
Mathematics 114L Spring 2018 D.A. Martin

Mathematical Logic

1 First-Order Languages.

Symbols. All first-order languages we consider will have the following
symbols:

(i) variables v1, v2, v3, . . . ;
(ii) connectives ¬, → ;

(iii) parentheses (,) ;
(iv) identity symbol = ;
(v) quantifier ∀ .

For each n ≥ 0, a language might have:

(vi) one or more n-place predicate symbols;
(vii) one or more n-place function symbols.

We call 0-place predicate symbols sentence symbols, and we call 0-place
function symbols constants.

Remark. We don’t worry about what can count as a symbol, but it
is important that in a single language nothing can be a symbol of two
different kinds. For example, F cannot be simultaneously a function
symbol and a predicate symbol.

A language is determined by its predicate and function symbols, so
we think of a language as the set of its predicate and function symbols.

Examples:

(1) The language of identity: ∅.
(2) The language of ordering (one of them): {≤}.
(3) The language of arithmetic: {0, S,+, ·,≤}.

Here ∅ is the empty set, ≤ is a two-place predicate symbol, 0 is a
constant, S is a one-place function symbol, and + and · are two-place
function symbols. Often ≤ is omitted from the language of arithmetic.

1

For the rest of this section, let L be a first-order language.

Terms of L:

(1) Each variable or constant is a term.

(2) If n ≥ 1, if f is an n-place function symbol, and if t1, . . . , tn are
terms, then ft1 . . . tn is a term.

(3) Nothing is a term unless its being one follows from (1)–(2).

We will often write, e.g., “f(t1, t2)” for “ft1t2” for ease of readability.

Formulas of L:

(i) If t1 and t2 are terms, then t1 = t2 is a formula.

(ii) If n ≥ 0, if P is an n-place predicate symbol, and if t1, . . . , tn are
terms, then Pt1 . . . tn is a formula.

(iii) If ϕ is a formula, then so is ¬ϕ.

(iv) If ϕ and ψ are formulas, then so is (ϕ→ ψ).

(v) If ϕ is a formula and x is a variable, then ∀xϕ is a formula.

(vi) Nothing is a formula unless its being one follows from (i)–(v).

Formulas given by (i) or (ii) are called atomic formulas. Another way
to state the definition of “formula” is to say that the collection of all
formulas is gotten by starting with the atomic formulas and closing
under the operations ϕ 7→ ¬ϕ, (ϕ, ψ) 7→ (ϕ → ψ), and (x, ϕ) 7→ ∀xϕ.
Similarly the collection of all terms is gotten by starting with the atomic
terms (the constants and the variables) and closing under the operation
given by clause (2) of the definition of term.

We think of terms and formulas as finite sequences of symbols. Thus
all terms and formulas have a length. For example, if f is a two-place
function symbol then the length `h(fv1v2) of the term fv1v2 is 3.

Remark. To avoid confusion between symbols and finite sequences
of them, we need to require that no finite sequence of symbols can
be a symbol. Thus the variable v1 should be distinguished from the
sequence of length one consisting of v1. We will frequently violate
this requirement. Indeed, we have already done so in declaring that
each variable or constant is a term. Later in the course, when we

2

introduce Gödel numbers, we will have to start paying attention to the
requirement.

If we want to prove that all formulas or all terms have some prop-
erty P , a good method to employ is proof by induction on length. To
prove by induction on length that all formulas have property P , one
must demonstrate the the following fact:

(†) For every formula ϕ, if every formula shorter than ϕ has prop-
erty P then ϕ has P .

(There is an analogous statement for the case of terms, and we also
call it (†).) To see that proving (†) does indeed prove that all formulas
have P , assume that (†) is true but that not all formulas have P .
There must be a number n that is the shortest length of any formula
that lacks P . Let ϕ be a formula of length n that lacks P . Every
formula shorter than ϕ has P , and this contradicts (†).

An important fact about terms and formulas is that they are syn-
tactically unambiguous. Consider the case of formulas. Suppose there
were a formula ϕ which was both (ψ → χ) and (ψ′ → χ′) but that
ψ was not the same formula as ψ′. Then ϕ would be syntactically
ambiguous: it would come in two different ways by clause (iv) in the
definition of formula. Why does this kind of ambiguity seem possible?
A long conditional formula (ψ → χ) can contain many occurrences of
the symbol →. We might wonder, e.g., whether one of the occurrences
of→ that occurs before the end of ψ could also function as the central
→ of (ψ → χ) in a reparsing (ψ′ → χ′).

Another word for syntactic unambiguity is unique readability, and
that is the word we will mainly use. To prove unique readability for
terms, we will first prove a fact about initial parts of terms.

If a1 . . . an is a finite sequence of symbols, the initial segments of
a1 . . . an are the sequences a1 . . . am with 0 ≤ m ≤ n. (For m = 0, we
count a1 . . . am as the empty sequence.) The proper initial segments of
a1 . . . an are all the initial segments except the whole sequence a1 . . . an.

Lemma 1.1. No proper initial segment of a term is a term.

Proof. We prove by induction on length that every term has the
property P of being a term with no proper initial segment that is a
term. To do this we must prove the version of (†) for terms. Assume,

3

then, that t is a term and that every term shorter than t has property P .
We must prove that t has P . By clause (3) in the definition of term,
t must be either an atomic term or a term of the form ft1 . . . tn. This
means we have two cases to consider.

Case 1. t is a constant or variable. Since constants and variables
have length 1, the only proper initial segment of t is the empty sequence,
which is obviously not a term.

Case 2. For some n ≥ 1, t is ft1 . . . tn for some n-place function
symbol f and some terms t1, . . . , tn. Suppose that t′ is a proper initial
segment of t that is a term. Then t′ is ft′1 . . . t

′
n for some terms t′1, . . . , t

′
n.

There must be an i such that t′i is not ti, since otherwise t′ is t. Consider
the least such i. Either ti is a proper initial segment of t′i or t′i is a proper
initial segment of ti. This is a contradiction, since ti and t′i are shorter
than t. �

Theorem 1.2 (Unique Readability for Terms). Every non-atomic
term is ft1 . . . tn for a unique n ≥ 1, a unique n-place function symbol
f , and unique terms t1, . . . , tn.

Proof. We need only prove uniqueness. Assume that t is both ft1 . . . tn
and f ′t′1 . . . t

′
n′ . Since f and f ′ are the same, n = n′. Using Lemma 1.1,

we get successively that t1 is t′1, t2 is t′2 . . . , tn is t′n. �

Lemma 1.3. No proper initial segment of a formula is a formula.

Proof. We use induction on length, with P the property of being a
formula with no proper initial segment that is a formula. To prove (†),
assume that ϕ is a formula and that every formula shorter than ϕ has P .
There are five cases we must deal with, corresponding clauses (i)-(v)
in the definition of formula.

Case 1. ϕ is t1 = t2 for some terms t1 and t2. It is easy to show that
terms contain no symbols other than constants, variables, and function
symbols, and thus any proper initial segment of ϕ that is a formula has
to be t1 = t′, for t′ a term that is a proper initial segment of t2. By
Lemma 1.1, there is no such term.

Case 2. ϕ is Qt1 . . . tn for some n, some n-place predicate symbol
Q, and some terms t1, . . . , tn. Any proper initial segment of ϕ that
is a formula would have to be Qt′1 . . . t

′
n for some terms t′1 . . . t

′
n. An

argument like that for Case 2 of the proof of Lemma 1.1 shows that
this is impossible.

4

Cases 3, 4, and 5 are Exercise 1.2. �

Exercise 1.1. Case 1 of the proof of Lemma 1.3 asserted that it is easy
to show that terms contain no symbols other than constants, variables,
and function symbols. It is obvious, but prove it by induction on
length.

