
of [EGL18], i.e., the complement in R± of a standard neighborhood of D± is still
Weinstein. Let Λ± = ∂D± be Legendrian spheres in Γ equipped with the contact
form α|Γ, which we assume have a unique ξ|Γ-transversal intersection point (i.e.,
they intersect transversely when projected to ξ|Γ) .

Next we discuss Reeb pushoffs. If Λ is a Legendrian submanifold of Γ, then let
Λϵ be the Reeb pushoff of Λ in the Reeb direction by ϵ. Clearly Λϵ is embedded
for |ϵ| sufficiently small. Moreover, if Λ bounds a Lagrangian disk D in some
Weinstein filling, then there exists a corresponding Lagrangian Dϵ in the same
filling with ∂Dϵ = Λϵ.

We now explain how to attach a bypass to Σ using the bypass attachment data
(Λ±;D±) to obtain a contact structure on Σ × [0, 1]. The bypass attachment is
a smoothly canceling pair of contact handle attachments in the middle dimen-
sions. The first is a contact n-handle attachment to Σ0 along the Legendrian sphere
Λ− ⊎ Λ+ ⊂ Γ obtained by Legendrian sum. This step produces a new convex
hypersurface S. It turns out the pushoffs Λ∓ϵ

± of Λ± become Legendrian isotopic
when viewed on ΓS . Hence we can attach a contact (n+ 1)-handle to S along the
Legendrian sphere that we denote by D−ϵ

+ ∪ D+ϵ
− and is obtained by gluing D−ϵ

+

and D+ϵ
− via the Legendrian isotopy.

2Since Morse-Smale vector fields are considered in [Gir00], there exists a different kind of bi-
furcation where a pair of periodic orbits appear or disappear. This phenomenon does not occur here
since we are dealing with Morse gradient vector fields.
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Remark 8.3.1. It is not necessary to assume that D± are regular in the definition
of a bypass attachment. It is an outstanding, and of course hard, problem to even
find an irregular Lagrangian disk in any Weinstein domain. One consequence of
our work in this paper is that, as far as convex hypersurface theory and open book
decompositions are concerned, one can completely stay in the world of Morse
theory, e.g., avoid using any irregular Lagrangian disks, regardless of their very
existence, without losing any generality. Compare this with the work of Lazarev
[Laz20] which proves the existence h-principle for regular Lagrangians.

Let (Σ× [0, 1], ξ) be the contact manifold resulting from the bypass attachment.
Write Σt := Σ× {t}, where Σ = Σ0. We have the usual decomposition Σi \ Γi =
Ri

+ ∪Ri
−, i = 0, 1. Then by [HH, Theorem 5.1.3]:

• R1
+ is obtained fromR0

+ by removing a standard neighborhood ofD−ϵ
+ and

attaching a Weinstein handle along Λ− ⊎ Λ+.
• R1

− is obtained fromR0
− by removing a standard neighborhood ofD+ϵ

− and
attaching a Weinstein handle along Λ− ⊎ Λ+.

• Γ1, viewed as the boundary of R1
+, is obtained from Γ0 by a contact (+1)-

surgery along Λ−ϵ
+ and a contact (−1)-surgery along Λ−⊎Λ+. Γ1, viewed

as the boundary of R1
−, is obtained from Γ0 by a contact (+1)-surgery

along Λ+ϵ
− and a contact (−1)-surgery along Λ− ⊎ Λ+. These two presen-

tations of Γ1 are canonically identified by a handleslide.

8.3.2. Folded Weinstein description. We will now describe the Morse+ hypersur-
face Σ as a folded Weinstein hypersurface.

Let W1 ⊂ R+ be the Weinstein subdomain obtained by digging out a standard
neighborhood of D−ϵ

+ . Then D−ϵ
+ is the unstable manifold of an index n critical

point q+ with respect to the Liouville flow on R+ and R+ can be viewed as the
concatenation W1∪W ′

3, where W ′
3 is a Weinstein cobordism with a unique critical

point q+. Similarly, let W4 ⊂ R− be the Weinstein subdomain such that R− is the
concatenation of W4 and a Weinstein cobordism W ′

2 with a unique index n critical
point q−, whose unstable manifold isDϵ

− with respect to the Liouville flow onR−.
Since Λ∓ϵ

± = ∂D∓ϵ
± are disjoint, we can shuffle the critical values of q± to obtain

the following decomposition

Σ =W1 ∪K1 W2 ∪K2 W3 ∪K3 W4,

where W2,W3 are Weinstein cobordisms (slight variants of W ′
2,W

′
3) associated

with the critical points q−, q+, respectively. See Figure 8.3.1.
In particular we have:

(FBP1) As contact manifolds, K1, oriented as ∂W1 (and also as ∂W2), is obtained
from Γ by a contact (+1)-surgery along Λ−ϵ

+ ; K3, oriented as ∂W3 (and
also as ∂W4), is obtained from Γ by a contact (+1)-surgery along Λϵ

−; and
K2, oriented as −∂W2 (and also as −∂W3), is obtained from Γ by contact
(+1)-surgeries along Λ−ϵ

+ and Λϵ
−.

(FBP2) Let (D−ϵ
+ )† and (Dϵ

−)
† be the stable manifolds of q+ and q− inW3 andW2

with respect to the Liouville flows. Then (D−ϵ
+ )† ∩ K2 = Λ−ϵ

+ (K2) and
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(Dϵ
−)

† ∩ K2 = Λϵ
−(K2), where we write Λ−ϵ

+ (K2) and Λϵ
−(K2) for the

core Legendrians of the contact (+1)-surgeries.
(FBP3) The ξ|Γ-transverse intersection point between Λ+ and Λ− turns into a short

Reeb chord γ ⊂ K2 from Λ−ϵ
+ (K2) to Λϵ

−(K2).

q+ q−W4 W1

W3 W2

K1K2K3

D†
−

D†
+

FIGURE 8.3.1. A Morse+ hypersurface viewed as a folded We-
instein hypersurface.

8.3.3. Bypass-bifurcation correspondence.

Proposition 8.3.2 (Bypass–bifurcation correspondence). Let (Σ×[−δ, δ], αΣ) with
δ > 0 small be a standard neighborhood of a 2n-dimensional folded Weinstein
hypersurface

(8.3.1) Σ0 =W1 ∪K1 W2 ∪K2 W3 ∪K3 ∪W4,

where we are writing Σt := Σ× {t} as before, such that:
(F1) W2 and W3 are Weinstein cobordisms associated with ind = n negative

and positive critical points q− and q+. LetD†
−,0 andD†

+,0 (resp.D−,0 and
D+,0) be the stable (resp. unstable) manifolds of q− and q+ in W2 and W3

with respect to the Liouville flows.
(F2) Λ′

− := ∂D†
−,0 and Λ′

+ := ∂D†
+,0 are Legendrians which intersect at a

unique ξ|K2-transversal point.
Then the contact manifold (Σ×[−δ, δ], kerαΣ) is contactomorphic, relative bound-
ary, to the bypass attachment to Σ−δ along a quadruple (Λ±;D±).

Under the conditions of Proposition 8.3.2,
(Fa) Σt is convex for all t ̸= 0 by (8.2.1), (8.2.4), and (8.2.5);
(Fb) Σt for t < 0 (resp. t > 0) has a folded Weinstein structure which satis-

fies (8.3.1) and (F1) with stable and unstable manifolds D†
−,t, D

†
+,t, D−,t,

D+,t, and ∂D†
−,t is a positive (resp. negative) Reeb pushoff of ∂D†

−,0 and

∂D†
+,t is a negative (resp. positive) Reeb pushoff of ∂D†

+,0.

Moreover, comparing with the notation from §8.3.2, Σ = Σ−δ, D−ϵ
+ = D+,−δ,

Dϵ
− = D−,−δ, (D−ϵ

+ )† = D†
+,−δ, (Dϵ

−)
† = D†

−,−δ, and Λ∓ϵ
± = ∂D∓ϵ

± . We then
take Λ± and D± so that Λ∓ϵ

± and D∓ϵ
± are pushoffs of Λ± and D±. We will use

both sets of notations interchangeably.
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Since the proof of Proposition 8.3.2 is somewhat complicated, we start by ex-
plaining the key ideas involved and also highlight the difference between the usual
3-dimensional strategy and the higher-dimensional approach.

First note that the bypass attachment is a local operation, i.e., the hypersurface is
only affected in a neighborhood of D+∪D−. Let B ⊂ Σ be a small neighborhood
of D+ ∪ D− which is diffeomorphic to a ball. The question is then reduced to
understanding the contact structure onB×I given by the bypass attachment, where
I = [−δ, δ].

At this point, two “miracles” happen in dimension 3 (i.e., dimΣ = 2) which
greatly simplify the 3-dimensional proof. The first is that one can take ∂B to be
Legendrian using the Legendrian realization principle (see [Hon00, Theorem 3.7]).
This gives us good control over the contact structure near ∂B×I . The second, and
more significant, miracle is Eliashberg’s theorem (see [Eli92, Theorem 2.1.3]) on
the uniqueness of tight contact structures on the 3-ball. Using these two facts, one
can prove Proposition 8.3.2 in dimension 3 by arguing that both the bifurcation and
the bypass attachment produce tight contact structures on the 3-ball B× I with the
same boundary conditions and hence must coincide.

Unfortunately, both of the above-mentioned miracles fail in dimension > 3: the
first one fails for dimensional reasons and the second one fails by results of [Eli91,
Ust99a]. Nevertheless, the proof of Proposition 8.3.2 follows the same general
outline as in dimension 3 by replacing the Legendrian boundary condition on ∂B
by a transverse boundary condition and Eliashberg’s theorem by a direct proof that
both the bifurcation and the (trivial) bypass attachment produce the standard ball
in a Darboux chart.

Proof of Proposition 8.3.2. The proof follows the above outline and consists of
several steps.

STEP 1. Localizing the problem to B.

By (FBP1), the contact manifold K2 is obtained from Γ by a contact (+1)-
surgeries along Λ−ϵ

+ and Λϵ
−; we are also viewing K2 as a submanifold of Σt for

all t ∈ I . Let Λ′
± := ∂D†

±,0 ⊂ K2 ⊂ Σ0 be the Legendrian spheres which ξ|K2-

transversely intersect at one point and let D†
±,t ⊂ Σt be the Lagrangian disks in

W3 and W2 from (Fb) with boundary Λ′
±,t.

We now describe a small closed neighborhoodB ofD†
+,0∪D

†
−,0 in Σ0. We take

B∩K2 to be a small contact handlebody neighborhoodC2 = [−κ, κ]z×A2, κ > 0
small, of Λ′

+∪Λ′
−, whereA2 is the plumbing of two copies of disk bundles D∗Sn−1

with the canonical Liouville form and Λ′
± are the 0-sections of the corresponding

D∗Sn−1 in {0}×A2. The restriction ofB to a tubular neighborhood [−1, 1]τ ×K2

with the 1-form eτ
2
λ is [−1, 1] × C2. Then B is obtained from [−1, 1] × C2

by attaching Weinstein handles along {−1} × Λ′
− and {1} × Λ′

+. The boundary
decomposes as ∂B = C1 ∪ Ch ∪ C3, where C1 (resp. C3) is the compact contact
manifold obtained from C2 by a contact (−1)-surgery along {−1} × Λ′

− (resp.
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{1} × Λ′
+) and Ch = [−1, 1] × ∂C2. We are viewing B ⊂ W2 ∪W3, C1 ⊂ K1,

and C3 ⊂ K3.
Note that the Ci, i = 1, 2, 3, are all contactomorphic since applying a contact

(−1)-surgery along {0}×Λ′
+ to [−κ, κ]×T ∗Λ′

+ still yields [−κ, κ]×T ∗Λ′
+. The

case for {0} × Λ′
− is identical.

The characteristic foliation Bξ is inward-pointing along C1, outward-pointing
along C3, and tangent to Ch. By slightly tilting Ch, we may assume that Bξ is
outward-pointing along C3 ∪ Ch and inward-pointing along C1. This results in a
fold-type tangency roughly along ∂C1.

Moreover, for δ > 0 sufficiently small, we can construct parallel copies Bt ⊂
Σt, t ∈ I , of B = B0 such that the characteristic foliation is t-invariant near ∂Bt.
The copies Bt are obtained from [−1, 1] × A2 by attaching cores of the handles
along {−1} × Λ′

−,t and {1} × Λ′
+,t, and δ > 0 small ensures that we can attach

handles (i.e., the thickened cores) to {±1} × C2 in a manner that varies smoothly
with t.

By using certain folding techniques similar to (and in fact simpler than) those in
Section 5, one can reverse the direction of the characteristic foliation onC1 through
an isotopy of B in a suitably wiggled Σ such that Σξ is everywhere outward-
pointing along ∂B. This will be achieved in Step 3. The folding technique is called
the Creation Lemma which in dimension 3 is the converse of the usual Elimination
Lemma (see [Gei08, §4.6.3]). This is described in Step 2.

STEP 2. The Creation Lemma.

In this step, we describe the effect of applying a C0-small perturbation called
a box-fold. This is the content of the Creation Lemma, which we do not state
formally.

We closely follow the discussion of Section 5, except that we replace t by t̃
here, since we are already using t to parametrize the hypersurfaces Σt. Consider
R3
z,s,t̃

× V equipped with the contact form α = dz + es(dt̃+ λ), where (V, λ) is a
complete Weinstein manifold. Let F := {z = 0} be the hypersurface on which we
will create singularities. Clearly Fξ = ∂s where ξ = kerα.

Fix z0, s0, t̃0 > 0. Let Π3 ⊂ R3
z,s,t̃

be a surface obtained from the flat R2
s,t̃

by growing a box with base □ := [0, s0] × [0, t̃0] and height z0; see Figure 8.3.2.
Of course, as in the construction of Z in §3.2, one needs to smooth the corners of
Π3 and “Morsify” the resulting characteristic foliation Π3

ξ . These operations are
suppressed from the notation. We say Π3 is obtained from R2

s,t̃
by a 3-dimensional

box-fold.
Comparing Figure 8.3.2 with Figure 3.1.1, we note that the key difference is that

Π3
ξ admits only positive singularities: one source and one saddle. See Figure 8.3.3.

This is the content of the Creation Lemma in dimension 3.
In higher dimensions, we consider the hypersurface Π3 × V c, where V c ⊂ V

is the compact domain, i.e., V \ V c ∼= [0,∞)τ × ∂V c is symplectomorphic to
a half-symplectization of ∂V c. Following the strategy from Section 5, define the
general box-fold Π to be the hypersurface which extends Π3 × V c by damping out
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t̃

z s
□

FIGURE 8.3.2. The PL model of Π3.

e+

h+

FIGURE 8.3.3. The characteristic foliation before and after the
box folding.

the Π3-factor on R3× [0, τ1]×∂V c as τ increases. Then Eq. (5.2.1) implies that Πξ

is Morse with a pair of canceling critical points for each one in V c. In particular, let
D ⊂ Π3 be a disk containing the source e+ such that Π3

ξ is transverse to ∂D. Then
Πξ is everywhere outward-pointing along ∂(D×V c). Note that instead of creating
a pair of canceling critical points as in dimension 3 (see [CE12, Proposition 12.21]
for the higher-dimensional version), our Creation Lemma produces many pairs of
canceling critical points at once, in fact as many as the number of critical points of
V .

STEP 3. Modification from B to B̂.