Exercise 1.2. Supply cases 3, 4, and 5 of the proof of Lemma 1.3.

Theorem 1.4 (Unique Readability for Formulas). For any formula
ϕ, exactly one of the following holds.

(1) There are unique terms t1 and t2 such that ϕ is t1 = t2.

(2) There are unique n ≥ 0, Q, and t1, . . . , tn such that Q is an
n-place predicate symbol, t1, . . . , tn are terms, and ϕ is Qt1 . . . tn.

(3) There is a unique formula ψ such that ϕ is ¬ψ.

(4) There are unique formulas ψ and χ such that ϕ is (ψ → χ).

(5) There are a unique formula ψ and a unique variable x such
that ϕ is ∀xψ.

Proof. For any formula, at most one of the five statements holds.
This is because formulas of kind (i) begin with constants, variables or
function symbols, those of kind (ii) begin with predicate symbols, those
of kind (iii) begin with ¬; those of kind (iv) begin with (, and those of
kind (v) begin with ∀.

By the definition of formula, all we need to prove is uniqueness
for each of the five kinds of formulas. The only non-trivial cases of
uniqueness are those for formulas ϕ of kinds (ii) and (iv).

Kind (ii). Suppose that ϕ is both Qt1 . . . tn and Q′t′1 . . . t
′
n′ . Then

Q and Q′ are the same, so n = n′. Applying Lemma 1.1 n times gives
that ti = t′i for each i.

Kind (iv). Suppose that ϕ is both (ψ → χ) For and (ψ′ → χ′). By
Lemma 1.3, neither ψ nor ψ′ is a proper initial segment of the other.
Thus ψ is the same as ψ′. Thus ϕ is both (ψ → χ) and (ψ → χ′). Thus
χ is χ′. �

Abbreviations. It will be convenient to introduce some abbreviations.

5

Here they are.

(ϕ ∧ ψ) for ¬(ϕ→ ¬ψ);
(ϕ ∨ ψ) for (¬ϕ→ ψ);
(ϕ↔ ψ) for ((ϕ→ ψ) ∧ (ψ → ϕ));
∃xϕ for ¬∀x¬ϕ;
x 6= y for ¬x = y.

Bear in mind that ∨, ∧, ↔, ∃, and 6= are not actually symbols of our
languages. Given a formula abbreviated by the use of these symbols,
one may eliminate the symbols via the contextual definitions just given,
thus getting a genuine formula.

Parentheses convention. We will often omit parentheses where there is
no ambiguity. We also adopt a convention that will allow parentheses
to be omitted when there would be ambiguity without the parentheses.
The convention is that omitted parentheses are grouped to the right.
For example

(ϕ→ ψ → χ)

abbreviates
(ϕ→ (ψ → χ)).

Free and bound variables:

Informally, we define occurrence of a variable x in a formula to be
free if it is not in the scope of a quantifier expression ∀x. For example,
the first occurrence of v1 in

∀v2(Pv1v2 → ∀v1Pv1v1)

is free, while the second occurrence is bound.
Officially we define freedom of occurrences of variables in formulas

by recursion on length. The definition is as follows.

(a) Every occurrence of a variable in an atomic formula is free.

(b) An occurrence of a variable x in ¬ϕ is free just in case the corre-
sponding occurrence of x in ϕ is free.

(c) An occurrence of a variable x in (ϕ → ψ) is free just in case the
corresponding occurrence of x in ϕ or ψ is free.

6

(d) An occurrence of a variable x in ∀yϕ is free just in case in case
it corresponds to a free occurrence of x in ϕ and x and y are
different variables.

Note that clause (a) defines freedom in atomic formulas directly, and
each of the other clauses defines freedom in a formula from freedom in
shorter formulas.

Formula induction and formula recursion. The recursive definition of
freedom can also be thought of as a definition by formula recursion. In
each of the clause (b)-(d), freedom for a formula is defined from freedom
for the formula or formulas from which it is immediately constructed.
There is a corresponding notion of proof by formula induction. To prove
by formula induction that every formula has some property P , one

(a) proves that all atomic formulas have P ,

(b) proves that, for any formula ϕ, ¬ϕ has P if ϕ does,

(c) proves that, for any formulas ϕ and ψ, (ϕ→ ψ) has P if both ϕ
and ψ do,

(d) and proves that for any formula ϕ and any variable x, ∀xϕ has P
if ϕ does.

Notice that the proofs given for Lemmas 1.1 and Lemma 1.3 do not
work as proofs by formula induction. The two lemmas can be proved
using formula induction, but the those proofs are more complex than
the ones using induction on length.

Exercise 1.3. Let L be ∅, the language of identity. Prove by induction
on length that every formula of L has exactly one more occurrence of
the = than it does of →.

Exercise 1.4. Let L be a language in which f is a one-place function
symbol, g is a two-place function symbol symbol, and h is a three-place
function symbol. The term

hgfv1hv3gv3v3gfv2v1fv1gffv3fv4

is ht1t2t3 for some terms t1, t2, and t3. What are these three terms?

7

2 Models, Truth, and Logical Implication

Models. A model A for a language L is an ordered pair consisting of
(a) a non-empty set A = |A|, the universe or domain of the model,
and (b) a function assigning

(1) to each k-place predicate symbol P , a subset PA of Ak, i.e., a set
of k-tuples of elements of A;

(2) to each k-place function symbol F , a function FA : Ak → A.

We regard A0 as having a single member, the unique 0-tuple, which we
will call Λ. If P is a zero-place predicate symbol (a sentence symbol),
then PA either is {Λ} or is the empty set ∅. We regard Λ as the truth-
value T and ∅ as the truth-value F. If F a zero-place function symbol
(a constant), then we regard the function FA as a its one value, FA(Λ),
which is a member of A.

As a convention, when we denote a model by a Fraktur letter then
we usually denote the universe of the model by the corresponding italic
Roman letter.

In the case of a finite language (a language with only finitely many
predicate and function symbols), we sometimes specify a model as a
tuple consisting of its universe and the values of its associated function.

As an example, we will use the standard model of arithmetic, which
is a model for the language LA of arithmetic. Before giving the example,
we announce that henceforth the names of the symbols of LA will be
in boldface. The reason for this change is that we need to distinguish
the number 0 from the numeral that denotes it, the function S from
the letter that denotes it, etc. With this change, we now say that the
language of arithmetic is {0,S,≤,+, ·}

We can think of the standard model N as the 5-tuple (N, 0, S,≤
,+, ·). This means that the universe of N is the set of all natural
numbers, that the number 0 is (what we regard as) 0N, the successor
function is SN, that the relation ≤ is ≤N, etc.

Our next goal is to define truth in a model A. An immediate prob-
lem is how to handle formulas like v1 = c and Pv1. (Here c is a constant
and P is a one-place predicate symbol.) The model assigns a member
cA of the universe A to c, but it does not assign anything to the variable
v1. Thus it makes no sense to talk of the truth or falsity in the model
of these two formulas.

8

Sentences. A sentence is a formula with no free occurrences of vari-
ables.

Clearly it is the sentences that should be true or false in A. Hence
we might try forgetting about non-sentences, trying instead to define
truth for sentences by recursion on length. But this strategy does
not work. It would work if, for example, every member of A were of
the form cA for some constant c, but this does not happen in general.
Consider an extreme case when the language has no constants. How
are we to define truth for ∀v1Pv1? We cannot make use of the truth or
falsity of Pv1. That formula is neither true nor false, and furthermore
it’s hard to see how its truth or falsity could tell us whether ∀v1Pv1
was true or false.

Variable assignments. A variable assignment (for a model A) is a func-
tion that assigns a member of A to each variable vi.