In Step 1 we constructed the family Bt ⊂ Σt, t ∈ I , such that Σt,ξ is inward-
pointing along C1. The goal of this step is to modify Bt (and Σt,ξ) to B̂t so that
Σt,ξ is outward-pointing along ∂B̂t. Write C1 = [−κ, κ]t̃ × A2, where κ > 0 is
sufficiently small. Since Σξ points into B along C1, we can choose t0, s0 > 0 so
that there exists an embedding

U(C1) := It0 × [0, s0]× C1 ⊂M, It0 = [−t0, t0],
such that t0 ≪ δ, U(C1) ∩ Bt = {(t, s0)} × C1, and {t} × [0, s0] × C1 ⊂ W1.
Write the contact form as α|U(C1) = dt + es(dt̃ + λ), where λ is the standard
Liouville form on A2. Here we are identifying the z-coordinate from the previous
step with t.
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We then apply the Creation Lemma with V = A2 to install/uninstall a smoothed
box-fold along [0, s0] × C1, which we are assuming is contained in W1. This is
the higher-dimensional analog of the procedure in Section 4.4 (see Figure 4.4.1).
More precisely, we modify the foliation of Σ× I by leaves Σt to obtain a C0-close
foliation by leaves still denoted by Σt such that the following hold:

(i) Σt,ξ is unchanged for t ∈ ∂I and on W2 ∪W3 ∪W4 for t ∈ I .
(ii) The box-fold is installed along [0, s0] × C1 for t ∈ [−δ,−t0] and is unin-

stalled along [0, s0]×C1 for t ∈ [t0, δ]. The characteristic foliation on W1

is t-invariant for t ∈ It0 . (This is possible since the smoothed box-folds
can be taken to be graphical.)

(iii) For t ∈ It0 ,W1 contains a subdomain symplectomorphic toD×A2, where
D ⊂ R2 is a disk containing e+ as in Step 2 and there exists an arc µ ⊂ ∂D
such that µ×A2 is identified with {s0} × C1; see Figure 8.3.4.

e+

B

FIGURE 8.3.4. A schematic picture for isotoping B to B̂ so it
encompasses e+. The blue arc represents µ and the red arc repre-
sents ∂D \ µ.

In order to achieve the transversal boundary condition on Bt, t ∈ It0 , it remains
to isotop µ throughD to ∂D\µ and use the fact from Step 2 that Σt,ξ is everywhere
transverse to ∂(D × A2), to obtain the new B̂t ⊂ Σt such that Σt,ξ is everywhere
outward-pointing along ∂B̂t. In particular ∂B̂t, t ∈ It0 , are contact submanifolds
of M .

Remark 8.3.3. Similar ideas will be exploited in greater generality in Section 11.

Claim 8.3.4. Σt,ξ is 1-Morse for all t ∈ I and 1-Morse+ (hence Σt is convex) for
t ̸= 0.

Proof of Claim 8.3.4. By the folded Weinstein structure for Σt and the fact that in-
stalling/uninstalling the box-fold induces a Weinstein homotopy on W1, it follows
that Σt,ξ is 1-Morse for all t ∈ I . As for the 1-Morse+ property, it suffices to
consider the stable manifold of the unique singular point in W3. There is a stable
flow line that comes from a negative singularity precisely when t = 0 (this is the
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same as the situation before Σt was perturbed). The convexity of Σt, t ̸= 0, then
follows from Proposition 2.3.3. □

Hence we may restrict attention to the new Σt, t ∈ It0 .

STEP 4. Triviality of the contact structure on It0 × B̂ for t0 > 0 small.

Let S := ∂(It0 × B̂) = B̂−t0 ∪ B̂t0 ∪ (It0 × ∂B̂). Suppose t0 > 0 is small.

Claim 8.3.5. After corner rounding, S is convex and R±(S) are Weinstein homo-
topic to the standard ball with a unique critical point.3

Proof of Claim 8.3.5. For R+(S) we describe the positive critical points and the
stable manifolds of these critical points; the situation for R−(S) is similar.

The critical points of R+(S) are as follows:

(1) sitting over e+ in B̂t0 are one index 0 critical point q0 and two index (n−1)
critical points q± corresponding to Λ′

± ⊂ A2; and
(2) the critical points p+ on B̂t0 ∩W3 and p− on B̂−t0 ∩W2 have index n,

where + indicates being on the “top sheet” B̂t0 .
We denote the analogous critical points of R−(S) by q′0, q

′
±, p

′
±.

We denote the stable manifold of a critical point p by Wp. For definiteness, we
assume that there exists ϵ′ > 0 small such that

(i) Wp+ , Wp′+
intersect C2 ⊂ B̂aγ+t0 along the pushoffs (Λ′

+)
2ϵ′ , (Λ′

−)
−2ϵ′ ;

(ii) Wp− , Wp′−
intersect C2 ⊂ B̂aγ−t0 along the pushoffs (Λ′

−)
ϵ′ , (Λ′

+)
−ϵ′ .

By (i), Wp+ intersects K1 = ∂W1 along (Λ′
+)

2ϵ′ and therefore limits to Λ′
+ ⊂

A2 over e+; moreover, there is a unique flow line from p+ to q+. Next, Wp−

intersects C3 along a Legendrian which is isotopic to a positive pushoff of Λ′
−,

continues inside B̂aγ+t0 to a Legendrian isotopic to a positive pushoff of Λ′
− on

K1, and limits to Λ′
− ⊂ A2 over e+. Moreover, there is a unique flow line from

p− to q−. This implies that Sξ is Morse+ and convex, with Weinstein structures on
R±(S) just described.

The index (n − 1) and index n critical points cancel in pairs and R±(S) are
Weinstein homotopic to the standard ball with a unique critical point. □

Remark 8.3.6. The reader might find it instructive to consider the n = 1 (i.e.,
dimM = 3) case, where we have three index 0 critical points “sitting over e+”.

Now consider the 1-parameter family of pairwise disjoint homotopy spheres St̃,
t̃ ∈ [0, 3t02 ], that are slight perturbations of ∂([−t0 + t̃, t0] × B̂) and such that the
region G bounded by S3t0/2 is t-invariant.

Claim 8.3.7. The homotopy spheres St̃, t̃ ∈ [0, 3t02 ], can be made simultaneously
convex after a small perturbation.

3For the moment we only know that S is a homotopy sphere. Presumably S is a standard sphere,
although we will not need this.
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Proof of Claim 8.3.7. We use the argument of Claim 8.3.5, but this time there are
two moments t′0 and t0 with t′0 < t0, where a bifurcation occurs as explained in the
next paragraph. There is still a unique flow line from p+ to q+ for all t̃.

Next we describe the trajectories of Wp− for t̃ ∈ [0, 3t02 ]. When t̃ = t′0, all the
trajectories of Wp− reach C3 but one continues to the critical point of B̂t0 ∩W3;
when t̃ = t0, a flow line of Wp− limits to the critical point of B̂aγ ∩W3. We have:

(1) For t̃ < t′0, Wp− ∩K1 is Legendrian isotopic to a positive pushoff of Λ′
−.

(2) For t̃ > t0, Wp− ∩K1 is Legendrian isotopic to a negative pushoff of Λ′
−.

(3) For t′0 < t̃ < t0, Wp− ∩K1 is Legendrian isotopic to Λ′
+ ⊎ Λ′

−.
(4) For t̃ = t′0, t0, W p− ∩K1 is Legendrian isotopic to Λ′

+ ∪ Λ′
− intersecting

at a point and Wp− ∩K1 corresponds to Λ′
− \ Λ′

+.
Here K1 is understood to be on t = t0. (3) is a consequence of corner-rounding
along C3, which has the effect of introducing a slight negative Reeb flow along the
corner as we go from the bottom sheet to the top. (4) is the limiting configuration
of (1)–(3). In all the cases, there is a unique flow line from p− to q−, although there
may be trajectories from p− to q+ for t′0 < t̃ < t0.

The claim then follows from the usual Elimination Lemma (see [CE12, Propo-
sition 12.22]) and a trick from [Hua13, Lemma 3.3]: By a C0-small perturbation
one can simultaneously eliminate the pairs (p+, q+) and (p−, q−) on St̃ for all
t̃ ∈ [0, 3t02 ] (since the trajectories from p+ to q+ and p− to q− vary continuously
with respect to t̃), which in turn implies that all the St̃ are convex. □

Finally we observe that the bypass attachment to Σ along (Λ±;D±) restricts to
the trivial bypass attachment to S in the sense of [HH, Definition 6.1.1]. It follows
from [HH, Proposition 8.3.2] that the contact structure on (It0 × B̂) \G given by
a trivial bypass attachment is standard. By Claim 8.3.7, ξ on (It0 × B̂) \ G is
standard, hence is equivalent to a bypass attachment. This finishes the proof of the
proposition. □

8.4. Bypass attachment in terms of partial open book decompositions. The
goal of this subsection is to summarize the main constructions and results from
[HH, Section 8]. The reader is referred to the original paper for details.

8.4.1. Partial open book decompositions.

Definition 8.4.1. Given a Weinstein domain S, a cornered Weinstein subdomain
W ⊂ S is a (possibly empty) codimension 0 submanifold with corners which sat-
isfies the following properties:
(CW1) There exists a decomposition ∂W = ∂inW ∪ ∂outW such that

(1) ∂inW and ∂outW are compact manifolds with smooth boundary that
intersect along their boundaries;

(2) ∂(∂inW ) = ∂(∂outW ) is the codimension 1 corner of ∂W ; and
(3) ∂outW =W ∩ ∂S and is a proper subset of each component of ∂S.

(CW2) The Liouville vector field Xλ on S is inward-pointing along ∂inW and
outward-pointing near ∂outW .
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(CW3) S \W is a Weinstein domain after smoothing.

A particularly useful class of cornered Weinstein subdomains consists of regular
neighborhoods of Lagrangian cocore disks in S.

Definition 8.4.2. A Weinstein partial open book decomposition (POBD) is a pair
([0, 1]× S, ϕ :W1

∼→W0), where:
(1) [0, 1]t × S is a generalized contact handlebody (with St := {t} × S Wein-

stein);
(2) W0 ⊂ S0 and W1 ⊂ S1 are cornered Weinstein subdomains; and
(3) ϕ is a partial monodromy map which preserves the Liouville forms and

restricts to the identity map ∂outW1
∼→ ∂outW0.

By taking the quotient of [0, 1]×S by the map ϕ and filling inD2×∂S as in the
closed case (note that this yields a concave sutured contact manifold and we need
to round the concave sutures; see [CGHH11, Section 4.2] for details) we obtain a
compact contact manifold with Weinstein convex boundary.

8.4.2. Bypass attachment in terms of POBDs. We follow the recipe from [HH,
Section 8.3] to interpret a bypass attachment in terms of POBDs.

Lemma 8.4.3 ([HH], Proposition 8.3.1). Let (M, ξ,Γ) be a compact contact man-
ifold with Weinstein convex boundary associated to the Weinstein POBD ([0, 1] ×
S, ϕ : W1 → W0). If (M ♭, ξ♭,Γ♭) is the contact manifold obtained by attach-
ing a bypass to M along ∂M with data (Λ±;D±), where D± ⊂ R± are regular
in the sense of [EGL18], then (M ♭, ξ♭,Γ♭) is associated to the Weinstein POBD
([0, 1]t × S♭, ϕ♭ :W ♭

1 →W ♭
0) satisfying:

(PO1) S♭ is obtained from S by attaching a Weinstein handle along Λ− ⊎ Λ+;
this is done independently of t;

(PO2) W ♭
1 = W1 ⊔ Nϵ/2(D

−ϵ
+ ) ⊂ S♭, where ϵ > 0 is small and Nϵ/2(D

−ϵ
+ ) is

a cornered Weinstein subdomain which is a standard ϵ/2-neighborhood of
the Lagrangian disk D−ϵ

+ ;
(PO3) ϕ♭ :W ♭

1 →W ♭
0 is determined by specifying the Lagrangian disk ϕ♭(D−ϵ

+ ) ⊂
S♭
0: Start with the Lagrangian diskDϵ

− ⊂ S♭
0\W ♭

0 with Legendrian bound-
ary Λϵ

− ⊂ ∂S♭
0. We can slide Λϵ

− in the negative Reeb direction across the
Weinstein handle along Λ− ⊎ Λ+ so it precisely matches Λ−ϵ

+ = ∂D−ϵ
+ .

The sliding is induced by a Weinstein isotopy τs : S♭
0

∼→ S♭
0, s ∈ [0, 1],

with τ0 = id. Then we set ϕ♭(D−ϵ
+ ) = τ1(D

ϵ
−).

Note that Lemma 8.4.3 is a direct consequence of the interpretation of a by-
pass attachment as a smoothly canceling pair of contact handle attachments. If
dimM = 2n+ 1, then the handles have indices n and n+ 1.

8.4.3. Contact Morse functions and vector fields. It is helpful, although not tech-
nically necessary in this paper, to interpret the contact handle attachments in terms
of contact Morse functions. This is the contact-topological analog of the corre-
spondence between handle decompositions and Morse function presentations of a
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given smooth manifold. See Sackel [Sac] for a more thorough discussion of contact
Morse functions and a careful construction of contact handles. Sackel also works
out the dictionary between contact Morse functions and open book decompositions
and our proofs of Corollaries 1.3.1 and 1.3.2 follow the same line of reasoning.

Recall that a vector field v on (M, ξ) is a contact Morse vector field if v is
gradient-like for some Morse function f : M → R and the flow of v preserves ξ,
i.e., Lvα = gα where ξ = kerα and g ∈ C∞(M). The Morse function f is called
a contact Morse function. The zeros of v are precisely the critical points of f and
hence it makes sense to refer to the (Morse) indices of the zeros of v.

If (Σ × [0, 1], ξ) is the contact manifold corresponding to a bypass attachment
as above, then there exists a contact Morse vector field v on Σ × [0, 1] satisfying
the following properties:

(BM1) v is inward-pointing along Σ0 and outward-pointing along Σ1.
(BM2) v has exactly two zeros — p of index n and q of index n+ 1 — which are

connected by a unique flow line of v.
(BM3) For any x ∈ Σ×[0, 1], the flow line of v passing through x either converges

to a zero of v or leaves Σ× [0, 1] in both forward and backward time.
(BM4) The unstable manifold of p intersects Σ0 along the Legendrian Λ−⊎Λ+ ⊂

Γ0, and the stable manifold of q intersects Σ1 along the Legendrian Λ−ϵ
+ ⊂

Γ1, viewed as the boundary of R1
+.

Note, however, that in general Σ0,Σ1 are not regular level sets of f since contact
vector fields are not stable under rescaling by positive functions.

9. C0-APPROXIMATION BY CONVEX HYPERSURFACES

In this section we complete the proofs of Theorems 7.4.2 and 1.2.5. The main
technical ingredient is the higher-dimensional plug constructed in Section 7. In fact
our proofs are basically the same as those for the 3-dimensional case discussed in
Section 4.

Proof of Theorem 7.4.2. The proof is by induction on the dimension of M .
Fix a Riemannian metric on M . Given a closed hypersurface Σ ⊂ (M, ξ), we

may assume that the singularities of Σξ are isolated and Morse after a C∞-small
perturbation. By Theorem 4.2.3 a finite barricade BI = {Bi = [0, si] × Yi}i∈I
exists for Σξ, where each Yi is a standard (2n− 1)-dimensional Darboux ball.

Choose ϵ′ > 0 much smaller than the sizes of the Yi. We then replace each
Bi with a Yi-shaped plug with parameter ϵ′ constructed in Section 7; note that
the construction of the Yi-shaped plug uses the inductive step of Theorem 7.4.2 for
dim(M)−2. Let Σ∨ be the resulting hypersurface. A trajectory that passes near Yi
is either trapped by Yi or has holonomy at most ϵ′. Since ϵ′ is small, the trajectory
that continues is close to the original trajectory on Σξ and will be trapped by some
other Yj by the positioning of the barricade. Hence Σ∨

ξ satisfies Conditions (M1)–
(M3) of Proposition 2.2.6. A further C∞-small perturbation of Σ∨ will make it
convex by Proposition 2.3.3.
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The ϵ-Morse+ property is guaranteed if all the Bi, i ∈ I , have diameters < ϵ
3

and all the trajectories of Σξ \ (∪i∈IBi) have lengths < ϵ
3 .

Finally, the second statement (for Σ already Weinstein convex) follows from
observing that all singularities of all the Yi-shaped plugs can be “turned on simul-
taneously”; see Remark 3.2.2 which also holds for higher dimensions. □

Proof of Theorem 1.2.5. Let (Σ× [0, 1], ξ) be a contact manifold such that the hy-
persurfaces Σi, i = 0, 1, are Weinstein convex. The proof from §4.5 carries over
almost verbatim with “surface” replaced by “hypersurface”. We use Lemma 4.2.4
to construct refinements of barricades so that we can install/uninstall two sets of
barricades.

Suppose for simplicity that the barricade consists of one flow box B = [0, s0]×
D2n−1. Even though the folded hypersurface Σ∨ can be made convex, the inter-
mediate hypersurfaces appearing in the procedure of installing and uninstalling a
D2n−1-shaped plug need not be Morse. To remedy this defect, we take a cover
D2n−1 = ∪1≤i≤KUi by a finite number of balls of small diameter 1

N for which
there exists a partition

P :{1, . . . ,K} → {1, . . . , 2n}
such that Ui ∩ Uj = ∅ if P(i) = P(j). Now we choose 2n pairwise distinct
values in (0, s0) and position Ui along [0, s0] such that all the Ui with the same P-
value have the same s-value. When we install/uninstall all the Ui-shaped plugs, the
interior discrepancy for B goes to zero as N → ∞ by the analog of Lemma 4.4.1
and the fact that the ϵ that appears in Theorem 7.5.1 is one order of magnitude
smaller than the sizes of Ui.

Finally, proceeding as in §4.5, we can foliate Σ × [0, 1] by hypersurfaces of
the form Σt, which we may assume are 1-Morse by the smallness of the interior
discrepancy and Step 1 of §4.5. The only obstruction to convexity occurs when
(Σt)ξ fails to be Morse+, which occurs at isolated moments by the description of
a standard neighborhood of a non-Morse+ folded Weinstein hypersurface in §8.2.
The theorem then follows from Proposition 8.3.2. □

10. THE EXISTENCE OF (PARTIAL) OPEN BOOK DECOMPOSITIONS

The goal of this section is to prove Corollary 1.3.1, a stronger/more precise
version of Corollary 1.3.2, and Corollary 1.3.3. The proofs are, again, essentially
the same as the proofs in the 3-dimensional case; see [Gir02] for the absolute case
and [HKM09] for the relative case.

Proof of Corollary 1.3.1. Let (M, ξ) be a closed connected contact manifold of
dimension 2n + 1. Choose a generic self-indexing Morse function f : M →
R. Then the regular level set Σ := f−1(n + 1

2) is a smooth hypersurface which
divides M into two connected components M \ Σ = Y0 ∪ Y1. It follows that
Yi, i = 0, 1, deformation retracts (along ±∇f ) to the skeleton Sk(Yi), which is a
finite n-dimensional CW-complex.

Writing Y for either of Y0 or Y1, we now construct N(Sk(Y )) as a compact
contact handlebody. There exists a neighborhood of the 0-cells of Y that can be
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written as a contact handlebody H0 = [−1, 1] × W0, where W0 is Weinstein.
Arguing by induction, assume that a neighborhood of the k-skeleton of Sk(Y ) can
be realized as a contact handlebody Hk = [−1, 1] ×Wk, where Wk is Weinstein
and Γk = {0} × ∂Wk is the dividing set of ∂Hk. We explain how to attach the
(k + 1)-handles to ∂Hk, where k + 1 ≤ n, in a contact manner. Write K for
the core disk of a (k + 1)-handle. Then dim ∂K = k and by dimension reasons
∂K ⊂ ∂Hk, after possible perturbation, can be isotoped into Γk using the Liouville
flow on Wk. Let v (resp. w) be a nonvanishing (TM -valued) vector field along Γk

that is tangent to ξ, transverse to ∂Hk (resp. transverse to Γk and tangent to ∂Hk),
and is symplectically orthogonal to ξ|Γk

.
Next we would like to isotop ∂K to an isotropic submanifold ∂K ′ in Γk (it

may be Legendrian if k + 1 = n) and then isotop K to an isotropic submanifold
K ′ ⊂ Y \ intHk with boundary ∂K ′, using Gromov’s h-principle [Gro86, p. 339]
for isotropic submanifolds in a contact manifold. To this end we show that:

Claim 10.0.1. There is a formal homotopy ϕt : TK → TM , t ∈ [0, 1], such that:

(1) ϕ0 is the derivative of the inclusion map;
(2) ϕt is an injective bundle map for all t ∈ [0, 1];
(3) the fibers of ϕ1(TK) are ξ-isotropic;
(4) the fibers of ϕt(TK) for all t ∈ [0, 1] along ∂K have the form R⟨v⟩ times

a plane of TΓk; and
(5) when t = 1, the planes in (4) are ξ′ := ξ ∩ TΓk-isotropic.

Proof of Claim 10.0.1. We will explain the Legendrian (i.e., k+1 = n) case, which
is the hardest case. Since K is a disk, it is clearly formally Legendrian inside its
disk neighborhoodN(K). The key point is to make ∂K formally isotropic as well.

Let τ be a trivialization of ξ|N(K). Projecting out the Reeb direction and using
the trivialization τ , the embedding K ↪→ N(K) can be converted into the map
ϕ♭0 : K → G(n, 2n), where G(n, 2n) is the Grassmannian of n-planes in R2n.
Since K is a disk, ϕ♭0 is homotopic to ϕ♭1/2 : K → Ln, where Ln ⊂ G(n, 2n)

is the Lagrangian Grassmannian. Next, we would like to further homotop ϕ♭1/2 to

ϕ♭1 : K → Ln such that v(x) ∈ ϕ♭1(x) for all x ∈ ∂K. At this point we note that
over ∂K the trivial complex bundle ξ satisfies

ξ ≃ R⟨v, w⟩ ⊕ ξ′

and that the classification of complex vector bundles over ∂K ≃ Sn−1 is given by
πn−2U ≃ 0 or Z. In the former case, ξ′ is a trivial complex vector bundle; in the
latter case, ξ′ is classified by its (n− 1)/2nd Chern class, but then C⊕ ξ′ is trivial,
so the Chern class must vanish and ξ′ must be trivial. Hence we can view the
desired map ϕ♭1 as restricting to ∂K → Ln−1 ⊂ Ln, corresponding to a standard
inclusion R2n−2 ↪→ R2n.
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We now claim that πn−1Ln−1 → πn−1Ln is surjective. Using the fact that
Ln = U(n)/O(n), we have:

πn−1U(n) −−−−→ πn−1Ln −−−−→ πn−2O(n) −−−−→ πn−2U(n)xa

xb

xc

xd

πn−1U(n− 1) −−−−→ πn−1Ln−1 −−−−→ πn−2O(n− 1) −−−−→ πn−2U(n− 1)

Using the homotopy exact sequences forU(n)/U(n−1) = S2n−1 andO(n)/O(n−
1) = Sn−1, it follows that a, c are surjective and d is injective. The claim then fol-
lows from the five lemma.

The claim then allows us to homotop ϕ♭1/2 to ϕ♭1 such that, when we view ϕ♭t,
t ∈ [0, 1], as family of maps ϕt : TK → TM , t ∈ [0, 1], Conditions (1)–(3) and
(5) hold and (4) holds for t = 0, 1. It remains to modify ϕt so that (4) holds for all
t ∈ [0, 1]: Observe that Z := ⊔t∈[0,1]ϕt(TK|∂K) has dimension 2n. Since ϕt may
be taken to be generic, Z ⋔ R⟨w⟩ and projecting to R⟨v⟩ ⊕ TΓk along R⟨w⟩ is an
isomorphism for each ϕt(TxK), t ∈ [0, 1], x ∈ ∂K. Hence (4) is also satisfied and
Claim 10.0.1 follows. □

Hence a neighborhood of the (k + 1)-skeleton of Sk(Y ) can be realized as a
contact handlebody Hk+1 = [−1, 1] × Wk+1 and N(Sk(Y0)) ∪ N(Sk(Y1)) can
be realized as compact contact handlebodies with sutured convex boundary and its
complement in M has sutured concave boundary.

Now identify M \ (N(Sk(Y0)) ∪ N(Sk(Y1))) with Σ × [0, 1] such that if we
write Σt := Σ × {t}, then Σi = ∂N(Sk(Yi)), i = 0, 1, are convex with dividing
sets corresponding to the sutures. By Theorem 1.2.5, ξ|Σ×[0,1] is given by a finite
sequence of bypass attachments, which can be further turned into a sequence of
modifications of the trivial Weinstein POBD of

N(Sk(Y0)) = [−1, 1]×W0,n,

according to Lemma 8.4.3 (here W0,n is Wn for Y0). In this way we obtain a
1-Weinstein POBD of M \ N(Sk(Y1)), viewed as a contact manifold with su-
tured concave boundary. It remains to fill in N(Sk(Y1)) in the obvious manner
to get a compatible 1-Weinstein OBD. (Alternatively, we can attach all the con-
tact n-handles of the bypass attachments to N(Sk(Y0)), which gives a generalized
contact handlebody, and all the contact (n+ 1)-handles of the bypass attachments
to N(Sk(Y1)), which also gives a generalized contact handlebody. Hence we can
view the OBD as consisting of two halves and each half is a generalized contact
handlebody foliated by 1-Weinstein domains.) □

Next we turn to the relative case, i.e., to contact manifolds with boundary. The
following theorem is a more precise version of Corollary 1.3.2 (note the boundary
condition of Corollary 1.3.2 was vaguely stated).

Theorem 10.0.2. If (M, ξ) is a compact contact manifold with sutured concave
boundary and R±(∂M) are Weinstein, then there exists a compatible 1-Weinstein
POBD where each of R+(∂M) and R−(∂M) extends to a page.
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Proof. Choose a generic self-indexing Morse function f : M → [12 ,∞) such that
f ≡ 1

2 on ∂M . In other words, f has no index 0 critical points. As in the absolute
case, consider the hypersurface Σ := f−1(n+ 1

2) which divides M into two com-
ponents Yi, i = 0, 1, such that Y0 contains all the critical points of index at most
n and Y1 contains all the critical points of index at least n + 1. By the handle at-
tachment discussion in the proof of Corollary 1.3.1, we can turn the critical points
in Y0 into isotropic handles attached to ∂M along the suture which we still denote
by N(Sk(Y0)) although it is no longer a contact handlebody, and the critical points
in Y1 into the handle decomposition of a contact handlebody N(Sk(Y1)) with su-
tured convex boundary, as in the closed case. The rest of the proof proceeds as in
the closed case. □

Proof of Corollary 1.3.3. We modify the proof of Corollary 1.3.1 as follows: In
the decomposition of M into contact handlebodies Y0 and Y1, we first take a stan-
dard contact neighborhood N(Λ) of the Legendrian Λ and a corresponding contact
Morse function f on N(Λ) that is constant on ∂N(Λ). We then extend f arbitrar-
ily to a Morse function which is self-indexing on M \N(Λ), realize the k-handles
with k ≤ n as contact handles, and attach them to N(Λ) to obtain Y0. The rest of
the proof is the same as that of Corollary 1.3.1. □

11. APPLICATIONS TO CONTACT SUBMANIFOLDS

In this section, we apply the techniques developed so far to prove Corollaries
1.3.6, 1.3.7, and 1.3.9.

Recall that Ibort, Martı́nez-Torres, and Presas [IMTP00] constructed contact
submanifolds Y of (M, ξ) as the zero loci of “approximately holomorphic” sec-
tions of a complex line or vector bundle over M . Our strategy for constructing
contact submanifolds is rather different and relies on the following key observa-
tion: if Σ ⊂ M is a hypersurface which contains a codimension 2 submanifold Y
such that the characteristic foliation Σξ is transverse to Y , then Y ⊂ (M, ξ) is a
contact submanifold.4

11.1. Models for pushing across mushrooms. We first explain the idea of the
proofs of Corollaries 1.3.6 and 1.3.7 in the n = 1 case. We apply the operation
of “pushing across a mushroom”, as given in Figure 11.1.1. (Also refer to Fig-
ure 3.2.1.) There are three variants of this operation: The initial step is given by
Figure 11.1.1(a), where the curve Y (in purple) is pushed across the shaded region
(in light blue). The result is a curve Y ′ which intersects the characteristic foliation
Zξ of the mushroom Z with opposite sign on the blue interval between the dots.
(The purple portion represents where Y ′ intersects Zξ with the sign that we want
to reverse and the blue portion represents where Y ′ intersects Zξ with the desired
sign.) Now assuming that there is another mushroom placed just to the right of
the first one (i.e., with smaller t-coordinate) but with larger s-coordinate, we can
push Y ′ across that mushroom (or more precisely the shaded region given in Fig-
ure 11.1.1(b)) to obtain Y ′′ with a “larger” blue portion. Finally, after several steps

4We can view this as the contact analog of symplectic reduction.
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of type (b), we complete the “sign reversal” by pushing across the shaded region
given by Figure 11.1.1(c).

(a) (b) (c)Y

Y ′

Y ′

Y ′′

Y ′′
Y ′′′

FIGURE 11.1.1. Pushing across mushrooms.

We now discuss the general case. We start with the ambient contact manifold

(M = R3
z,s,t ×W, ξ = ker(dz + es(dt+ λ)))

as before, where (W,λ) is a Weinstein manifold and the hypersurface before per-
turbation is Σ = {z = 0}. Let H = [0, t0] × W c

τ0 (refer to Eq. (5.1.1)) be a
contact handlebody, Z a mushroom with contact handlebody profile H , and Hin

the subset of Rt ×W given by (5.5.2) and satisfying Proposition 5.5.2. By Defini-
tion 5.5.1, Z and Σ agree outside of a small neighborhoodN([0, s0]×[0, t0]×W c

τ0)
of [0, s0]× [0, t0]×W c

τ0 whose size depends on the smoothing parameters.

By taking an isotopy I from Z to Σ, which is supported outside of

Σ \N([0, s0]× [0, t0]×W c
τ0)

and assumed to satisfy (I1)–(I3) below, and carrying the germ of the contact struc-
ture with it, we will assume in this section that Z = {z = 0} = Rs×Rt×W . The
isotoped contact structure will still be called ξ.

Let ρ = ρW : W \ Sk(W ) → R be the function such that ρ(∂W c) = 0 and
dρ(Xλ) = 1, and let τ̃ = τ̃W : W → R≥0, where τ̃ = eρ on W \ Sk(W ) and
τ̃ = 0 on Sk(W ). The function τ̃ is a variant of τ which appears in Section 5.4.
Consider the map

Φ = ΦW : Z = Rs × Rt ×W → R≥0 × R2,(11.1.1)

(s, t, x) 7→ (τ̃(x), s, t).

In view of Eq. (5.2.1) and Eq. (5.4.1), we may choose the isotopy I from Z to Σ
so that Zξ = ZA

ξ + ZB
ξ , where:

(I1) ZA
ξ (s, t, x) is the component in the R2

s,t-direction and depends only on
(τ̃(x), s, t);

(I2) ZA
ξ (s, t, x) = Z3

ξ (s, t) for τ̃(x) ≤ 1/2, where Z3
ξ is the characteristic

foliation of the 3-dimensional mushroom; and
(I3) ZB

ξ (s, t, x) has the form f(τ̃(x), s, t)Xλ(x)+g(s, t, x)Rη away from R2×
Sk(W ), where Rη is the Reeb vector field of λ|∂W c .
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Claim 11.1.1. Away from R2 × Sk(W ), Φ∗(Zξ) is a well-defined (i.e., single-
valued) vector field on R>0 × R2.

Proof. This follows immediately from (I1)–(I3). □

Given a codimension 0 submanifold S of {z = s = 0}, let U(S) ⊂ Σ be the set
of points p for which there is a forward smooth flow line of Zξ from some q ∈ S to
p and let U(S) be its closure. We orient S using the normal orientation ∂s which
agrees with Zξ.

Remark 11.1.2. For our submanifolds S of interest, Claim 11.1.1 reduces the prob-
lem of determining U(S), pushing S across U(S) to S′, and determining the set of
points where S′ is positively/negative transverse to Zξ, to a 3-dimensional one on
R≥0 × R2.

Recall that the zeros of Zξ are ex−, e
x
+, h

x
−, h

x
+, where e−, e+, h−, h+ are zeros

of the 3-dimensional mushroom Z3 and λ(x) = 0. They are all contained in
Z ′ = Z3 ×W c; see §5.3 and Figure 3.2.1.

Lemma 11.1.3. U(Hin) is a compact manifold diffeomorphic to Hin× [0, 1], after
smoothing Zξ on a sufficiently small neighborhood ofE− := {e−}×Sk(W ). Here
Hin = Hin × {0}.