The solution to the problem of how to define truth is as follows. We
will define a truth-value for arbitrary formulas in a model and under
a variable assignment. The truth-values of sentences will depend only
on the model and not on the variable assignment.

Let L be a language, let A be a model, and let s be a variable
assignment.

Denotation of terms. By recursion on length, we define a denotation
densA(t) for each term t of L.

(1) For all variables x, densA(x) = s(x).

(2) For all constants c, densA(c) = cA.

(3) If t is ft1 . . . tn where f is an n-place function symbol and t1, . . . , tn
are terms, then densA(t) = fA(densA(t1), . . . , densA(tn)).

Truth-values of formulas. By recursion on length we define tvsA(ϕ) for
each formula ϕ.

(1) If ϕ is t1 = t2 where t1 and t2 are terms, then tvsA(ϕ) = T if
densA(t1) = densA(t2), and tvsA(ϕ) = F otherwise.

(2) If ϕ is Pt1 . . . tn where P is an n-place predicate symbol and
t1, . . . , tn are terms, then tvsA(ϕ) = T if (densA(t1), . . . , densA(tn))
belongs to PA, and tvsA(ϕ) = F otherwise. (For n = 0, this means
tvsA(ϕ) = T⇔ PA = T.)

9

(3) If ϕ is ¬ψ, then tvsA(ϕ) = T if tvsA(ψ) = F, and tvsA(ϕ) = F
otherwise.

(4) If ϕ is (ψ → χ), then tvsA(ϕ) = F if tvsA(ψ) = T and tvsA(χ) = F,
and tvsA(ϕ) = T otherwise.

(5) If ϕ is ∀xψ, then tvsA(ϕ) = T if, for all a ∈ A, if s′ agrees with
s except that s′(x) = a, then tvs

′

A (ψ) = T, and tvsA(ϕ) = F
otherwise.

We define a formula ϕ to be true in A under s if tvsA(ϕ) = T. (Often
the word satisfied is used instead of true.)

Lemma 2.1. For any model A and any formula ϕ, if s1 and s2 are any
two variable assignments such that s1(x) = s2(x) for every variable with
a free occurrence in ϕ, then tvs1A (ϕ) = tvs2A (ϕ).

Exercise 2.1. Prove Lemma 2.1. To do this, fix A and prove by induc-
tion on length that every formula ϕ has the property that the Lemma
say it has.

Truth in a model. By Lemma 2.1, we may define tvA(σ) for sentences
σ by setting

tvA(σ) = tvsA(σ),

where s is any variable assignment. We define a sentence σ to be true
in A if tvA(σ) = T.

Truth of sets of formulas and sets of sentences. We say that a set Γ
of formulas is true in A under s if all the formulas in Γ are true in A
under s. Similarly, we say that a set Σ of sentences is true in A if all
the sentences in Σ are true in A.

It is not hard to see, using the definition of truth and the contextual
definition of ∃x, that tvsA(∃xψ) = T if and only if there is an a ∈ A
such that, if s′ agrees with s except that s′(x) = a, then tvs

′

A (ψ) = T.

Exercise 2.2. Let L = {c, p, P,Q, f}, where c is a constant, p is a
0-place predicate symbol, P is a one-place predicate symbol, Q is a
two-place predicate symbol, and f is a one-place function symbol. Let

10

A be the following model for L.

A = {d1, d2}
cA = d2
p = T

PA = {d1}
QA = {(d1, d2), (d2, d2)}

fA(d1) = d1
fA(d2) = d1

Here d1 and d2 are distinct objects.
Which of the following sentences are true in A? Explain your an-

swers.
(a) ∃v1∀v2Qv2v1 (b) ∀v1(Pv1 ∨Qcv1)
(c) ∀v1(Pv1 → p) (d) ∃v1(Pv1 → p)
(e) ∃v1∀v2fv2 = v1 (f) ∀v1∃v2Qfv1v2

Logical implication:

If Γ is a set of formulas and ϕ is a formula, then we say that Γ
logically implies ϕ (in symbols, Γ |= ϕ) if and only if, for every model
A and every variable assignment s,

if Γ is true in A under s, then ϕ is true in A under s .

A formula or set of formulas is valid if it is true in every model under
every variable assignment; it is satisfiable if it is true in some model
under some variable assignment. A formula ϕ is valid if and only if
∅ |= ϕ, and we abbreviate ∅ |= ϕ by |= ϕ. We will be interested in the
notions of logical implication, validity, and satisfiability mainly for sets
of sentences and sentences. In this case variable assignments s play no
role. A set Σ of sentences logically implies a sentence ϕ if and only if,
for every model A,

if Σ is true in A, then ϕ is true in A .

Exercise 2.3. Let L = {P,Q, c1, c2, f}, where P is a one-place pred-
icate symbol, Q is a two-place predicate symbol, c1 and c2 are con-
stants, and f is a two-place function symbol. For each of the following
pairs (Γ, ϕ), tell whether Γ |= ϕ. If the answer is yes, explain why.
If the answer is no, then describe a model or a model and a variable
assignment showing that the answer is no.

11

(a) Γ: {∀v1∃v2Qv1v2}; ϕ: ∃v2∀v1Qv1v2.
(b) Γ: {∃v1∀v2Qv1v2}; ϕ: ∀v2∃v1Qv1v2.
(c) Γ: {∀v1 Qv1v1, Qc1c2}; ϕ: Qc2c1;

(d) Γ: {∀v1∀v2Qv1v2}; ϕ: ∀v2∀v1Qv1v2;
(e) Γ: {Pv1}; ϕ: ∀v1 Pv1.
(f) Γ: {∀v1fv1c1 6= fv1v1}; ϕ: fc1c2 6= c2.

Exercise 2.4. Let L = {P}, where P is a two-place predicate symbol.
Describe a model in which all three of the following sentences are true.

(a) ∀v1∃v2 Pv1v2.
(b) ∀v1∀v2(Pv1v2 → ¬Pv2v1).
(c) ∀v1∀v2∀v3((Pv1v2 ∧ Pv2v3) → Pv1v3).

Can these three sentences be true in a model whose universe is finite?
Explain.

Exercise 2.5. Let L = {f}, where f is a one-place function symbol.
Does {∀v1∀v2(f(v1) = f(v2)→ v1 = v2)} logically imply ∀v1∃v2f(v2) =
v1? If the answer is yes, explain why. If it is no, describe a model
showing this.

Exercise 2.6. Let Γ and ∆ be sets of formulas of some language L, let
ϕ, ψ, and ϕ1, . . . , ϕn be formulas of L, and let p be a sentence symbol
of L. Prove each of the following.

(1) Γ ∪ {ϕ} |= ψ if and only if Γ |= (ϕ→ ψ) .

(2) Γ∪{ϕ1, . . . , ϕn} |= ψ if and only if Γ |= (ϕ1 → · · · → ϕn → ψ) .

(3) Γ is satisfiable if and only if Γ 6|= (p ∧ ¬p) .

(4) If Γ |= every formula belonging to ∆ and if ∆ |= ψ, then
Γ |= ψ.

Here have used the convention announced on page 6 that omitted
parentheses group to the right.

Exercise 2.7. There is an important relation between satisfiability
and logical implication.

Γ |= ϕ if and only if Γ ∪ {¬ϕ} is not satisfiable.

Prove that this relation obtains.

12

Sentential implication and tautologies.

A formula is prime if it is either atomic or of the form ∀xϕ. Equiv-
alently, a formula is prime if it is not of the form ¬ϕ or of the form
(ϕ→ ψ).
Examples:

• fv1 = c and ∀v1(Pv1 → Qcv2) are prime.

• (Pv2 → ¬Pv3) and ∃v1Pv1 are not prime. (∃v1Pv1 is really the
formula ¬∀v1¬Pv1.)