The smoothing is generally necessary even in the n = 1 case, as the shaded
region of Figure 11.1.1(a) will usually have a corner at e−. Note that E− is the
closure of the union of all the unstable trajectories of ex− as we range over all the x
satisfying λ(x) = 0.

Proof. This is immediate from Proposition 5.5.2. □

To prepare for the next lemma let us identify Φ(U(Hin)) with V × [0, 1], where
V = Φ(Hin × {0}) is a half-disk {z ∈ C | |z| ≤ 1, Im z ≥ 0}. Let V δ be the
slight enlargement {z ∈ C | |z| ≤ 1 + δ, Im z ≥ 0} of V with δ > 0. Then the
back face V δ × {1} and the bottom face (V δ × [0, 1]) ∩ {τ̃ = 0} are as shown in
Figure 11.1.2.

The following lemma explains how to modify three types of S. Figures 11.1.2(a),
(b), (c) correspond to (a), (b), (c) in the lemma.

Lemma 11.1.4.
(a) If S is a slight enlargement of Hin such that S \Hin is a collar neighbor-

hood of S, then there is a submanifold S′ obtained by isotoping S across
U(Hin) rel ∂S in Z such that S′ decomposes into S′

+ ∪ S′
− and:

(i) Zξ is positively (resp. negatively) transverse to S′ along int(S′
+) (resp.

int(S′
−)).

(ii) S′
+ is a pushoff of (∂Hin) × [0, 1] and S′

− is a pushoff of Hin × {1},
using an outward-pointing vector field to Hin × [0, 1] after rounding
the corner along ∂Hin × {1}.

(iii) Along the folding locus S′
+ ∩ S′

−, Zξ points into S′
+.
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(a) (b) (c)

FIGURE 11.1.2. The image V × [0, 1] = Φ(U(Hin)) of the sink
U(Hin), after smoothing. Shown are the back face V δ × {1} and
the bottom face (V δ × [0, 1]) ∩ {τ̃ = 0}. The black dots rep-
resent the images of h+, e−, h+ times Sk(W ). The purple and
blue arcs are the intersections of Φ(S′) with the back and bot-
tom faces and are subsets of Φ(S′

+) and Φ(S′
−), respectively. Fig-

ure 11.1.2(a), (b), (c) represent the higher-dimensional analogs of
Figure 11.1.1(a), (b), (c).

(b) LetW ′
+ (resp.W ′

−) be a possibly empty Weinstein subdomain ofW c×{t0}
(resp. W c × {0}). If S is obtained from Hin by perturbing ∂Hin to ∂S so
that ∂S ⋔ ∂Hin and either (α) ∂S\Hin is a submanifold parallel toW ′

+ or
(β) S ∩ ∂Hin =W ′

−, then there is a submanifold S′ obtained by isotoping
S across U(S ∩Hin) rel ∂S in Z such that S′ decomposes into S′

+ ∪ S′
−

and:
(i) Zξ is positively (resp. negatively) transverse to S′ along int(S′

+) (resp.
int(S′

−)).
(ii) Let ∂−U be the closure of the subset of ∂U(S ∩Hin) for which there

is a smooth flow line from some y ∈ S ∩ ∂Hin and let ∂+U be the
closure of ∂U(S ∩ Hin) \ ∂−U . Then S′

+ (resp. S′
−) is a pushoff of

∂+U (resp. ∂−U ).
(iii) Along the folding locus S′

+ ∩ S′
−, Zξ points into S′

+.
(c) If S is a slight retraction of Hin such that Hin \ S is a collar neighbor-

hood ofHin, then there is a submanifold S′ obtained by isotoping S across
U(Ssh) rel ∂S in Z such that Zξ is negatively transverse to S′. Here Ssh

is a slight retraction of S.

The smoothing of Zξ can be done inside a sufficiently small neighborhood
N(E−) of E−, and hence the resulting S′ can be made to avoid N(E−). Also
note that in Figure 11.1.1 S′

+ (resp. S′
−) corresponds to the purple (resp. blue)

portion of Y ′.

Remark 11.1.5. The directions of the folding locus given by (a)(iii) and (b)(iii) are
essential when iterating the moves given by (a)–(c).

Proof. (a) The submanifold S′ is constructed using the map Φ as follows: Let S be
the union of the side S+ = ∂Φ(S)× [0, 1+ϵ′] and the back S− = Φ(S)×{1+ϵ′}
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of ∂(Φ(S)×[0, 1+ϵ′]), with ϵ′ > 0 small. Then S′ is the preimage of the set Φ(S′)
obtained by rounding the corner and perturbing S so that:

• Φ(S′)∩{τ̃ ∈ [0, ϵ]} with ϵ > 0 small agrees with Y ′×{τ̃ ∈ [0, ϵ]}, where
Y ′ is as given in Figure 11.1.1(a).

• Φ(S′
+) is a perturbation of S+, is positively transverse to Φ∗(Zξ), and in-

tersects the back and bottom faces in the purple arcs given in Figure 11.1.2(a).
• Φ(S′

−) is a perturbation of S− and is negatively transverse to Φ∗(Zξ).

(i)–(iii) are immediate from the construction.
(c) is similar to (a). In this case S is the union of the side ∂Φ(S) × [0, 1 + ϵ′]

and the back Φ(S) × {1 + ϵ′} of ∂(Φ(S) × [0, 1 + ϵ′]), with ϵ′ > 0 small, and
Φ(S′) satisfies:

• Φ(S′)∩{τ̃ ∈ [0, ϵ]} with ϵ > 0 small agrees with Y ′×{τ̃ ∈ [0, ϵ]}, where
Y ′ is as given in Figure 11.1.1(c).

• Φ(S′) is negatively transverse to Φ∗(Zξ) and intersects the back and bot-
tom faces in the purple arcs given in Figure 11.1.2(c).

(b) is similar to (a) and (c) in the case where (β) holds and W ′
− ⊂ W c is a

retraction of W c along the Liouville flow. In this case S is again the union of the
side ∂Φ(S) × [0, 1 + ϵ′] and the back Φ(S) × {1 + ϵ′} of ∂(Φ(S) × [0, 1 + ϵ′]),
with ϵ′ > 0 small. S decomposes into S+ and S− along the seam consisting of
the blue dot on the back face of Figure 11.1.2(b) times [0, 1 + ϵ′], followed by the
extension along ∂Φ(S) × {1 + ϵ′} to the point with τ̃ = 0 and t ≤ 0 (which is
analogous to the blue dot on Y ′′ in Figure 11.1.1(b)). (i)–(iii) are immediate from
the construction.

For (β) in general, i.e., when W ′
− ⊂ W c is an arbitrary Weinstein subdomain,

we first write S as the union of S1 of type (c) and S2 a subset of

{s = 0} × {t ∈ [−ϵ′′, ϵ′′]} ×W ′
−,

such that S1 ∪ S2 has smooth boundary and ϵ′′ > 0 is small. (In particular, S2 has
a rounded corner at {−ϵ′′} × ∂W ′

− and a cusp corner at {ϵ′′} × ∂W ′
−.) We then

apply (c) to push S across S1. Next, let ρW ′
−
:W ′

− \Sk(W ′
−) → R be the function

such that ρW ′
−
(∂W ′

−) = 0 and dρW ′
−
(Xλ) = 1, and τ̃W ′

−
: W ′

− → R≥0 satisfy

τ̃W ′
−
= e

ρW ′
− on W ′

− \ Sk(W ′
−) and τ̃W ′

−
= 0 on Sk(W ′

−), and

ΦW ′
−
: R× [−ϵ′′, ϵ′′]×W ′

− → R≥0 × R× [−ϵ′′, ϵ′′],
(s, t, x) 7→ (τ̃W ′

−
, s, t),

as in Eq. (11.1.1). We then push S2 — viewed as a subset of S from the previ-
ous paragraph — across using ΦW ′

−
. The seam with respect to the vector field

(ΦW ′
−
)∗(Zξ|R×[−ϵ′′,ϵ′′]×W ′

−
) is analogous to that of the previous paragraph, where

the blue dot on the back face of Figure 11.1.2(b) times [0, 1 + ϵ′] can be viewed as
the rounded corner near ΦW ′

−
({(0,−ϵ′′)} × ∂W ′

−)× [0, 1 + ϵ′].
The proof of (α) follows the same general reasoning and is omitted. □
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11.2. Existence h-principles. We use the models from §11.1 (and specifically
Lemma 11.1.4(a), (b), (c)) to prove Corollaries 1.3.6 and 1.3.7 as well as the exis-
tence h-principle for contact structures in this subsection.

Let Y be a closed codimension 2 submanifold of (M, ξ). For the moment as-
sume that Y ⊂ (M, ξ) has a trivial normal bundle. Any even-codimensional sub-
manifold with trivial normal bundle is almost contact by [BCS14, Lemma 2.17].

Proof of Corollary 1.3.7 assuming trivial normal bundle. Let Y ⊂ (M, ξ) be a con-
tact submanifold. By the trivial normal bundle condition there exists a hypersurface
Σ := Y × [−1, 1]s ⊂M such that Y = Y0 and Σξ = ∂s, where Ys := Y × {s}.

By Corollary 1.3.1, Y admits a strongly Weinstein OBD (B, π) and an adapted
contact form α. Referring to Appendix B, by Lemma B.2.1, Lemma B.3.1 and
Proposition B.0.1, for δ > 0 small there exists a strongly Weinstein and damped
OBD (B′, π′) of (M,α′), where α′ is C1-close to α with α′ strongly adapted and
damped and A(B′, π′, α′) < δ.

Fix a large integer N > 0. For δ > 0 small, we can cover Y by a finite num-
ber H1, . . . ,HN of contact handlebodies over the Weinstein pages (arranged in
order of increasing θ) of total thickness at most δ. We then install mushrooms with
profiles H1, . . . ,HN , arranged as in §7.3 and Figure 7.3.1, on a small neighbor-
hood of Y × {1

2}. The mushroom corresponding to HN will be of type (a) from
Lemma 11.1.4, those corresponding to HN−1, . . . ,H2 will be of type (b), and the
last one corresponding to H1 will be of type (c). Pushing Y across the mushrooms
and applying Lemma 11.1.4 in order yields a contact submanifold with orientation
reversed. □

Proof of Corollary 1.3.6 assuming trivial normal bundle. As before, by the trivial
normal bundle condition there exists a hypersurface Σ := Y × [−1, 1]s ⊂ (M, ξ)
such that Y = Y × {0}, but now Σξ is not necessarily transverse to Y .

By Proposition A.3.2, we can assume that Y is Σξ-folded with folding locus
C ⊂ Y . We then have the decomposition Y = Y+∪C Y− such that Σξ is positively
transverse to int(Y+) and negatively transverse to int(Y−). Using Theorem 1.2.3,
we perturb C into a convex hypersurface. We then decompose C = C+ ⊔ C−,
where C+ (resp. C−) is the set of points where Σξ points out of (resp. into) Y−.

Next we perturb Y on a neighborhood of C and relative to C and convert C
from a fold to a cusp, keeping the same notation C, Y+, Y−. For more details see
Appendix A. Note that Y− is the “lower sheet” near the cusp C+ and the “upper
sheet” near the cusp C−.

Since we can deal with the connected components of Y− one at a time, assume
Y− is connected.

(i) Suppose for the moment that ∂Y− = C+ or ∂Y− = C−. Assuming ∂Y− =
C+ (the case ∂Y− = C− is similar), there exist a collar neighborhood Nϵ(Y−) =
Y− × [−ϵ, 0]s of Y− = Y− × {0} and a piecewise smooth approximation Y ⋆ of Y
such that:

• Σξ|Nϵ(Y−) = ∂s;
• Y ⋆∩Nϵ(Y−) = (Y−×{− ϵ

2})∪ (C+× [− ϵ
2 , 0])∪ (Nϵ(C+)×{0}), where

Nϵ(C+) ⊂ Y− is a collar neighborhood of the boundary; and
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• Y ⋆ \Nϵ(Y−) is positively transverse to Σξ.
Informally, Y ⋆ is sutured with respect to Σξ, where the suture is C+ × [− ϵ

2 , 0].
We now apply the proof of Corollary 1.3.7 above, with POBDs in place of

OBDs. By Theorem 10.0.2 Y ⋆ admits a compatible POBD. In particular we have
the following data:

(1) a contact 1-form α on Y ⋆, the binding B, and Weinstein pages Sθ, θ ∈
[0, 2π];

(2) an identification ∼ of Weinstein cobordisms S′
0 ⊂ S0 and S′

2π ⊂ S2π such
that ∂S′

0 ⊃ ∂S0 and ∂S′
2π ⊃ ∂S2π; and

(3) an identification of Y ⋆ \B with ⊔θ∈[0,2π]Sθ/ ∼.
Applying the relative version of Proposition B.0.1, for δ > 0 small there exists
a strongly Weinstein POBD of Y ⋆, where the new contact form α′ is C1-close
to the old one, α′ is strongly adapted and damped, and supγ∈R(α′)A(γ) < δ
(defined as in Definition B.1.1). We can cover Y by a finite number H1, . . . ,HN

of contact handlebodies over the new Weinstein pages S′
θ (arranged in order of

increasing θ) of total thickness at most δ; here H1 is a contact handlebody over
S′
0 and HN is a contact handlebody over S′

2π. We then install mushrooms with
profiles H1, . . . ,HN as before. The mushrooms corresponding to HN , . . . ,H2

will be of type (b) from Lemma 11.1.4 and the last one corresponding to H1 will
be of type (c). We then push Y ⋆ across the mushrooms and replace Y ⋆ ∩Nϵ(Y−)
by a hypersurface which is positively transverse to Σ∨

ξ and has the same boundary.
(ii) Next suppose that ∂Y− has components in C+ and C−. In this case we

perturb Y to create extra folds (or equivalently cusps) near C− as in Figure 11.2.1
so that the new Y is Y ′

− ∪A+ ∪A− ∪ Y ′
+, where A± ≃ C− × [−1, 1].

Y−

Y+

C−
Y ′
−

Y ′
+

A+

A−

FIGURE 11.2.1. Modification near C−. The actual folds are ob-
tained by multiplying by C− and the dots represent the folding
loci. The arrows indicate Σξ.

Note that after the modification each of the negative regions Y ′
− andA− satisfies

the conditions of (i). Hence we can now apply (i) to conclude the proof. □

Completion of proofs of Corollaries 1.3.6 and 1.3.7. We explain how to remove the
requirement that Y ⊂ M have trivial normal bundle. Let D ⊂ Y be a closed ball
around some point in Y . Then Y \D is an open manifold. If Y is an almost contact
manifold, then so is Y \D. By Gromov’s h-principles for open contact manifolds
(see [EM02, 10.3.2]) and open isocontact embeddings (see [EM02, 12.3.1]), we
may assume that Y \D ⊂ (M, ξ) is an open contact submanifold. Hence the prob-
lem reduces to an extension problem over the ball D, which clearly has a trivial
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normal bundle in M . Observe that the proof of Corollary 1.3.6 is essentially a rel-
ative extension problem. Corollary 1.3.6 then immediately implies Corollary 1.3.7
since if Y is contact then −Y is almost contact (just reverse the orientation of the
line field transverse to TY ∩ ξ). □

Proof of Corollary 1.3.9. We refer the reader to Uebele [Ueb16, Section 4.2] and
the references therein for a useful summary of almost contact structures and their
homotopy classes.

Let M2n−1 be a closed manifold with an almost contact structure ζ = (Hζ , Jζ),
where Hζ is a hyperplane field and Jζ is an almost complex structure on Hζ . We
view ζ as a section sζ of the fiber bundle P →M with fiber SO(2n−1)/U(n−1)
associated to TM . Let D ⊂ M be a closed ball in M . By Gromov’s h-principle
(see [EM02]) there exists a homotopy of sζ to sζ′ (as sections of P → M ) such
that ζ ′|M\int(D) is a genuine contact structure.