Prime formula valuations. Fix a language L. A prime formula valu-
ation for L is a function v that assigns a truth-value T or F to each
prime formula of L. Prime formula valuations are sometimes called
truth-value assignments to the prime formulas or extended valuations.

Let v be a prime formula valuation for a language L. By recursion
on length, we extend v to a function v∗ that assigns a truth-value to
every formula of L.

(i) If ϕ is prime, then v∗(ϕ) = v(ϕ).

(ii) If ϕ is ¬ψ, then v∗(ϕ) = T just in case v∗(ψ) = F.

(iii) If ϕ is (ψ → χ), then v∗(ϕ) = F just in case v∗(ψ) = T and
v∗(χ) = F.

A formula ϕ is true under v if v∗(ϕ) = T. A set of formulas is true
under v if all the formulas in the set are true under v.

Tautological implication. A set Γ of formulas tautologically implies a
formula ϕ (in symbols, Γ |=t ϕ) if ϕ is true under every prime formula
valuation under which Γ is true.

Tautologies. A formula ϕ is a tautology if ϕ is true under every prime
formula valuation. Note that ϕ is a tautology if and only if ∅ |=t ϕ
(which we abbreviate |=t ϕ).

Examples:

• (Pv1 → Pv1) and (Pv1 → ¬¬Pv1) are tautologies.

• ∀v1(Pv1 → Pv1) and (∀v1Pv1 → ∃v1Pv1) are not tautologies.

13

Lemma 2.2. If Γ |=t ϕ then Γ |= ϕ. Hence every tautology is valid.

Proof. Assume that Γ |=t ϕ. Let A be a model and let s be a variable
assignment. Define a prime formula valuation v by setting

v(ϕ) = tvsA(ϕ)

for each prime formula ϕ. It follows by induction on length that

v∗(ϕ) = tvsA(ϕ)

for every formula ϕ. Assume that Γ is true in A under s. Then Γ is
true under v. Since Γ |=t ϕ, v∗(ϕ) = T. Hence tvsA(ϕ) = T. �

14

3 Formal Deduction

For each language L, we define a deductive system for L. Fix L. In
describing the deductive system, we will use the following two defini-
tions.

(1) If ϕ is a formula, x is a variable, and t is a term, then we define
ϕ(x; t) to be the formula that results by replacing each free occurrence
of x in ϕ by an occurrence of t.

(2) By recursion on length, we define the subformulas of a formula ϕ.

(i) If ϕ is atomic, it is its only subformula.

(ii) If ϕ is ¬ψ, then the subformulas of ϕ are ϕ itself and the subfor-
mulas of ψ.

(iii) If ϕ is (ψ → χ) then the subformulas of ϕ are ϕ itself, the sub-
formulas of ψ, and the subformulas of χ.

(iv) If ϕ is ∀xψ, then the subformulas of ϕ are ϕ itself and the sub-
formulas of ψ.

Here are the components of the deductive system for L.

Axioms:

(1) All tautologies.

(2) Identity Axioms:

(a) t = t
for all terms t;

(b) t1 = t2 → (ϕ(x; t1)→ ϕ(x; t2))
for all terms t1 and t2, all variables x, and all formulas ϕ
such that there is no variable y occurring in t1 or t2 such
that there is free occurrence of x in a subformula of ϕ of the
form ∀yψ.

(3) Quantifier Axioms:
∀xϕ→ ϕ(x; t)

for all formulas ϕ, variables x, and terms t such that there is no
variable y occurring in t such that there is a free occurrence of x
in a subformula of ϕ of the form ∀yψ.

15

Rules of Inference:

Modus Ponens (MP)
ϕ , (ϕ→ ψ)

ψ

Quantifier Rule (QR)
(ϕ→ ψ)

(ϕ→ ∀xψ)

provided that the variable x does not occur free in ϕ.

Discussion of some of the axioms and rules:

Identity Axiom Schema (a) is self-explanatory. Schema (b) is a
formal version of the Indiscernibility of Identicals, also called Leibniz’s
Law. Its idea is that if t1 and t2 denote the same object, then whatever
is true of what t1 denotes is true of what t2 denotes. The reason for
the restriction is that without it the schema does not conform to the
idea.

The Quantifier Axiom Schema is often called the schema of Univer-
sal Instantiation. Its idea is that whatever is true of all objects in the
domain is true of whatever object t might denote. Here is an example
showing that the schema is not valid without the restriction. Let ϕ be
∃v2 v1 6= v2, let x be v1 and let t be v2. The instance of the schema
would be

∀v1∃v2 v1 6= v2 → ∃v2 v2 6= v2.

The antecedent is true in all models whose domains have more than
one element, but the consequent is not satisfiable. Similar examples
show the need for the restriction of Identity Axiom Schema (b).

As we will explain later, the Quantifier Rule is not a valid rule. The
reason it will be legitimate for us to use it as a rule is that we will allow
only sentences as premises of our deductions. How this works will be
explained in the proof of the Soundness Theorem.

Deductions:

A deduction in L from a set Σ of sentences is a finite sequence D
of formulas such that whenever a formula ϕ occurs in the sequence D
then at least one of the following holds.

(1) ϕ ∈ Σ.

(2) ϕ is an axiom.

16

(3) ϕ follows by Modus Ponens from two formulas occurring earlier in
the sequence D or follows by the Quantifier Rule from a formula
occurring earlier in D.

A deduction in L of a formula ϕ from a set Σ of sentences is a
deduction D in L from Σ with ϕ the last “line” of D. We write Σ `L
ϕ—and we say that ϕ is deducible in L from Σ—to mean that there is
a deduction in L of ϕ from Σ. We write `L ϕ for ∅ `L ϕ.

Remark. Unless two or more languages are in play, we will omit the
subscript L.

In order to avoid dealing directly with long formulas and long de-
ductions, it will be useful to begin by justifying some derived rules.

Lemma 3.1. Assume that Σ ` ϕi for 1 ≤ i ≤ n and {ϕ1, . . . , ϕn} |=t

ψ. Then Σ ` ψ. (See page 13 for the definition of |=t.)

Proof. If we string together deductions witnessing that Σ ` ϕi for
each i, then we get a deduction from Σ in which each ϕi is a line. The
fact that {ϕ1, . . . , ϕn} |=t ψ gives us that the formula

(ϕ1 → ϕ2 → · · · → ϕn → ψ)

is a tautology. Appending this formula to our deduction and applying
MP n times, we get ψ. �

Lemma 3.1 justifies a derived rule, which we call SL. A formula ψ
follows from formulas ϕ1, . . . , ϕn by SL iff

{ϕ1, . . . , ϕn} |=t ψ.

Lemma 3.2. If Σ ` ϕ then Σ ` ∀xϕ (for any variable x).

Proof. Assume that Σ ` ϕ. Begin with a deduction from Σ with last
line ϕ. Let > be the formula

(∃v1 v1 = v1 ∨ ¬∃v1 v1 = v1).

Use SL to get the line (> → ϕ). Now apply QR to get (> → ∀xϕ).
Finally use SL to get ∀xϕ. �

17

Remark. Any tautology that is a formula of the language L under
consideration and does not contain a free occurrence of x would do
in place of >. The formula > has the additional property of being a
sentence of every language L.

Lemma 3.2 justifies a derived rule, which we call Gen:

Gen
ϕ
∀xϕ

Lemma 3.3. For all formulas ϕ and ψ,

` ∀x(ϕ→ ψ)→ (∀xϕ→ ∀xψ).

Proof. Here is an abbreviated deduction.