Since TD is trivial, we may view sζ′ |S2n−2=∂D as a map

S2n−2 → SO(2n− 1)/U(n− 1);

the map is homotopically trivial since it extends over D. The set of homotopy
classes of extensions of sζ′ |S2n−2 to D is given by π2n−1(SO(2n− 1)/U(n− 1)).
Now

SO(2n− 1)/U(n− 1) ≃ SO(2n)/U(n)

(see [Ueb16, Section 4.2]), so their homotopy groups agree.
Next we stabilize ζ ′|D = (Hζ′ , Jζ′)|D to the almost contact structure

η = (Hζ′ × R2, Jζ′ × j)|D×R2 ,

where j is the standard almost complex structure on R2. Again by Gromov’s h-
principle there exists a formal homotopy on D × R2 from η to a genuine contact
structure η′ relative to N(∂D) × {0}, where N(∂D) ⊂ D is a neighborhood of
∂D. We then apply Corollary 1.3.6 to obtain a contact submanifold of (D×R2, η′)
which is C0-close to D × {0}, isotopic to D × {0}, and agrees with D × {0} on
N(∂D) × {0}. The induced contact structure ξ on D is stably homotopic to ζ ′|D
relative to ∂D.

It remains to find contact structures in each homotopy class of almost contact
structures on S2n−1 to connect sum with so that we can adjust the homotopy class
of the almost contact structure.

When n ≡ 1 or 3mod 4 (i.e., the manifold has dimension 4k + 1 where k ∈
Z+), we claim that each homotopy class can be represented by connected sums of
canonical contact structures ξa0,...,an on Brieskorn spheres Σ(a0, . . . , an) that are
diffeomorphic to standard spheres. In our case we have π2n−1(SO(2n)/U(n)) ≃
Z/d by Massey [Mas61]. By Morita [Mor75] there is a map ac that assigns the
value

ac(ξa0,...,an) =
1
2

∏n
j=1(aj − 1) ∈ Z/d.

In particular, we can take (a0, . . . , an) = (7, 2, . . . , 2) or (9, 2, . . . , 2) (these were
studied by Ustilovsky [Ust99b] and are diffeomorphic to the standard spheres).
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Since
ac(ξ(7,2,...,2)) = 3 and ac(ξ(9,2,...,2)) = 4

are relatively prime they generate Z/d. □

APPENDIX A. WRINKLED AND FOLDED EMBEDDINGS

The technique of wrinkled maps and wrinkled embeddings, developed by Eliash-
berg and Mishachev in the series of papers [EM97, EM98, EM00, EM09], is ex-
tremely powerful in dealing with homotopy problems of smooth maps between
manifolds. The goal of this appendix is to give a brief overview of their theory and
prove a technical result, Proposition A.3.2, which is only used in Section 11.

This appendix is organized as follows. First we review several fundamental
definitions and results in the theory of wrinkled embeddings following Eliashberg
and Mishachev. Then we use the wrinkling technique to put a generic hypersurface
in a “good” position with respect to a nonvanishing vector field.

A.1. Wrinkled and cuspidal embeddings. In this subsection we review the main
results of [EM09].

Let f : Σ →M be a smooth map between smooth manifolds. In this subsection
we assume that dimΣ = dimM − 1 = k, unless otherwise specified. All the
results in this subsection are also valid whenever dimΣ < dimM . If dimΣ ≤
dimM , then the singular set Sing(f) of f : Σ →M is the set of points in Σ where
df is not injective.

Definition A.1.1 (Wrinkled embedding). A smooth map f : Σ →M is a wrinkled
embedding if:
(WE1) f is a topological embedding.
(WE2) Sing(f) is diffeomorphic to a disjoint union of spheres Si ∼= Sk−1, each

of which bounds a k-disk in Σ. Each such Si is called a wrinkle of f .
(WE3) The map f can be written locally near each wrinkle as:

OpRk(Sk−1) → Rk+1,

(y, z) 7→
(
y, z3 + 3(|y|2 − 1)z,

∫ z

0
(z2 + |y|2 − 1)2dz

)
,

where (y, z) = (y1, . . . , yk−1, z) denotes the Cartesian coordinates on Rk

such that Sk−1 = {|y|2 + z2 = 1} is the unit sphere.

Let f : Σ → M be a wrinkled embedding. Consider a wrinkle S ∼= Sk−1 of
f given in the local model specified by (WE3). Let S′ := {z = 0} ⊂ S be the
equator of S. By identifying the wrinkled map f with its image in M which we
also denote by Σ, we say that Σ has cusp singularities along S \ S′ and unfurled
swallowtail singularities along S′. See Figure A.1.1.

Remark A.1.2. Although a wrinkled embedding f : Σ → M is in general not a
smooth embedding, it follows from (WE3) that the image f(Σ) has a well-defined
k-dimensional tangent plane everywhere. We shall denote by Gdf : Σ → Grk(M)
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FIGURE A.1.1. Left: cusp singularity; Right: unfurled swallow-
tail singularity.

the corresponding “Gauss map”, where π : Grk(M) → M is the tangent k-plane
bundle on M .

According to [EM09], the significance of wrinkled embeddings is that they sat-
isfy an h-principle with respect to tangential rotations.

Definition A.1.3 (Tangential rotation). Given a smooth embedding f : Σ →M , a
tangential rotation is a smooth homotopy Gt : Σ → Grk(M), t ∈ [0, 1], such that
G0 = Gdf and f = π ◦Gt.

The following theorem was proved by Eliashberg and Mishachev in [EM09,
Theorem 2.2]. Although we are only interested in codimension 1 submanifolds
Σ ⊂M , the theorem holds for embedded submanifolds of any codimension.

Theorem A.1.4 (Wrinkled approximation of a tangential rotation). Let Gt : Σ →
Grk(M) be a tangential rotation of a smooth embedding f : Σ → M . Then there
exists a homotopy of wrinkled embeddings ft : Σ → M with f0 = f such that
Gdft : Σ → Grk(M) is arbitrarily C0-close to Gt. If the rotation Gt is fixed on a
closed set K ⊂ Σ, then the homotopy ft can also be chosen to be fixed on K.

Here a homotopy of wrinkled embeddings allows birth-death type singularities.

Remark A.1.5. The wrinkles that appear in Theorem A.1.4 can be made arbitrarily
small.

It turns out that the unfurled swallowtail singularities in a wrinkle can be elim-
inated by a C0-small operation called Whitney surgery. Whitney surgery involves
first choosing an embedded (k − 1)-disk D in the wrinkled Σ such that ∂D = S′

for some wrinkle S ⊂ Σ and the interior of D is disjoint from the wrinkles. (The
existence of such a diskD is immediate.) Then one removes the unfurled swallow-
tail singularities along S′ and adds a family of zigzags along D as in Figure A.1.2.
The formal treatment of Whitney surgery can be found in [EM09, §2.10].

The resulting hypersurface has only cusp singularities along spheres and we
formalize it in the following definition.

Definition A.1.6 (Cuspidal embedding). A smooth map f : Σ → M is a spheri-
cally cuspidal embedding (or simply a cuspidal embedding) if the following hold:
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D

FIGURE A.1.2. Left: before the Whitney surgery; Right: after
the Whitney surgery. The vertical sides are identified in these pic-
tures.

(CE1) f is a topological embedding.
(CE2) Sing(f) is a finite disjoint union of smoothly embedded spheres Si ∼=

Sk−1, called cusp edges, in Σ.
(CE3) The map f can be written locally on a tubular neighborhood Si × (−ϵ, ϵ)

of Si in Σ as:

Sk−1 × (−ϵ, ϵ) → Sk−1 × R2,

(y, z) 7→ (y, z2, z3).

Remark A.1.7. As in the case of wrinkled embeddings, the image of a cuspidal
embedding f : Σ → M also has well-defined tangent planes everywhere. We
denote by Gdf : Σ → Grk(M) the corresponding Gauss map.

Remark A.1.8. Our cuspidal embeddings are called folded embeddings in [EM09],
where the cusp edges are not necessarily diffeomorphic to the sphere. The reason
we use the terminology “cuspidal embedding” is that a “folded embedding” means
something else in this paper. See Definition A.3.1.

The following result follows immediately from Theorem A.1.4 and the Whitney
surgery on wrinkles discussed above.

Theorem A.1.9 (Cuspidal approximation of tangential rotation). Let Gt : Σ →
Grk(M) be a tangential rotation of a smooth embedding f : Σ → M . Then there
exists a homotopy of cuspidal embeddings ft : Σ → M with f0 = f such that
Gdft : Σ → Grk(M) is arbitrarily C0-close to Gt. If the rotation Gt is fixed on a
closed set K ⊂ Σ, then the homotopy ft can be chosen to be fixed on K.

We conclude this subsection with a smoothing operation which turns a cuspidal
embedding into a smooth embedding. Suppose f : Σ → M is a cuspidal embed-
ding with cusp edges Si. Using the local model near cusps given by (CE3), the
smoothing operation amounts to replacing each fiber {(y0, z2, z3) | z ∈ (−ϵ, ϵ)}
at y0 ∈ Si by {(y0, z2, zν(z)) | z ∈ (−ϵ, ϵ)}. Here ν : (−ϵ, ϵ) → [1, 3] is a
smooth function which equals 1 near 0, equals 3 near ±ϵ, is nondecreasing on
[0, ϵ), and is nonincreasing on (−ϵ, 0]. We denote the resulting smooth embedding
by Sm(f) : Σ →M and the image by Sm(Σ).
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A.2. Cuspidal embeddings of a disk. In the previous subsection, we saw that
any tangential rotation of a smooth embedding can be C0-approximated by a ho-
motopy of wrinkled or cuspidal embeddings. However, for our purposes, we also
need to change the homotopy class of the tangential distribution, and ask if it can
be approximated by cuspidal embeddings. This was done in great generality by
Eliashberg and Mishachev in [EM00]. In this subsection we review their work in a
special case.

LetDk be the unit disk in Rk and let f : Dk → Rk×Rs be a smooth embedding
such that f is positively transverse to ∂s on a neighborhood of ∂Dk. We identify
Dk with its image in Rk+1 and coorientDk by declaring that ∂s is positively trans-
verse to it near ∂Dk. Using the Euclidean metric on Rk+1, let n be the positive
unit normal vector field along Dk.

Remark A.2.1. Since f is a codimension 1 embedding, specifying an oriented hy-
perplane distribution along Dk is equivalent to specifying a nonvanishing vector
field along Dk.

Let C ⊂ int(Dk) be an embedded codimension 1 submanifold which divides
Dk into two parts Dk \C = D+⊔D− such that ∂Dk ⊂ D+ and the sign switches
when we cross C. Identify a small tubular neighborhood N(C) ⊂ Dk of C with
C × [−ϵ, ϵ]. Choose a decomposition C = C+ ∪C− and define a vector field v on
N(C) such that v points into D± along C±.

Given n and C = C+ ∪ C− as above, we define a nonvanishing vector field
n(C) along Dk as follows:

• n(C) = n along D+ \N(C).
• n(C) = −n along D− \N(C).
• Along each fiber {y} × [−ϵ, ϵ] ⊂ C × [−ϵ, ϵ] = N(C), n(C) rotates

counterclockwise from n to −n in the oriented 2-plane spanned by (n, v).

Roughly speaking, C+ becomes a convex suture and C− becomes a concave suture
with respect to n(C+, C−).

We state the following result [EM00, Theorem 1.7], adapted to our special case;
see also [Eli72].

Theorem A.2.2. Suppose the manifolds C+ and C− are nonempty and the vector
field n(C) is homotopic to ∂s rel ∂Dk. Then there exists a cuspidal embedding
f ′ : Dk → Rk×R that is everywhere transverse to ∂s, such that f ′ = f near ∂Dk

and Sm(f ′) is C0-small isotopic to f rel ∂Dk.

Remark A.2.3. In fact a stronger result is given in [EM00], i.e., one can further
arrange so that the cusp edges of f ′ coincide with C. This fact, however, is not
needed in this paper.

Corollary A.2.4. Given any smooth embedding f : Dk → Rk × R which is
positively transverse to ∂s on a neighborhood of ∂Dk, there exists a cuspidal em-
bedding f ′ : Dk → Rk × R that is everywhere transverse to ∂s, such that f ′ = f
near ∂Dk and Sm(f ′) is C0-small isotopic to f rel ∂Dk.
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Sketch of proof. Let f : Dk → Rk×R be a smooth embedding which is positively
transverse to ∂s on a neighborhood of ∂Dk.

We claim there exists C = C+ ∪ C− such that n(C) is homotopic to ∂s rel
∂Dk, where C± can be taken to be spherical boundaries of small neighborhoods of
points inDk. For genericDk, there exists a finite set of points {xi}i∈I inDk where
n = −∂s. Let Di ⊂ Dk be a small disk neighborhood of xi and let Si = ∂Di. We
then take C = ∪i∂Si and construct n(C) as appropriate (depending on the local
degree of the Gauss map on Di) so that n(C) is homotopic to ∂s. (It is not hard to
add extra components of C± if necessary without affecting the homotopy type of
n(C).)

Corollary A.2.4 then follows from Theorem A.2.2. □

A.3. Folding hypersurfaces. Using the techniques reviewed in §A.1 and §A.2,
we show in this subsection how to “fold” a generic hypersurface with respect to a
nonvanishing vector field.

Let Σ ⊂ M be a closed cooriented hypersurface and v a nonvanishing vector
field defined on a neighborhood of Σ. In general it is not possible to find aC0-small
isotopy ϕt : M

∼→ M with ϕ0 = idM such that Σ1 is everywhere transverse to v,
where Σt := ϕt(Σ). However, if we allow Σt to have cusp singularities (here we
are implicitly allowing birth-death type singularities), then there exists a cuspidal
embedding Σ1 ⊂ M which is everywhere transverse to v, and whose smoothing
Sm(Σ1) is C0-small isotopic to Σ — this is the content of Proposition A.3.2.

The smoothing Sm(Σ1) is a v-folded hypersurface in the following sense:

Definition A.3.1 (v-folded hypersurface). Let Σ ⊂ M be a closed, cooriented
hypersurface. If v is a nonvanishing vector field defined on a tubular neighborhood
of Σ, then Σ is v-folded if there exists a codimension 1 submanifold C(Σ) ⊂ Σ
such that:

(1) Σ\C(Σ) = Σ+⊔Σ−, where v is positively (resp. negatively) transverse to
Σ+ (resp. Σ−) with respect to the coorientation of Σ and the sign switches
when we cross C(Σ).

(2) For each connected component C of C(Σ), there exists an orientation-
preserving diffeomorphism from C × R2

x1,x2
to a tubular neighborhood U

of C inM such that Σ∩U is identified with C×{x1 = x22}, C is identified
with C × {0}, and v|U is identified with ∂x2 .

The submanifold C(Σ) is called the v-seam (or the seam if v is understood) of Σ.
Then C(Σ) = C+(Σ)∪C−(Σ), where a component C of C(Σ) belongs to C+(Σ)
(resp.C−(Σ)) if, in the local model described in (2) above, Σ+∩U is identified with
C × {x1 = x22, x2 > 0} (resp. Σ+ ∩ U is identified with C × {x1 = x22, x2 < 0}).

Proposition A.3.2. Given a closed cooriented hypersurface Σ ⊂ M and a non-
vanishing vector field v defined on a tubular neighborhood of Σ, there exists a
C0-small isotopy ϕt :M

∼→M with ϕ0 = idM such that Σ1 = ϕ1(Σ) is v-folded.

Proof. Fix a Riemannian metric on M such that v has unit length. Let n be the
positive unit normal vector field along Σ. We note that since v and n may not be
homotopic, some extra steps are needed to apply the wrinkling h-principle.
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As in the proof of Corollary A.2.4, for generic Σ, there exists a finite set of points
{xi}i∈I in Σ where v = −n. Let Di ⊂ Σ be a small disk neighborhood of xi and
let Si = ∂Di. Choose nested tubular neighborhoods Si ⊂ Nϵ(Si) ⊂ N2ϵ(Si) of
Si in Σ such that xi ̸∈ N2ϵ(Si).

It is not hard to see that there exists a homotopy nt, t ∈ [0, 1], of nonvanishing
vector fields along Σ with n0 = n such that:

(1) nt = n on ∪i∈I(Di \N2ϵ(Si));
(2) n1 = v on the complement of ∪i∈I(Di \Nϵ(Si)).