1. ∀x(ϕ→ ψ)→ (ϕ→ ψ) QAx
2. ∀xϕ→ ϕ QAx
3. (∀x(ϕ→ ψ) ∧ ∀xϕ)→ ψ 1,2; SL
4. (∀x(ϕ→ ψ) ∧ ∀xϕ)→ ∀xψ 3; QR
5. ∀x(ϕ→ ψ)→ (∀xϕ→ ∀xψ) 4; SL �

Exercise 3.1. Show that ` (∃v1 Pv1 → ∃v2 Pv2).

Exercise 3.2. Show that {∀v1 Pv1} ` ∃v1 Pv1.

Lemma 3.4. If Σ ` (ϕ→ ψ) then Σ ` (∀xϕ→ ∀xψ).

Proof. Start with a deduction from Σ with last line (ϕ → ψ). Use
Gen to get the line ∀x(ϕ→ ψ). Then apply Lemma 3.3 and MP. �

Theorem 3.5 (Deduction Theorem). Let Σ be a set of sentences,
let σ be a sentence, and let ϕ be a formula. If Σ ∪ {σ} ` ϕ then
Σ ` (σ → ϕ).

Proof. Assume that Σ ∪ {σ} ` ϕ. Let D be a deduction of ϕ from
Σ ∪ {σ}. We prove that

Σ ` (σ → ψ)

for every line ψ of D. Assume that this is false. Consider the first
line ψ of D such that Σ 6` (σ → ψ).

18

Assume first that ψ either belongs to Σ or is an axiom. Then Σ ` ψ,
and (σ → ψ) follows from ψ by SL. Hence Σ ` (σ → ψ).

Assume next that ψ is σ. Since (σ → σ) is a tautology, Σ ` (σ → σ).
Assume next that ψ follows by MP from formulas χ and (χ → ψ)

on earlier lines of D. Since ψ is the first “bad” line of D, Σ ` (σ → χ)
and Σ ` (σ → (χ→ ψ)). Since

{(σ → χ), (σ → (χ→ ψ))} |=t (σ → ψ),

Lemma 3.1 gives us that Σ ` (σ → ψ).
Finally assume that ψ is (χ → ∀xρ) and that ψ follows by QR

from an earlier line (χ → ρ) of D. Since ψ is the first “bad” line
of D, Σ ` (σ → (χ → ρ)). Starting with a deduction from Σ of
(σ → (χ→ ρ)), we can get a deduction from Σ of (σ → (χ→ ∀xρ)) as
follows.

· · · · · · · · ·
· · · · · · · · ·
· · · · · · · · ·
n σ → (χ→ ρ) · · ·
n+ 1. (σ ∧ χ)→ ρ n; SL
n+ 2. (σ ∧ χ)→ ∀xρ n+ 1; QR
n+ 3. σ → (χ→ ∀xρ) n+ 2; SL

Note that the variable x has no free occurrences in σ because σ is a
sentence, and we know that it has no free occurrences in χ because we
know that QR was used in D to get χ→ ∀xρ from χ→ ρ.

This contradiction completes the proof that the “bad” line ψ cannot
exist. Applying this fact to the last line of D, we get that Σ ` (σ → ϕ).

�

The Deduction Theorem is useful in showing that conditionals are
deducible. If σ is a sentence, then to show Σ ` (σ → ϕ) it is enough
to show that Σ ∪ {σ} ` ϕ.

Exercise 3.3. Show that, for any variable x and constant c,

` (Pc↔ ∀x(x = c→ Px)).

(See page 6 for the contextual definition of ↔.)

Hint. Show that ` (Pc → ∀x(x = c → Px)) and ` (∀x(x = c →
Px)→ Pc) and then use SL. In showing that the two conditionals are
deducible, use the Deduction Theorem.

19

Consistency. A set Σ of sentences of L is inconsistent in L if there is a
formula ψ such that Σ `L ψ and Σ `L ¬ψ. Otherwise Σ is consistent.

Theorem 3.6. Let Σ and ∆ be sets of sentences, let σ and σ1, . . . , σn
be sentences, and let ϕ be a formula.

(1) Σ ∪ {σ} ` ϕ if and only if Σ ` (σ → ϕ).

(2) Σ ∪ {σ1, . . . , σn} ` ϕ if and only if Σ ` (σ1 → . . .→ σn → ϕ).

(3) Σ is consistent if and only if there is some formula χ such that
Σ 6` χ.

(4) If Σ ` every formula ∈ ∆ and if ∆ ` ϕ, then Σ ` ϕ.

Proof. (1) The “only if” direction is the Deduction Theorem. The
“if” direction is the Deduction Theorem’s converse. To prove the “if”
direction, note that any deduction of (σ → ϕ) from Σ can be turned
into a deduction of ϕ from Σ ∪ {σ} by adding the lines σ and ϕ, the
latter line coming by MP.

(2) For the “only if” direction, apply the Deduction Theorem n
times; for the “if” direction, apply the converse of the Deduction The-
orem n times.

(3) The “only if” direction is obvious. For the “if” direction, we
prove the contrapositive. Assume that Σ is inconsistent. Let ψ be a
formula such that Σ ` ψ and σ ` ¬ψ. For any formula χ,

{ψ,¬ψ} |=t χ.

Hence Σ ` χ by SL.
(4) Let D be a deduction of ϕ from ∆. Let τ1, . . . , τn be all the

members of ∆ that appear as lines of D. For each i, let Di be a
deduction of τi from Σ. To get a deduction of ϕ from Σ, put the Di

end to end and follow them by D. �

Lemma 3.7. For all formulas ϕ and any variables x and y,

` ∃x∀yϕ→ ∀y∃xϕ.

20

Proof. Here is an abbreviated deduction.

1. ∀yϕ→ ϕ QAx
2. ¬ϕ→ ¬∀yϕ 1; SL
3. ∀x¬ϕ→ ¬ϕ QAx
4. ∀x¬ϕ→ ¬∀yϕ 2,3; SL
5. ∀x¬ϕ→ ∀x¬∀yϕ 4; QR
6. ¬∀x¬∀yϕ→ ¬∀x¬ϕ 5; SL

[∃x∀yϕ→ ∃xϕ]
7. ∃x∀yϕ→ ∀y∃xϕ 6; QR �

Exercise 3.4. Show that

{∀v1∀v2(Pv1v2 ∨ Pv2v1)} ` ∀v1Pv1v1.

Exercise 3.5. Show that

` ∀v1∃v2 fv1 = v2.

Here f is a one-place function symbol.

Exercise 3.6. Let c1 and c2 be constants. Show that

{c1 = c2} ` c2 = c1.

21

4 Soundness and Completeness

Soundness and completeness. A system S of deduction for a first-order
language L is sound if, for all sets Σ of sentences of L and all formulas
ϕ of L, if ϕ is deducible from Σ in S then Σ |= ϕ. A system S of
deduction for L is complete if, for all sets Σ of sentences of L and all
formulas ϕ of L, if Σ |= ϕ then ϕ is deducible from Σ in S. In this
section, we will prove that our systems of deduction for languages L
are all sound and complete.

Exercise 4.1. Prove that all instances of the Quantifier Axiom Schema
are valid.

Exercise 4.2. Prove that all instances of Identity Axiom Schema (b)
are valid.

Hint for Exercises 4.1 and 4.2:

Let A be a model and let s be variable assignment. Let x be variable
and let t be a term. Assume that s′ is the same as s except that
s′(x) = densA(t). Prove by induction on length that, for all terms t∗,

dens
′

A (t∗) = densA(t∗(x; t)).

Next prove by induction on length that, for all formulas ϕ, for if ϕ, x,
and t satisfy the restriction in the statement of the Quantifier Axiom
Schema, then

tvs
′

A (ϕ) = tvsA(ϕ(x; t)).

Use this to show that all instances of the Quantifier Axiom Schema of
the form ∀xϕ→ ϕ(x; t) are true in A under s.

To show that all instances t1 = t2 → ϕ(x; t1)→ ϕ(x; t2)) of Identity
Axiom Schema (b) is true in A under s, apply what you have proved
to the terms t1 and t2.

Theorem 4.1 (Soundness). For each L, our system of deduction for
L is sound.

Proof. Let D be a deduction in L of a formula ϕ from a set Σ of
sentences. We will show that, for every line ψ of D, Σ |= ψ. Applying
this to the last line of D, this will give us that Σ |= ϕ.

22

Assume that what we wish to show is false. Let ψ be the first line
χ of D such that Σ 6|= χ.

Assume first that ψ is an axiom. Using Exercises 4.2 and 4.1, it is
easy to see that all the axioms are valid. Hence |= ψ and so Σ |= ψ.

Assume next that ψ ∈ Σ. Trivially Σ |= ψ.
Assume next that ψ follows by MP from earlier lines χ and (χ→ ψ)

of D. Since ψ is the first “bad” line of D, Σ |= χ and Σ |= (χ → ψ).
It follows that Σ |= ψ.

Finally assume that ψ is (χ → ∀xρ) and that ψ follows by QR
from an earlier line (χ → ρ) of D. Since ψ is the first “bad” line of
D, Σ |= (χ → ρ). Let A be any model and let s be any variable
assignment. We assume that tvsA(Σ) = T (by which we mean that
tvsA(π) = T for each π ∈ Σ), and we show that tvsA(χ→ ∀xρ) = T. To
do this, we assume that tvsA(χ) = T and we show that tvsA(∀xρ) = T.
Let a be any element of A and let s′ be any variable assignment that
agrees with s except that s′(x) = a. We must show that tvs

′

A (ρ) = T.
Since Σ is a set of sentences, tvs

′

A (Σ) = tvsA(Σ) = T. Since the variable
x does not occur free in χ, tvs

′

A (χ) = tvsA(χ) = T. Since Σ |= (χ→ ρ),
it follows that tvs

′

A (ρ) = T �

We now begin the proof of the completeness of our deductive sys-
tems. The following fact will be be used in the proof.

Exercise 4.3. Our system of deduction for a language L is complete
if and only if every set of sentences consistent in L is satisfiable in L.

Lemma 4.2. Let Σ be a set of sentences of a language L consistent in
L, and let σ be a sentence of L. Either Σ ∪ {σ} is consistent in L or
Σ ∪ {¬σ} is consistent in L.

Proof. Assume for a contradiction neither Σ ∪ {σ} nor Σ ∪ {¬σ} is
consistent. It follows that there are formulas ψ and ψ′ such that

(i) Σ ∪ {σ} ` ψ ;

(ii) Σ ∪ {σ} ` ¬ψ ;

(iii) Σ ∪ {¬σ} ` ψ′ ;
(iv) Σ ∪ {¬σ} ` ¬ψ′ .

23

Using (iii), (iv), the Deduction Theorem and SL, we can show that
Σ ` σ. This fact, together with (i) and (ii), allows us to show that Σ `
ψ and Σ ` ¬ψ. Thus we have the contradiction that Σ is inconsistent.

�

Simplifying assumption. From now on, we consider only languages L
that are countable, i.e., whose predicate and function symbols can be
arranged in a finite or infinite list. By an “infinite list,” we mean a
list ordered like the natural numbers. Most of the facts we will prove
can be proved without this restriction, but the proofs involve concepts
beyond the scope of this course.

Henkin sets. A set Σ of sentences in a language L is Henkin in L if,
for each variable x and each formula ϕ of L in which no variable other
than x occurs free, if (i) below holds, then (ii) also holds.

(i) ϕ(x; c) ∈ Σ for all constants c of L.

(ii) ∀xϕ ∈ Σ.

Lemma 4.3. Let Σ be a set of sentences of a language L consistent in
L. Let L∗ be gotten from L by adding infinitely many new constants.
There is a set Σ∗ of sentences of L∗ such that

(1) Σ ⊆ Σ∗ ;

(2) Σ∗ is consistent in L∗ ;

(3) for every sentence σ of L∗, either σ belongs to Σ∗ or ¬σ belongs
to Σ∗;

(4) Σ∗ is Henkin in L∗.

In the proof of the lemma, we will use the following alternative
characterization of the Henkin property.

Exercise 4.4. Call a set Σ of sentences in a language L Henkin′ in L
if, for each variable x and each formula ϕ of L in which no variable
other than x occurs free, if (iii) below holds, then (iv) also holds.

(iii) ∃xϕ ∈ Σ.

(iv) ϕ(x; c) ∈ Σ for some constant c of L.

24

Let Σ∗ be a set of sentences in a language L∗ having properties (2)
and (3) described in the statement of Lemma 4.3. Show that Σ∗ is
Henkin in L∗ if and only if it is Henkin′ in L∗.

Proof of Lemma 4.3. By our simplifying assumption, we have a
finite or infinite list of all the predicate and function symbols of L∗.
(Recall that constants are 0-place function symbols.) Think of all the
symbols of L as forming an infinite “alphabet” with the alphabetical
order given as follows.

(i) The alphabet begins with ¬, →, (,), ∀, =.

(ii) Next come the variables, v1, v2, v3,

(iii) Last come the predicate and function symbols, in the order of our
given list.

Now we form an infinite list of all the sentences of L∗. First list
in alphabetical order all the (finitely many) sentences that have length
1 and that contain no variables other than v1 and no predicate or
function symbols other than the first one (in the given list). Next list
in alphabetical order all the remaining sentences that have length ≤ 2
and that contain no variables other than v1 and v2 and no predicate
or function symbols other than the first two. Next list in alphabetical
order all the remaining sentences that have length ≤ 3 and that contain
no variables other than v1, v2, and v3 and no predicate or function
symbols other than the first three. Continue in this way. (If we gave
the details, what we would be doing in describing this list would be to
define a function by recursion on natural numbers—the function that
assigns to n the sentence called σn in the notation of the following
paragraph.)

Let the formulas of L∗, in the order listed, be

σ0, σ1, σ2, σ3,

Let
c0, c1, c2, . . .

be all the constants of L∗.
We define, by recursion on natural numbers, a function that asso-

ciates with each natural number n a set Σn of sentences.
We begin by setting Σ0 = Σ.

25

For each n, all the members of Σn will be sentences of L∗. Also Σn

will be a subset Σn+1.
Since Σ0 is a set of sentences of L, it contains none of the new

constants added in going from L to L∗. We will make sure that for
each n at most two sentences belong to Σn+1 but not to Σn. Thus for
each n only finitely many of the new constants will occur in sentences
in Σn.

We define Σn+1 from Σn in two steps. For the first step, let

Σ′n =

{
Σn ∪ {σn} if Σn ∪ {σn} is consistent in L∗;
Σn ∪ {¬σn} otherwise.

Let Σn+1 = Σ′n unless both of the following hold.

(a) σn ∈ Σ′n.

(b) σn is ∃xnϕn for some variable xn and formula ϕn.

Suppose that both (a) and (b) hold. Let in be the least i such that
the constant ci does not occur in any formula belonging to Σ′n. Such
an i must exist, since only finitely many of the infinitely many new
constants occur in sentences in Σ′n. Let

Σn+1 = Σ′n ∪ {ϕn(xn; cin)}.

Let Σ∗ =
⋃
n Σn.