Now we apply Theorem A.1.9 to the tangential rotation induced by nt to obtain
a C0-approximation of Σ by a cuspidal hypersurface Σ′′, whose smoothing is v-
folded on the complement of ∪i∈I(Di\Nϵ(Si)) and such that the v-seam is disjoint
from Si for all i ∈ I . To see this, first apply Theorem A.1.4 to obtain a C0-
approximation Σ′ of Σ by a wrinkled hypersurface whose Gauss map is close to
(the orthogonal complement of) n1. Since the wrinkles can be made arbitrarily
small by Remark A.1.5, we can C0-small isotop Si ⊂ Σ so that they avoid all the
wrinkles. The Whitney surgery of the wrinkles can also be made disjoint from Si,
so we obtain a cuspidal C0-approximation Σ′′ of Σ′ such that the cusp edges are
disjoint from Si. The smoothing of Σ′′ converts the cusp edges to the v-seam.

Finally we apply Corollary A.2.4 to each Di to conclude the proof. □

APPENDIX B. QUANTITATIVE STABILIZATIONS OF OPEN BOOK
DECOMPOSITIONS IN GENERAL

The goal of this appendix is to explain (see Section B.1 for the definitions of the
terms involved) and prove the following generalization of Lemma 6.2.1:

Proposition B.0.1 (Quantitative stabilization). Let α be a contact form on M2n+1

which is strongly adapted to the strongly Weinstein OBD (B, π) and damped.
Choose δ > 0 small. Suppose α|B , the restriction to the binding B, is strongly
adapted to the strongly Weinstein OBD (B1, π1), damped, and with action

A(B1, π1, α|B) < δ.

Then there exists a strongly Weinstein OBD (B′, π′) of (M,α′) with a strongly
adapted contact form α′ C1-close to α which is damped and with action

A(B′, π′, α′) < δ.

While Lemma 6.2.1 suffices for the purposes of constructing a plug, we need
the much more technical Proposition B.0.1 for proving Corollaries 1.3.6, 1.3.7,
and 1.3.9.

B.1. Definitions. In this subsection we define the terms involved in Proposition
B.0.1. In what follows let (B, π) be an α-compatible strongly Weinstein OBD on
M . Its pages are denoted by Sθ = π−1(eiθ).

Definition B.1.1. The actionA(B, π, α) is supγ∈R(α)A(γ), where R(α) is the set
of Reeb chords γ in M \ S0 whose closures have endpoints on S0 and A(γ) is the
action

∫
γ α.
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Suppose M admits a decomposition M = Nϵ(B) ∪ Tϕ, where Nϵ(B) and Tϕ
are glued along their boundary and:
(SA1) Nϵ(B) = D2(ϵ) × B, where ϵ > 0 is small, D2(ϵ) is the open disk

{(r, θ) | r < ϵ}, and (r, θ) are polar coordinates, is a tubular neighbor-
hood of the binding {0} ×B, with contact form

(B.1.1) α|Nϵ(B) = (1− c1r
2)λ+ c2r

2dθ

where c1, c2 > 0 are constants.
(SA2) On Nϵ(B), Sθ0 restricts to {((r, θ), x) | θ = θ0} for all eiθ0 ∈ S1.
(SA3) Tϕ is the mapping torus of (S⋆, ϕ), where S⋆ = S⋆

0 is a truncated page
S0 ∩ (M \ Nϵ(B)) and ϕ|∂S⋆

0
is a positive-time flow of the Reeb vector

field Rλ.
On Nϵ(B) the Reeb vector field is given by

(B.1.2) Rα = Rλ + (c1/c2)∂θ.

Hence all the Reeb chords γ in Nϵ(B) \S0 have the same action A(γ) = 2πc2/c1.

Definition B.1.2. A contact form α adapted to the strongly Weinstein (B, π) is
strongly adapted to (B, π) if there exists ϵ > 0 such that (SA1)–(SA3) hold.

Given a strongly adapted contact form which takes the form of (B.1.1) near the
binding, one can easily rescale the r-coordinate such that c2 = 1, which we assume
to be the case from now on.

Definition B.1.3. A strongly adapted contact form α adapted to (B, π) is damped
if its total infinitesimal variation (see Definition 6.1.2) satisfies V < 11/10.5

Given a damped contact form α compatible with the OBD (B, π), one can as-
sume that ρ from Eq. (6.1.1) is almost constant.

Definition B.1.4. Given a Riemannian manifold M , two contact forms α0, α1 are
C1-close if both ∥α0 − α1∥C0 and ∥dα0 − dα1∥C0 , measured with respect to the
Riemannian metric, are sufficiently small.

Our notion of C1-closeness given in Definition B.1.4 is strictly weaker than the
usual notion of C1-closeness since we take the exterior derivatives rather than all
the partial derivatives.

B.2. Perturbing to a strongly adapted contact form.

Lemma B.2.1. Let (B, π) be a strongly Weinstein OBD of (M2n+1, ξ) with an
adapted contact form α. Then there exists a contact form α′ which is C1-close to
α such that α′ is strongly adapted to (B, π).

Proof. By assumption B ⊂ (M, ξ) is a contact submanifold and there exists a
tubular neighborhoodNϵ(B) = D2(ϵ)×B such that π|Nϵ(B) is the projection onto

5Here the precise constant slightly larger than 1 is not important, but we choose one for
definiteness.
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the D2(ϵ)-factor. It follows that Bp := {p} × B is contact for any p ∈ D2(ϵ) if ϵ
is sufficiently small.

The characteristic foliation Fθ on Sθ ∩Nϵ(B) has a nonzero ∂r-component for
any eiθ ∈ S1. Hence through any point x ∈ B = B0 there exists a 2-disk Dx such
that Dx ∩ Sθ is tangent to Fθ for all eiθ ∈ S1, and the family of disks Dx, x ∈ B,
varies smoothly in B. Using the disks Dx we can reparametrize Nϵ(B) such that
the characteristic foliation on Sθ ∩Nϵ(B) is parallel to ∂r and α|Sθ∩Nϵ(B) has the
form Fλ, where λ = α|B and F only depends on r. This implies that

(B.2.1) α|Nϵ(B) = Fλ+Gdθ,

where F,G : Nϵ(B) → R≥0 satisfy (i) F |B = 1, G|B = 0, (ii) F only depends
on r, and (iii) limr→0

∂rG
r > 0. Here (iii) follows from the contact condition

α ∧ (dα)n > 0.
We compute

dα|Nϵ(B) = ∂rFdr ∧ λ+ Fdλ+ dBG ∧ dθ + ∂rGdr ∧ dθ

and claim thatRα|Nϵ(B) has the form ϕ(∂rGr Rλ− ∂rF
r ∂θ+X), where ϕ is a positive

function and X ∈ Span(∂r, kerλ). Indeed we calculate

iRλ
dα|Nϵ(B) = −∂rFdr + dBG(Rλ)dθ,

i∂θdα|Nϵ(B) = −dBG− ∂rGdr,

i∂rdα|Nϵ(B) = ∂rFλ+ ∂rGdθ,

iY dα|Nϵ(B) = FiY dλ+ dBG(Y )dθ,

where Y ∈ kerλ. The vanishing of coefficient of the dr term implies thatRα|Nϵ(B)

is parallel to ∂rG
r Rλ − ∂rF

r ∂θ +C0∂r + Y for some C0 and Y . Since α is adapted
by assumption, Rα must have a positive ∂θ-component for r > 0. It follows that
∂rF < 0 for r > 0.

Finally, to obtain the strongly adapted α′, it suffices to pick 0 < ϵ′ ≪ ϵ and
write α′|Nϵ(B) = F ′λ+G′dθ such that

• F ′ = (1 + c0)− c1r
2 and G′ = 1

2r
2 for r < ϵ′ and some c0, c1 > 0;

• F ′ = F and G′ = G for r close to ϵ;
• ∂rF

′ < 0 and ∂rG′ > 0 for all 0 < r < ϵ.

It is straightforward to check that α′ is C1-close to α, is contact, and is strongly
adapted. □

A key feature of C1-close contact forms is the following:

Lemma B.2.2. If α, α′ are two C1-close contact forms on M , then there exists
a C1-diffeomorphism ϕ : M

∼→ M isotopic to the identity and a function f ∈
C∞(M) which is C0-close to the constant function 1 such that ϕ∗(α′) = fα.

The proof is a standard application of the proof of Gray’s theorem and is omitted.
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B.3. Damped OBD. In order to construct a damped contact form adapted to an
OBD, we work with abstract OBDs, whose data consists of a Weinstein domain
(S, η) and an exact symplectomorphism ϕ : S

∼→ S such that ϕ = id near ∂S and
ϕ∗(η) = η + dF for some F ∈ C∞(S) which vanishes near ∂S.

We construct the compatible contact structure as follows: Let Rt × S be the
contactization of (S, η) with contact form α = dt + η. Choose a constant C > 0
such that F + C > 0. Let Tϕ,C be the mapping torus

Tϕ,C := {(t, x) ∈ R× S | 0 ≤ t ≤ F (x) + C} /(0, ϕ(x)) ∼ (F (x) + C, x).

Then ∂Tϕ,C = R/CZ × ∂S. We extend α to N(B) = D2 × B, where D2 =
{(r, θ) | r ≤ 1} (in polar coordinates), by

(B.3.1) α|N(B) = f(r)λ+ g(r)dθ,

where λ is a contact form on B and f, g satisfy the following conditions:
(NB1) There exists ϵ > 0 small such that α|Nϵ(B) satisfies (SA1)–(SA3);
(NB2) The contact condition (f ′, g′) · (−g, f) > 0 holds for r > 0;
(NB3) f(r)λ = η and g(r) ≡ C

2π for r close to 1. In particular θ = 2πt
C along

{r = 1}.
The resulting contact manifold N(B) ∪ Tϕ,C will be denoted by M(S,ϕ),C .

The mapping torus Tϕ,C admits a foliation by

St := graph(ht), t ∈ [0, C],

where ht : S → R varies smoothly with respect to t and satisfies the following:
(1) h0 = 0, hC = F + C;
(2) ht0(x) < ht1(x) for any t0 < t1 and x ∈ S;
(3) ht ≡ t near ∂S.

Then St, t ∈ [0, C], are the truncated pages of a compatible OBD of M(S,ϕ); see
Figure B.3.1. Each St is naturally a Liouville domain with Liouville form η+ dht.

We will impose a strongly Weinstein OBD condition which guarantees that there
exist St, t ∈ [0, C], that are all Weinstein.

t

C

0

FIGURE B.3.1. Foliation of Tϕ,C by the pages St.
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Lemma B.3.1. Suppose α is a contact form for (M, ξ) which is strongly adapted
to the strongly Weinstein OBD (B, π). Then α can be isotoped to the contact form
α′ which is damped in addition.

Proof. Let ((S, η), ϕ) be an abstract OBD representing (B, π). We first discuss the
mapping torus part of the open book. Starting with the fundamental domain

T •
ϕ,C = {(t, x) ∈ R× S | 0 ≤ t ≤ F (x) + C} ⊂ R× S

foliated by Weinstein domains St = graph(ht), t ∈ [0, C], the trick is to thicken
Tϕ,C by inserting [0, C ′] × S with C ′ ≫ 0. More precisely, take k ≫ 0 and
consider a new angular variable τ ∈ [0, kC]. Then the graph of

Hτ := hτ/k +
k−1
k τ, τ ∈ [0, kC],

defines a foliation on the mapping torus

Tϕ,kC = {(t, x) ∈ R× S | 0 ≤ t ≤ F + kC} /(0, ϕ(x)) ∼ (F (x) + kC, x).

Since the Liouville form on each Sk
τ := graph(Hτ ) coincides with that on Sτ/k, all

the pages Sk
τ are Weinstein by assumption. Now observe that

Ḣτ = 1
k ḣτ/k +

k−1
k → 1

uniformly as k → ∞, where the dot means τ -derivative. Hence we can choose
a large k such that Tϕ,kC is damped with respect to the contact form αk|Tϕ,kC

:=
dτ + η.

Next we extend αk to N(B). Using α|N(B) = f(r)λ+ g(r)dθ as in Eq. (B.3.1)
and satisfying (NB1)–(NB3), we can write

αk = fk(r)λ+ gk(r)dθ,

near ∂D2 × B, where fk(r) = f(r) and gk(r) = kg(r) = kC
2π for r close to 1.

Define gk := kg for r ∈ [0, 1], where we are assuming without loss of generality
that g is constant for r ∈ [12 , 1] and is strictly increasing for r ∈ [0, 12 ]. We extend
fk to r ∈ [0, 1] as a strictly decreasing function in three steps as follows. Fix ϵ > 0
small. First extend fk to r ∈ [12 , 1] arbitrarily; then to r ∈ [12 − ϵ, 12 ] such that
f ′k ≤ −cg′k, with equality near r = 1

2 − ϵ, where we choose a constant c > 0

such that fk ≪ cgk(1) for all r ∈ [12 − ϵ, 1]; and finally to r ∈ [0, 12 − ϵ] such
that f ′k = −cg′k holds. The reader might find it helpful to note that the curve
{(fk(r), gk(r)) | r ∈ [0, 1]} — for k ≫ 0 and viewed from sufficiently far away
— is close to the line segment connecting (cgk(1), 0) and (0, gk(1)).

We claim that the total infinitesimal variation on N(B) with respect to αk|N(B)

is less than 11/10 for ϵ sufficiently small. Indeed, the Reeb vector field is given by

Rαk
|N(B) =

g′kRλ−f ′
k∂θ

fkg
′
k−f ′

kgk
.

The coefficient of ∂θ is equal to 1
gk(1)

on r ≥ 1
2 and is equal to cg′k

fkg
′
k+cg′kgk

=
c

fk+cgk
≈ 1

gk(1)
on r ≤ 1

2 − ϵ. On 1
2 − ϵ ≤ r ≤ 1

2 , we can estimate |fkg′k/f ′k| ≤

|fk/c| ≪ gk(1), which implies that the coefficient −f ′
k

fkg
′
k−f ′

kgk
of ∂θ is close to 1

gk(1)
.

The claim then follows.
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The contact structure kerα′ := kerαk is isotopic to ξ by varying the parameter
k. Moreover α′ is clearly strongly adapted by construction. □

B.4. Quantitative stabilization of OBD. The goal of this subsection is to prove
Proposition B.0.1.

Let (B, π) be a compatible strongly Weinstein OBD of (M, ξ) and α be a
strongly adapted contact form. Let Nϵ(B) ∼= D2(ϵ)×B be the ϵ-neighborhood of
B such that α|Nϵ(B) satisfies (SA1)–(SA3). Here ϵ > 0 is a small constant subject
to conditions specified later in the proof.

We construct a map s :M → C as follows: First define

s|Nϵ(B) : Nϵ(B) → D2(ϵ) ⊂ C

as the projection to the first factor D2(ϵ) ⊂ C, and then uniquely extend s continu-
ously to all ofM by requiring it to be constant on each Sθ \Nϵ(B), ϵeiθ ∈ ∂D2(ϵ).
Hence π = s/|s| on M \ B. Strictly speaking, s is only piecewise smooth, but in
what follows we will pretend that s is smooth since a smoothing can easily be
constructed. By definition B = s−1(0) and is transversely cut out.

We then consider the map sk : M → C for k ∈ Z>0. Since 0 is not a regular
value of sk for any k > 1, we need to add a small perturbation term coming from
B to sk.

By assumption B also admits a compatible strongly Weinstein OBD (B1, π1)
such that λ := α|B is strongly adapted. As in (SA1), let Nϵ1(B1) = D2

r1,θ1
(ϵ1) ×

B1 with ϵ1 > 0 be a neighborhood of B1 on which

(B.4.1) λ|Nϵ1 (B1) = (1− c1,1r
2
1)λ1 + r21dθ1,

and let s1 : B → C be the associated map defined in the same manner as s with
Nϵ(B) replaced by Nϵ1(B1). We will be using the convention that the subscript 1
(e.g., B1, s1, r1, c1,1) refers to subsets etc. of B that are analogous to those of M
(e.g., B, s, r, c1).

Next let 0 < ϵ′ ≪ ϵ and let ρ : [0, ϵ] → R≥0 be a C∞-small nonincreasing
bump function such that ρ(0) > 0, ρ is constant on [0, ϵ′/2] and ρ is supported on
[0, ϵ′]. See Figure B.4.1 We then define the map

a ϵ′/2 ϵ′ ϵ

FIGURE B.4.1. The graph of ρ.