Because Σ = Σ0 ⊆ Σ∗, Σ∗ has property (1).
We prove by mathematical induction that Σn is consistent in L∗ for

each n.
Σ0 (i.e., Σ) is consistent in L by hypothesis, but we must prove

that it is consistent in L∗. If Σ is inconsistent in L∗, then by part (3)
of Theorem 3.6, every formula of L∗ is deducible from Σ in L∗. In
particular, there is a sentence τ of L such that both τ and its negation
are deducible from Σ in L∗. Observe that any deduction D from Σ in
L∗ of a formula of L can be turned into a deduction from Σ in L of
the same formula: just replace the new constants occurring in D by
distinct variables that do not occur in D. It follows easily that Σ is
inconsistent in L if it is inconsistent in L∗.

For the rest of the proof of the lemma, “consistent” means “consis-
tent in L∗.” Assume that Σn is consistent.

We must show that Σn+1 is consistent. Lemma 4.2 implies that Σ′n
is consistent. If Σn+1 = Σ′n, then Σn+1 is consistent. Assume then

26

that Σn+1 = Σ′n ∪{ϕn(xn; cin)} and, in order to derive a contradiction,
assume that Σn+1 is inconsistent. Arguing as we did in the preceding
paragraph, we get that there is a sentence of τ of L such that τ and
¬τ are both deducible from Σn+1. By SL,

Σn+1 `L∗ (τ ∧ ¬τ).

In other words,

Σ′n ∪ {ϕn(xn; cin)} `L∗ (τ ∧ ¬τ).

By the Deduction Theorem,

Σ′n `L∗ (ϕn(xn; cin)→ (τ ∧ ¬τ)).

Let D be a deduction from Σ′n in L∗ with last line (ϕn(xn; cin) →
(τ ∧ ¬τ)). Let y be a variable not occurring in D. Let D′ come from
D by replacing every occurrence of cin by an occurrence of y. Since cin
does not occur Σ′n or in ϕn, D′ is a deduction from Σ′n in L∗ with last
line (ϕn(xn; y)→ (τ ∧¬τ)). We can turn D′ into a deduction from Σ′n
in L∗ with last line (∃xnϕn → (τ ∧ ¬τ)) as follows.

· · · · · · · · ·
· · · · · · · · ·
· · · · · · · · ·
m. ϕn(xn; y)→ (τ ∧ ¬τ) · · ·
m+ 1. ¬(τ ∧ ¬τ)→ ¬ϕn(xn; y) m; SL
m+ 2. ¬(τ ∧ ¬τ)→ ∀y¬ϕn(xn; y) m+ 1; QR
m+ 3. ∀y¬ϕn(xn; y)→ ¬ϕn QAx
m+ 4. ¬(τ ∧ ¬τ)→ ¬ϕn m+ 2,m+ 3; SL
m+ 5. ¬(τ ∧ ¬τ)→ ∀xn¬ϕn n+ 4; QR
m+ 6. ¬∀xn¬ϕn → (τ ∧ ¬τ) m+ 5; SL

[∃xnϕn → (τ ∧ ¬τ)]

This shows that Σ′n `L∗ (∃xnϕn → (τ ∧¬τ)). But Σ′n = Σn∪{∃xnϕn},
so it follows that Σ′n `L∗ (τ ∧ ¬τ). By SL, we get the contradiction
that Σ′n is inconsistent.

Suppose that Σ∗ is inconsistent. Let D be a deduction of τ ∧ ¬τ
from Σ∗. Only finitely many members of Σ∗ are lines of D. Any finite
subset of Σ∗ is a subset of some Σn. This gives us the contradiction
that some Σn is inconsistent. Hence Σ∗ has property (2).

27

Because either σn or ¬σn belongs to Σn+1 for each n and each
Σn+1 ⊆ Σ∗, Σ∗ has property (3).

If σn ∈ Σ∗, then ¬σn /∈ Σn+1 and so σn ∈ Σn+1. But this implies
that ϕn(xn; cin) ∈ Σn+1 ⊆ Σ∗ if σn is ∃xnϕn. Since every sentence of
L∗ is σn for some n, Σ∗ has property (4). �

The following fact will be useful in proving Lemma 4.5, the second
main part of the proof of Completeness.

Lemma 4.4. Let ϕ be a formula, let x1, . . . , xn be distinct variables,
and let t1, . . . , tn and t′1, . . . , t

′
n be terms without variables.

` (t1 = t′1 ∧ · · · ∧ tn = t′n) → (ϕ(x1; t1) . . . (xn; tn)→ ϕ(x1; t
′
1), . . . , (xn; t′n)).

Here, e.g., ϕ(x1; t1) . . . (xn; tn) is the result of replacing, for each i, the
free occurrences of xi in ϕ by occurrences of ti.

Proof. By the Deduction theorem and SL, it will be enough to show

{t1 = t′1 ∧ · · · ∧ tn = t′n} ` (ϕ(x1; t1) . . . (xn; tn)→ ϕ(x1; t
′
1), . . . , (xn; t′n)).

1. t1 = t′1 Premise
.. · · · · · ·
.. · · · · · ·
.. · · · · · ·
n. tn = t′n Premise
n+ 1. t1 = t′1 → (ϕ(x1; t1)(x2; t2) · · · (xn; tn)

→ (ϕ(x1; t
′
1)(x2; t2) · · · (xn; t′n)) IdAx(b)

.. · · · · · ·

.. · · · · · ·

.. · · · · · ·
2n. tn = t′n → (ϕ(x1; t

′
1) · · · (xn−1; t′n−1)(xn; tn)

→ (ϕ(x1; t
′
1) · · · (xn−1; t′n−1)(xn; t′n)) IdAx(b)

2n+ 1. ϕ(x1; t1) · · · (xn; tn)→ ϕ(x1; t
′
1) · · · (xn; t′n) 1,. . . ,2n; SL �

Lemma 4.5. Let Σ∗ be a set of sentences of a language L∗ having
properties (2), (3), and (4) described in the statement of Lemma 4.3.
Then Σ∗ is satisfiable.

28

Proof. We first show that Σ∗ is deductively closed: for any sentence σ
of L∗, if Σ∗ ` σ then σ ∈ Σ∗. To show this, assume that Σ∗ ` σ. If also
¬σ ∈ Σ∗, then Σ∗ is inconsistent, contradicting (2). By (3), σ ∈ Σ∗.

We will define a model A and prove that Σ∗ is true in it. Every
member of A will be denoted by a constant. If c1 and c2 are constants
and the sentence c1 = c2 belongs to Σ∗, then c1 and c2 will have to
denote the same member of A. This is the motivation for the following.

Let C∗ be the set of all constants of L∗. Let ∼ be the relation on
C∗ defined by

c1 ∼ c2 ⇔ c1 = c2 ∈ Σ∗.

We will prove that ∼ is an equivalence relation on C∗: that ∼ is reflex-
ive, symmetric, and transitive.

For reflexivity, we must show that c = c belongs to Σ∗ for all mem-
bers c of C∗. Since c = c is an instance of Identity Axiom Schema (a),
` c = c and so Σ∗ ` c = c. By deductive closure, c = c ∈ Σ∗.

For symmetry, we must show that, for all members c1 and c2 of C∗,
if c1 = c2 ∈ Σ∗ then c2 = c1 ∈ Σ∗. Assume that c1 = c2 ∈ Σ∗. By
Exercise 3.6, Σ∗ ` c2 = c1. By deductive closure, c2 = c1 ∈ Σ∗.

Before proving transitivity, we show that

{c1 = c2, c2 = c3} ` c1 = c3

for any constants c1, c2, and c3.

1. c1 = c2 Premise
2. c2 = c3 Premise
3. c2 = c1 1; Exercise 3.6
4. c2 = c1 → (c2 = c3 → c1 = c3) IdAx(b)
5. c1 = c3 2,3,4; SL

For transitivity, we must show that, for all members c1, c2, and c3
of C∗, if c1 = c2 ∈ Σ∗ and c2 = c3 ∈ Σ∗, then c1 = c3 ∈ Σ∗. Assume
that c1 = c2 ∈ Σ∗ and c2 = c3 ∈ Σ∗. By what we have just proved,
Σ∗ ` c1 = c3. By deductive closure, c1 = c3 ∈ Σ∗.