(B.4.2) s(k) := sk − ρ(r)s1 :M → C,
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where s1 is first extended to Nϵ(B) by precomposing with the projection onto
the second factor B, and then the cutoff function ρ(r) guarantees that ρ(r)s1 is
globally defined on M .

We analyze the OBD (B(k), π(k)) given by s(k) and the corresponding Reeb
dynamics in steps. Steps 1 and 2 give topological descriptions of the binding B(k)

and the page S(k) and the remaining steps describe the compatibility with a suitably
C1-small perturbed α.

Note that besides the trivial case of dimM = 1, the case dimM = 3 is
slightly different from and substantially easier than the higher-dimensional cases
since B1 = ∅. We will point out such differences in the proof when applicable.

STEP 1. The binding B(k) = s−1
(k)(0).

We can write

s(x) =

{
r(x)eiθ(x), if x ∈ Nϵ(B),

ϵeiθ(x), if x ∈M \Nϵ(B),

where eiθ(x) = π(x) for x /∈ B. More concisely, we write s = reiθ with the
understanding that r(x) = ϵ for x ∈ M \Nϵ(B). Similarly we write s1 = r1e

iθ1

on B, where r1(y) = ϵ1 for y ∈ B \Nϵ1(B1). Then

s(k) = rkeikθ − ρ(r)r1e
iθ1 ,(B.4.3)

B(k) = {s(k) = rkeikθ − ρ(r)r1e
iθ1 = 0}.(B.4.4)

Observe that, since rk/ρ(r) is strictly increasing, there exists a unique a ∈
(0, ϵ′) such that ak = ρ(a)ϵ1. We may assume that ρ is sufficiently small such that
a≪ ϵ′/2 and hence ρ is equal to the constant ak/ϵ1 on [0, ϵ′/2].

We have the following description of B(k):

Claim B.4.1.
(1) B(k) ⊂ {r ≤ a}.
(2) B(k) is a k-fold branched cover of B with branch locus B1 ⊂ {r = 0}.
(3) B(k) ∩ {r = a} is a k-fold cover of B \Nϵ1(B1).
(4) B(k) ∩ {r < a} is graphical over D2(a) := {(r, θ) | r < a} times B1.

Proof. (1) This follows from (i) r1 ≤ ϵ1 on B and (ii) B(k) ∩ {ρ(r) = 0} = ∅.
(2) Clearly B(k) ∩ B = B1 ⊂ {r = 0}. Since ρ(r) ̸= 0 on B(k) we can

write B(k) = {r1 = rk/ρ(r), eiθ1 = eikθ}. This implies that, for each point in
s−1
1 (r1, θ1) with r1 > 0, there exist k distinct values of (r, θ) for which s(k) = 0.

(3) is immediate from (2).
(4) Given a point in B(k) ∩ {r < a}, its (r1, θ1)-coordinates are determined by

its (r, θ)-coordinates: we have θ1 = kθ (mod 2π) and r1 = rk/ρ(r). □

Note that when dimM = 3, we have dimB = 1 and r1 ≡ ϵ1. Eq. (B.4.3)
implies that the new binding B(k) is the closure of a k-strand braid around B.

STEP 2. The page S(k).
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It is an easy verification that the map

π(k) = s(k)/|s(k)| :M \B(k) → S1,(B.4.5)

π(k) =
rkeikθ − ρ(r)r1e

iθ1

|rkeikθ − ρ(r)r1eiθ1 |
,

is a submersion, and hence induces a smooth fibration.
We analyze the page S(k) = π−1

(k)(1), i.e., examine the solution set to:

(B.4.6) rkeikθ − ρ(r)r1e
iθ1 ∈ R≥0.

First consider P := S(k) ∩ {r > a}. In this case we always have rk > ρ(r)r1
since r1 ≤ ϵ1. We claim that

P ∼= ∪0≤j<k(Sθ=2jπ/k ∩ {r > a}),
where the right-hand side is the disjoint union of k copies of the page S and ∼=
means the left-hand side can be viewed as a graph over the right-hand side. Indeed,
if r ≥ ϵ′, i.e., ρ(r) = 0, then Eq. (B.4.6) holds precisely when eikθ = 1. Hence

S(k) ∩ {r ≥ ϵ′} = ∪0≤j<k(Sθ=2jπ/k ∩ {r ≥ ϵ′}).6

On the other hand, if a < r ≤ ϵ′, then referring to the right-hand side of Fig-
ure B.4.2, we have for any fixed r, r1, θ1, there exists a unique eikθ such that
Eq. (B.4.6) holds; the set of allowed values of eikθ is drawn in blue. Hence the
components of S(k)∩{a < r ≤ ϵ′} can be viewed as graphs over Sθ=2jπ/k ∩{a <
r ≤ ϵ′}, where θ is viewed as a function of r, r1, θ1. This completes the proof of
the claim.

Next consider Q := S(k) ∩ {r < a}. Write Q = Q1 ∪Q2, where

Q1 := Q ∩ {rk < ρ(r)r1} and Q2 := Q ∩ {rk ≥ ρ(r)r1}.
We first examine Q1. Referring to the left-hand side of Figure B.4.2, any fixed
(r, θ) determines a unique θ1 ∈ (π2 ,

3π
2 ) which solves Eq. (B.4.6). Hence

(B.4.7) Q1
∼= ∪r<a(S1,θ1=π ∩ {r1 > rk/ρ(r)}),

where S1,θ1=π is the page of (B1, π1) at θ1 = π, and θ1 is viewed as a function of
r, r1, θ; also the right-hand side of Eq. (B.4.7) deformation retracts to D2(a)(r,θ)×
(S1,θ1=π ∩ {r1 = ϵ1}). Now we turn to Q2. For each r < a, the set of points in M
such that rk ≥ ρ(r)r1 is Nrk/ρ(r)(B1), which is a disk times B1 and deformation
retracts to B1. Hence

Q2
∼= ∪r<a,0≤j<k({2jπ

k } × {r} ×Nrk/ρ(r)(B1)),

where θ is viewed as a function of r, r1, θ1.
Finally consider R := S(k) ∩ {r = a}, which is the union R1 ∪R2, where

R1 := {r = a, r1 = ϵ, eiθ1 = eikθ} ⊂ B(k),

R2
∼= ∪0≤j<k({2jπ

k } × {a} ×Nϵ1(B1)),

6We will be writing Sθ=∗ to avoid confusion with a page S1 of (B1, π1).
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FIGURE B.4.2. The circles have radii rk and ρ(r)r1 with coordi-
nates eikθ and eiθ1 , respectively. On the left we have rk < ρ(r)r1
and on the right rk > ρ(r)r1. The blue regions indicate the values
of eikθ for which there exist eiθ1 such that Eq. (B.4.6) holds.

where θ is a function of r1, θ1.

STEP 3. Description of modified contact form and Reeb vector field.

One technical difficulty is that the Reeb vector field given by Eq. (B.1.2) is al-
most never tangent to B(k) unless the Reeb flow of Rλ on B \ B1 takes pages to
pages. (Note that this can easily be achieved when dimM = 3 since dimB = 1
and B1 = ∅ in this case.) The main task of this step therefore is to “synchro-
nize” the Reeb flows on M \ B and B \ B1. In particular, we apply a C1-small
perturbation to α|Nϵ(B) given by (B.1.1) into the form given by (B.4.11).

Fix δ > 0 small as in the assumption of the proposition. Recall λ = α|B ,
which is strongly adapted to (B1, π1) and satisfies Eq. (B.4.1) on Nϵ1(B1). We
first choose a splitting of the exact sequence

(B.4.8) 0 → TS◦
1 → T (B \B1) → TS◦

1
(B \B1) → 0,

where S◦
1 denotes the interior of the page: For r1 ≤ ϵ1/2, the splitting is given by

the product structure Nϵ1/2(B1) = D2(ϵ1/2) × B1. On B \ Nϵ1(B1), we choose
the splitting T (B \ Nϵ1(B1)) = R⟨Rλ⟩ ⊕ TS⋆

1 , where S⋆
1 = S1 \ Nϵ1(B1) is

the truncated page from before. Finally we interpolate between the two splittings
on {ϵ1/2 ≤ r1 ≤ ϵ1}, e.g., one can use the linear interpolation with suitable
smoothing at the endpoints.

We then define the vector field ∂θ1 on B \B1 via the splitting (B.4.8) and recall-
ing Eq. (B.1.2) (applied to λ instead of α) we write:

(B.4.9) Rλ = f(r1)Rλ1 + h∂θ1 ,

where f(r1) is supported in {r1 < ϵ1}, f(r1) ≡ 1 for r1 ≤ ϵ1/2, h : B → R>0 is
constant on {r1 < ϵ1}, and the functions f and h depend on the splitting (B.4.8).
Here h can be taken to be almost constant since (B1, π1) is damped.

Since α is strongly adapted to (B, π), there exists a small tubular neighborhood
Nϵ(B) = D2(ϵ)× B of B such that α|Nϵ(B) = (1− c1r

2)λ+ r2dθ. There exists
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0 < ϵ′ ≪ ϵ and a perturbation of α (with the same name) such that

(B.4.10) α|Nϵ(B) = F (x, r)λ+ r2dθ,

where F : Nϵ(B) → R>0 depends on x ∈ B and r and satisfies:
(i) F (x, r) = 1− c1r

2 near r = ϵ;
(ii) F (x, r) = 1− gr2 for r ≤ ϵ′, where g : B → R>0 is h/k and k is a large

positive integer such that A(B, π, α)/k < δ;7

(iii) ∂F
∂r < 0 for any x ∈ B and r > 0.

Here (iii) guarantees that α|Nϵ(B) is contact and is adapted to (B, π). (A direct
computation shows that Rα is parallel to Rλ − ∂rF

2r ∂θ + v, where v ∈ η = kerλ,
and hence is positively transverse to the pages.) We note that

(B.4.11) α|Nϵ′ (B) = (1− gr2)λ+ r2dθ.

Using Eq. (B.4.9) we compute:

dα|Nϵ′ (B) = (1− gr2)dλ− r2dg ∧ λ− 2grdr ∧ λ+ 2rdr ∧ dθ,
Rα|Nϵ′ (B) = Rλ + g∂θ + v = f(r1)Rλ1 + h∂θ1 + g∂θ + v,

where v is the unique vector field tangent to η = kerλ solving the equation

(B.4.12) (1− gr2)ivdλ+ r2dηg = 0.

Here dηg = dg − dg(Rλ)λ. Note that if Eq. (B.4.12) holds, then dg(v) = 0 and
we have

(1− gr2)ivdλ− r2(dg(v))λ+ r2dηg = 0.

Since both g and dηg are bounded, |v| is small as long as r is sufficiently small.
Using the splitting T (B \B1) = R⟨∂θ1⟩ ⊕ TS1, we can write

(B.4.13) v = µ∂θ1 + ṽ, ṽ ∈ TS1.

We then obtain:

(B.4.14) Rα|Nϵ′ (B) = f(r1)Rλ1 + ṽ + h̃∂θ1 + g∂θ, where h̃ = h+ µ.

The C0-norm ∥h̃ − kg∥ = ∥µ∥ = O(r2) for small r by Eq. (B.4.12); we assume
that ∥h̃∥ ≫ ∥µ∥ since we may take ϵ′ > 0 to be small.

Moreover, note that h̃ = kg and ṽ = 0 on {r1 < ϵ1}, since h and g = h/k are
constant there and v = 0 by Eq. (B.4.12). Hence Rα = f(r1)Rλ1 + h∂θ1 +

h
k∂θ.

One easily computes that ds(k)(Rα) = ihs(k). Hence Rα is tangent to B(k) and
transverse to S(k) on Nϵ′(B) ∩ {r1 < ϵ1}.

Unfortunately, since h̃ ̸= kg in general, Rα|Nϵ′ (B) is not everywhere tangent to
B(k). In fact, the first-order PDE h = kg − µ, whose solution would have solved
the problem, has no solutions in g for general h. We will deal with this technical
issue in the next few steps.

As a motivation for the above construction, we state the following, which is
proved in Step 5:

7The choice of k depends only on A(B, π, α) and, in particular, not on ϵ.
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Claim B.4.2. There exists a small tubular neighborhood of the stabilized binding
B(k), away from which we have

(B.4.15) A(B(k), π(k), α) ≤ max(A(B1, π1, λ), A(B, π, α)/k) < δ.

STEP 4−. At this point we summarize the order in which we choose the constants.
We are given δ > 0 and ϵ1 > 0. We choose k > 0 such that A(B, π, α)/k < δ.
We then choose ϵ > 0, followed by ϵ′ > 0. Finally we choose a small ρ(r) so that
a > 0 satisfying ak = ρ(a)ϵ1 is much smaller than ϵ′. Recall that ρ is constant on
0 ≤ r ≤ ϵ′/2.

STEP 4. The stabilized binding B(k) is contact.

The goal of this step is to show that B(k) ⊂ (M, ξ), as constructed in Step 1, is
a contact submanifold. It follows immediately that a small tubular neighborhood
of B(k) is foliated by contact submanifolds since the contact condition is open. We
then prove Claim B.4.3, which estimates the size of such a neighborhood.

In the following we calculate modulo error terms of order O(a2); recall that
B(k) ⊂ {r ≤ a} by Claim B.4.1(1). For α satisfying Eq. (B.4.11) we obtain:

α = λ+O(a2), dα = dλ− 2grdrλ+ 2rdrdθ +O(a2),(B.4.16)

α ∧ dαn−1 = λ ∧ (dλn−1 + (n− 1)2rdrdθdλn−2) +O(a2).(B.4.17)

First consider B(k) ∩ {r = a}, which is a k-fold cover of B \ Nϵ1(B1) by
Claim B.4.1(3). Since r is constant, Eq. (B.4.17) becomes

α ∧ dαn−1|B(k)∩{r=a} = λ ∧ dλn−1 +O(a2),(B.4.18)

which implies that B(k) ∩ {r = a} is contact.
Next consider B(k) ∩ {r < a}, which by Claim B.4.1(4) is graphical over

D2(a) × B1. By expanding Eq. (B.4.17) using λ = (1 − c1,1r
2
1)λ1 + r21dθ1 and

using the fact that r1dr1dθ1 can be written as a nonnegative function of r times
drdθ away from r1 = 0,

α ∧ dαn−1|B(k)∩{r<a} = ϕ(r)rdrdθ ∧ λ1 ∧ dλn−2
1 +O(a2),(B.4.19)

where ϕ(r) ≥ 2(n− 1)(1− c1,1ϵ
2)n−1. Hence B(k) ∩ {r < a} is contact.

Claim B.4.3. There exists a small constant c > 0 which depends on α but not on
a and ρ, for which the tubular neighborhood Ncak(B(k)) := s−1

(k)({|w| ≤ cak}) of
B(k) is foliated by contact submanifolds Bw := {s(k) = w}.

Proof. Let |w| ≤ cak. We consider Bw ∩ {r1 = ϵ1}. Since ρ = ak/ϵ1, w =
rkeikθ − akeiθ1 . Then r, viewed as a function Bw ∩ {r1 = ϵ1} → R, is close to
r = a, with error that goes to zero as c → 0, where c is independent of a and ρ.
The middle term on the right-hand side of Eq. (B.4.17) then goes to zero as c→ 0.
Hence Bw ∩ {r1 = ϵ1}, |w| ≤ cak, is contact provided c > 0 is small.

Next we consider Bw ∩ {r1 < ϵ1}, |w| ≤ cak, which we write as a graph:

r1e
iθ1 = (1/ρ(r))(rkeikθ − w).
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By writing r1dr1dθ1 in terms of drdθ as in Eq. (B.4.19) and observing that ρ =
ak/ϵ1, we see that Bw ∩ {r1 < ϵ1} is contact. □

STEP 5. Transversality away from B(k).

Lemma B.4.4. For the small constant c > 0 from Claim B.4.3, Rα is transverse to
S◦
(k) on M \Ncak(B(k)), provided a > 0 is sufficiently small.

Proof. We fix S(k) to be the page at angle 0. All the other pages can be treated in
the same manner.

First consider the restriction of S(k) to M \ Nϵ′(B). Outside of Nϵ(B) the
contact form α is the original one and Rα is transverse to S(k) since ρ = 0. On
Nϵ(B) \ Nϵ′(B), we still have ρ = 0 and by (iii) following Eq. (B.4.10), α is
adapted to (B, π) and Rα is transverse to S(k). Recall that B(k) ⊂ {r ≤ a}, where
a < ϵ′.

Next we restrict to Nϵ′(B), on which Rα is given by Eq. (B.4.14). Observe
that Rα is transverse to S(k) when ds(k)(Rα) has positive iR-component. When
r1 < ϵ1, by the paragraph after Eq. (B.4.14) in Step 3, Rα is tangent to B(k) and
transverse to S◦

(k) on this region.
It remains to consider Nϵ′(B) ∩ {r1 = ϵ1}. Since f(r1) = 0 on r1 = ϵ1 by

definition (see the line after Eq. (B.4.9)), Rα = ṽ+ h̃∂θ1 +
h̃−µ
k ∂θ by Eq. (B.4.14);

here ṽ ∈ TS1 by Eq. (B.4.13). We compute

ds(k)(Rα) = i(kgrkeikθ − h̃ρ(r)r1e
iθ1) = ih̃s(k) − iµrkeikθ.(B.4.20)

By the paragraph after Eq. (B.4.4), ρ = ak/ϵ1; hence s(k) = rkeikθ − akeiθ1 by
Eq. (B.4.3). By the definition of Ncak(B(k)), for x ∈ S(k) \ Ncak(B(k)) we have
|s(k)(x)| ≥ cak. Recall that h̃ is bounded below by a positive constant and ∥µ∥ =

O(r2). If r(x) ≤ Ca, where C > 0 is a large constant, then ∥h̃s(k)∥ ≥ c′cak for
some c′ > 0 and ∥µrkeikθ∥ ≤ c′′Ck+2ak+2 for some c′′ > 0. If a is sufficiently
small, then ∥h̃s(k)∥ > ∥µrkeikθ∥, and hence ds(k)(Rα) is dominated by the first
term ih̃s(k). If r(x) > Ca, then s(k) is dominated by the rkeikθ term whose size
is bounded below by Ckak. This in turn implies that ds(k)(Rα) is dominated by
the first term ih̃s(k) since we may take ∥h̃∥ ≫ ∥µ∥. Hence Rα is transverse to
S(k) \Ncak(B(k)) on Nϵ′(B) ∩ {r1 = ϵ1}. □

Claim B.4.2 now readily follows from the observation that the maximal action
of Reeb chords of (B(k), π(k)) in Nϵ(B) \ Nca(B(k)) is approximately equal to
A(B1, π1, λ).

STEP 6. Transversality near the binding B(k).

In this step we modify α on Ncak(B(k)) so that the Reeb vector field becomes
compatible with the OBD (B(k), π(k)). Since Rα is already transverse to the pages
and tangent to the binding for r1 < ϵ1 by the proof of Lemma B.4.4, we assume
r1 = ϵ1 throughout this step.
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Let B⋆
(k)

:= B(k) ∩ {r = a} be the k-fold cyclic cover of B \ Nϵ1(B1) and let
S⋆
1 := S1 \ Nϵ1(B1) be a truncated page of (B1, π1). (It is instructive to keep in

mind the dimM = 3 case, i.e., when S1 = S⋆
1 is a point.) We identify

B⋆
(k) ≃ {(z, w) ∈ R× S⋆

1 | 0 ≤ z ≤ C(w)}/ ∼,

where C : S⋆
1 → R>0 is a smooth function such that C(w) is roughly linear in k

for each w ∈ S⋆
1 and (C(w), w) ∼ (0, ϕ(w)) for some diffeomorphism ϕ of S⋆

1 .
Moreover we may assume that α|B⋆

(k)
= dz + σ for a Liouville form σ on S⋆

1 . We
then identify

(B.4.21) Ncak(B
⋆
(k)) ≃ D2

x,y ×B⋆
(k) ≃ D2

x,y × {0 ≤ z ≤ C(w)}/ ∼,

so that:
• Rα is parallel to ∂z +W + O(a2) on Ncak(B

⋆
(k)), where W is tangent to

S⋆
1 and also tangent to ∂S⋆

1 , by Eq. (B.4.14), and
• S(k) ∩ (∂D2 × B⋆

(k)) is a fiber Π−1(p), p ∈ ∂D2, of the projection Π :

Ncak(B
⋆
(k)) → D2.

By Claim B.4.3, the fibers of Π are contact submanifolds and, after a diffeomor-
phism of Ncak(B

⋆
(k)) which is isotopic to the identity and takes fibers to fibers, α

(for the rest of the step we elide |N
cak

(B⋆
(k)

) from the notation) can be written as

(B.4.22) α = F (dz + σ) + 1
2(xdy − ydx),

where F is a positive function on Ncak(B
⋆
(k)) such that ∥F − 1∥C1 = O(a2) and

we are taking D2 to be a disk of small radius depending on a.
Writing Rα∥X := ∂z + a∂x + b∂y +W , where W is tangent to S⋆

1 , we have
(B.4.23)
a = (1+σ(W ))Fy, b = −(1+σ(W ))Fx, F iWdσ = (1+σ(W ))(dS⋆

1
F−Fzσ),

where dS⋆
1

is the differential in the S⋆
1 -direction. Indeed we verify that iXdα = 0:

dα = (Fxdx+ Fydy + Fzdz + dS⋆
1
F ) ∧ (dz + σ) + Fdσ + dxdy,

i∂zdα = −(Fxdx+ Fydy + dS⋆
1
F ) + Fzσ,

ia∂x+b∂ydα = (aFx + bFy)(dz + σ) + (ady − bdx),

iWdα = dS⋆
1
F (W )(dz + σ)− σ(W )(Fxdx+ Fydy + Fzdz + dS⋆

1
F ) + FiWdσ.

Setting a = (1 + σ(W ))Fy and b = −(1 + σ(W ))Fx, we can cancel all the
dx, dy terms in iXdα as well as (aFx + bFy)(dz + σ). Setting FiWdσ = (1 +
σ(W ))(dS⋆

1
F −Fzσ), we have dS⋆

1
F (W ) = Fzσ(W ), and the remaining terms of

iXdα can be canceled.
Observe that as a → 0, ∥dF∥C0 becomes small and hence |σ(W )| ≪ 1. Also

the component Y := ∂z + (1 + σ(W ))Fy∂x − (1 + σ(W ))Fx∂y of the vector
field X is positively transverse to Π−1({θ = const}) near {θ = const} ∩ ∂D2,
where we are using polar coordinates (r, θ) on D2. More precisely, by the proof
of Lemma B.4.4, ds(k)(Rα) is dominated by the ih̃s(k) term; hence Y is close to
the vector field Y ′ on ∂D2 ×B⋆

(k) that roughly winds +k times around ∂D2 while
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going once around the z-direction. Finally we replace F by the function G such
that:

(a) F = G near ∂Ncak(B
⋆
(k)) and ∥F −G∥C1 is small on Ncak(B

⋆
(k));

(b) for each z, w, G(x, y, z, w) has the form G(0, 0, z, w) + C0r
2 near r = 0,

where C0 is a negative constant;
(c) ∂G

∂r < 0 for r > 0, which guarantees transversality to the pages S(k) on
Ncak(B

⋆
(k));

(d) α is still contact with F replaced by G.

In view of the above description of the pages S(k)∩Ncak(B
⋆
(k)), the new contact

form C1-approximates α|N
cak

(B⋆
(k)

) and is strongly adapted.

STEP 7. Weinstein structure on the page S(k).

In this step we describe the Weinstein structure on S(k), which we fix to be the
page at angle 0. All the other pages can be treated in a similar manner. We
will decompose S(k) = T1 ∪ T2 ∪ T3 into three pieces and study the characteristic
foliation on each piece separately. Note that the decomposition of S(k) in this step
will be different from, but based on, the one from Step 2.

First let T1 := S(k)∩{r ≥ ϵ′} = ∪0≤j<k(Sθ=2jπ/k∩{r ≥ ϵ′}). The characteris-
tic foliation on T1 is Morse since T1 agrees with restrictions of the Weinstein pages
on the region r ≥ ϵ and the modification given by Eq. (B.4.10) does not change the
dynamical properties of the characteristic foliation on the region ϵ′ ≤ r ≤ ϵ.

Next let T3 := S(k)∩(D2
r,θ(ϵ

′)×Nϵ1(B1)) and use the contact form α before the
modification done in Step 6, since the topological conjugacy type of the character-
istic foliation on T3 is the same for both contact forms. On Nϵ′(B) = D2

r,θ(ϵ
′)×B

we use the contact form α = λ+ r2

1−gr2
dθ (see Eq. (B.4.11)) which is C1-close to

λ+ r2dθ when ϵ′ is small. Restricted to (D2
r,θ(ϵ

′)×Nϵ1(B1) we have

α = (1− c1,1r
2
1)λ1 + r21dθ1 +

r2

1−gr2
dθ.

Let us write r̃ = rk/ρ(r) and θ̃ = kθ. Using Cartesian coordinates (x̃, ỹ), (x1, y1)
corresponding to the polar coordinates (r̃, θ̃), (r1, θ1), Eq. (B.4.6) becomes x̃ −
x1 ∈ R≥0 and ỹ = y1, and we write

α = (1− c1,1r
2
1)λ1 + (x1dỹ − ỹdx1) + ψ(r̃)(x̃dỹ − ỹdx̃),

where ψ > 0. We now calculate the characteristic foliation Y .

dα = (1− c1,1r
2
1)dλ1 − 2c1,1(x1dx1 + ỹdỹ)λ1 + 2dx1dỹ + 2ϕ(r̃)dx̃dỹ,

= (1− c1,1r
2
1)dλ1 +

2c1,1
1−c1,1r21

(x1dx1 + ỹdỹ)((x1dỹ − ỹdx1) + ψ(r̃)(x̃dỹ − ỹdx̃))

+ 2dx1dỹ + 2ϕ(r̃)dx̃dỹ

= (1− c1,1r
2
1)dλ1 +

2c1,1
1−c1,1r21

(r21dx1dỹ + ψ(r̃)(x1x̃dx1dỹ − x1ỹdx1dx̃+ ỹ2dx̃dỹ))

+ 2dx1dỹ + 2ϕ(r̃)dx̃dỹ,
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where ϕ > 0 and ψ(r̃) and ϕ(r̃) are dominated by a term of the form Cr̃−2+2/k

for r̃ ̸= 0 small. Let us write Y = Z + ηRλ1 , where

Z =
2c1,1

1−c1,1r21
(−r21∂x̃ + ψ(r̃)(−x1x̃∂x̃ − x1ỹ∂ỹ + ỹ2∂x1))− 2∂x̃ + 2ϕ(r̃)∂x1 .

Then iY dα = 0 and α(Y ) = 0 for a suitable choice of function η.
We claim the forward flow of Y limits to T3 ∩B(k) = {x̃ = x1, ỹ = y1} ×B1.

Assume r̃ ̸= 0. The case r̃ = 0 can be treated separately, and is left to the reader.
When x1 < 0, then Y flows to the region x1 > 0 since r1 < ϵ1 and the coefficient
of ∂x1 is positive and bounded below. When x1 > 0, then the coefficient of ∂x1 is
positive and the coefficient of ∂x̃ is less than −2; since x̃ − x1 ≥ 0, Y eventually
flows to x̃ = x1. The claim then follows.

Finally we consider T2 := S(k)∩(D2
r,θ(ϵ

′)×(B\Nϵ1(B1))). Recall the fibration
π1 : B \ Nϵ1(B1) → S1

θ1
with fiber S⋆

1 such that λ|B\Nϵ1 (B1) = f1dθ1 + β1,
where f1 is a positive function on B \Nϵ1(B1) and β1 is a θ1-dependent Liouville
form on S⋆

1 . Let Zk be the surface in the 3-manifold D2
r,θ(ϵ

′) × S1
θ1

satisfying
rkeikθ−ρ(r)ϵ1eiθ1 ∈ R≥0. Then T2 = (idD2

r,θ(ϵ
′), π1)

−1(Zk). Restrict attention to

where ρ(r) is constant and write r̃ = rk

ϵ1ρ(r)
= ( ra)

k and θ̃ = kθ. Then Eq. (B.4.6)

gives r̃ sin θ̃ = sin θ1. We view θ̃ as a function of r̃, θ1. Without loss of generality
we may replace r2

1−gr2
by r2 in α, since ϵ′ can be taken to be small. Since ∂θ̃

∂θ1
=

1
r̃
cos θ1
cos θ̃

and ∂θ̃
∂r̃ = −1

r̃
sin θ̃
cos θ̃

, we have

α = f1dθ1 + β1 + r2dθ = (f1 +
r2

kr̃
cos θ1
cos θ̃

)dθ1 − r2

kr̃
sin θ̃
cos θ̃

dr̃ + β1,

dα = dS1f1 ∧ dθ1 + dS1β1 + dθ1 ∧ β̇1 + 2r2

k2r̃
dr̃ ∧ dθ̃

= (dS1f1 − β̇1) ∧ dθ1 + dS1β1 +
2r2

k2r̃2
cos θ1
cos θ̃

dr̃ ∧ dθ1,

where dS1 is the exterior derivative in the S1-direction and β̇1 = ∂β1

∂θ1
. Writing

Y = X + a∂r̃ + b∂θ1 , where X ∈ TS1, we solve for Y in iY dα = −(cos θ1)α.
We compute:

X ⌟ dα = iXdS1β1 + (dS1f1(X)− β̇1(X))dθ1,

a∂r̃ ⌟ dα = a 2r2

k2r̃2
cos θ1
cos θ̃

dθ1,

b∂θ1 ⌟ dα = b(β̇1 − dS1f1)− b 2r2

k2r̃2
cos θ1
cos θ̃

dr̃.

Comparing the coefficients of dr̃ and dθ1 and the S1-component, we obtain

b = −k
2 r̃ sin θ̃,

iXdS1β1 = −(cos θ1)β1 +
k
2 r̃ sin θ̃(β̇1 − dS1f1),

a = k2r̃2

2r2
cos θ̃
cos θ1

(−(cos θ1)f1 + β̇1(X)− dS1f1(X))− kr̃
2 cos θ1.

By the b∂θ1 term in Y , unless r̃ = 0, one either flows to the binding or to θ1 = 0

or π. If θ1 = π, then θ̃ = 0 or π and X is the Liouville vector field of β1. One then
flows to ∂S1 and hence into T3. If θ1 = 0, then θ̃ = 0 andX is minus the Liouville
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vector field of β1. One then flows to a zero ofX on S1; then a = −k2r̃2

2r2
f1− kr̃

2 < 0
and r̃ → 1 along the flow, which means one flows to the binding.

Remark B.4.5. As an aid to understanding T2, consider the situation when dimM =
3. Then Zk ⊂ S(k) and is Morse. The topological determination of Zk ⊂ D2 ×S1

is straightforward and we see that the characteristic foliation on Zk has one index
0 critical point and k index 1 critical points; see Figure B.4.3 for an illustration in
the case k = 6.

FIGURE B.4.3. The characteristic foliation on Zk.

STEP 8. Damping property.

We finally prove the damping property for (B(k), π(k)).
On the regionM \Nϵ′(B), the page S(k) restricts to ∪0≤j<kSθ=2jπ/k∩{r ≥ ϵ′}.

Since (B, π) is damped, the actions of the Reeb chords are close to 1
kA(B, π, α) ≈

2π
kc1

in view of Eq. (B.1.2) with the normalization c2 = 1.
On the region Nϵ′(B)−Nca(B(k)), by Eq. (B.4.14), the relevant component of

Rα is close to h∂θ1 +
h
k∂θ = h(∂θ1 +

1
k∂θ) and the actions of the Reeb chords are

close to 2π/h. (We can see this for example from ds(k)(∂θ1 +
1
k∂θ) = is(k).)

On the region Nca(B(k)), in view of the modifications (a)–(c) from Step 6, the
actions of the Reeb chords are close toA(B1, π1, λ) ≈ 2π

h . Taken together, (B′, π′)

is damped with respect to a C1-small perturbation of α′.
This completes the proof of Proposition B.0.1.
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