For each c ∈ C∗, let [c] be the equivalence class of c with respect
to ∼:

[c] = {c′ | c ∼ c′}.

The model A. We define a model A for L∗ as follows.

29

(i) A = {[c] | c ∈ C∗}.
(ii) pA = T ⇔ p ∈ Σ∗, for each sentence symbol p.

(iii) For n ≥ 1, PA = {([c1], . . . , [cn]) | Pc1 . . . cn ∈ Σ∗}, for each
n-place predicate symbol P .

(iv) cA = [c] for each c ∈ C∗.

(v) For n ≥ 1, fA([c1], . . . , [cn]) = [c] ⇔ fc1 . . . cn = c ∈ Σ∗, for each
n-place function symbol f .

We must show that the definitions given in clauses (iii) and (v) do
not depend on the choice of elements of equivalence classes. In the case
of clause (v), we need to show something additional. (See below.)

Here is the proof for clause (iii). Assume that [ci] = [c′i] for 1 ≤ i ≤
n. By the definition of the equivalence classes, we have that ci ∼ c′i for
1 ≤ i ≤ n. By the definition of ∼, we get that the sentence ci = c′i
belongs to Σ∗ for 1 ≤ i ≤ n. Applying Lemma 4.4 with Pv1 . . . vn as
the formula ϕ, get that Σ∗ ` (Pc1 . . . cn ↔ Pc′1 . . . c

′
n). By deductive

closure, Pc1 . . . cn ∈ Σ∗ if and only if Pc′1 . . . c
′
n ∈ Σ∗.

A special case of the proof that clause (v) is independent of the
choice of elements of equivalence classes is Exercise 4.7, and the proof
for the general case is just like the proof for the special case.

The additional fact we need to show concerning clause (v) is that,
for all f and all c1, . . . cn ∈ C∗, there is a c ∈ C∗ such that

fc1 . . . cn = c ∈ Σ∗.

Suppose there is no such c. By property (3) of Σ∗,

fc1 . . . cn 6= c ∈ Σ∗

for all c ∈ C∗. By property (4) of Σ∗,

∀v1fc1 . . . cn 6= v1 ∈ Σ∗.

Since
∀v1fc1 . . . cn 6= v1 → fc1 . . . cn 6= fc1 . . . cn

is an instance of the Quantifier Axiom Schema,

Σ∗ ` fc1 . . . cn 6= fc1 . . . cn.

30

But fc1 . . . cn = fc1 . . . cn is an instance of Identity Axiom Schema (a),
and so Σ∗ is inconsistent, contradicting property (2) of Σ∗.

Let P be the property of being a sentence σ such that

tvA(σ) = T ⇔ σ ∈ Σ∗ .

We prove by induction on length that every sentence has property P .
Before we begin the proof, we need to prove a fact about terms.

Say that a term t containing no variables has property Q if and only
if, for every c ∈ C∗,

if denA(t) = [c] then c = t ∈ Σ∗,

where denA(t) is the common value of the densA(t). We prove by induc-
tion on length that all terms without variables have Q.

(1) If t is a constant, then denA(t) = tA = [t]. By definition of [c],
c = t belongs to Σ∗ if and only if [t] = [c]. Thus t has Q.

(2) Assume that t is ft1 . . . tn. Let denA(ti) = [ci] for 1 ≤ i ≤ n.
All the ti are shorter than t and so have Q. Hence the sentence ci = ti
belongs to Σ∗ for each i. Let denA(t) = [c]. By the definition of denA,
it follows that

denA(fc1 . . . cn) = fA([c1], . . . , [cn])

= denA(ft1 . . . tn)

= denA(t)

= [c].

By the definition of fA([c1], . . . , [cn]), we have that fc1 . . . cn = c belongs
to Σ∗. By Lemma 4.4 with fv1 . . . vn = c as ϕ, with ci as ti, and with
ti as t′i, we get that Σ∗ ` ft1 . . . tn = c. i.e., that Σ∗ ` t = c and
so t = c ∈ Σ∗. The proof of symmetry for ∼ generalizes to show
c = t ∈ Σ∗.

Now we begin the inductive proof that every sentence has prop-
erty P .

Case (1)(a): σ is a sentence symbol p. By clause (ii) of the definition
of A, pA = T ⇔ p ∈ Σ∗.

Case (1)(b): σ is Pt1 . . . tn for some n-place predicate symbol P and
some terms t1, . . . , tn. Let denA(ti) = [ci] for 1 ≤ i ≤ n. Since the ti

31

have property Q, ci = ti ∈ Σ∗ for each i.

tv(Pt1 . . . tn) = T ⇔ (denA(t1), . . . , denA(tn)) ∈ PA

⇔ ([c1], . . . , [cn])) ∈ PA

⇔ Pc1 . . . cn ∈ Σ∗

⇔ Pt1 . . . tn ∈ Σ∗,

where the last ⇔ comes by Lemma 4.4.

Case (1)(c): σ is t1 = t2 for some terms t1 and t2. The proof is similar
to the proof of Case (1)(b), and we omit it.

Case (2): σ is ¬τ for some sentence τ . We want to show that tvA(¬τ) =
T if and only if ¬τ ∈ Σ∗. Consider the following biconditionals.

tvA(¬τ) = T ⇔ tvA(τ) = F

⇔ τ /∈ Σ∗

⇔ ¬τ ∈ Σ∗ .

These biconditionals imply that tvA(¬τ) = T if and only if ¬τ ∈ Σ∗.
The first biconditional is true by definition of tvA. The second

biconditional is true because τ is shorter than σ and so has property P .
To finish Case (2), we need only prove the third biconditional.

For the ⇐ direction, assume that ¬τ ∈ Σ∗. If τ ∈ Σ∗, then Σ∗ is
inconsistent, so property (2) of Σ∗ implies that τ /∈ Σ∗. For the ⇒
direction, assume that τ /∈ Σ∗. By (3), ¬τ ∈ Σ∗.

Case (3). σ is (ρ → τ) for some sentences ρ and τ . We want to
show that tvA((ρ → τ)) = T if and only if (ρ → τ) ∈ Σ∗ . Consider
the following biconditionals.

tvA((ρ→ τ)) = T ⇔ if tvA(ρ) = T then tvA(τ) = T

⇔ if ρ ∈ Σ∗ then τ ∈ Σ∗

⇔ (ρ→ τ) ∈ Σ∗ .

These biconditionals imply that

tvA((ρ→ τ)) = T if and only if (ρ→ τ) ∈ Σ∗.

The first biconditional is true by definition of tvA. The second bicon-
ditional is true because ρ and τ are shorter than (ρ→ τ), and so both

32

have property P . To finish Case (3), we need only prove the third
biconditional.

For the ⇐ direction, assume that (ρ → τ) ∈ Σ∗ and ρ ∈ Σ∗. By
MP, Σ∗ ` τ and so deductive closure implies that τ ∈ Σ∗.

For the ⇒ direction, assume that if ρ ∈ Γ∗ then τ ∈ Σ∗. Either
ρ ∈ Σ∗ or ρ /∈ Σ∗. Assume first that ρ /∈ Σ∗. By (3), ¬ρ ∈ Σ∗. By SL
and deductive closure, (ρ→ τ) ∈ Σ∗. Now assume that ρ ∈ Σ∗ By our
assumption, τ ∈ Σ∗. By SL and deductive closure, (ρ→ τ) ∈ Σ∗.

Case (4): σ is ∀xϕ for some formula ϕ and some variable x. Note
that no variable other than x can be free in ϕ.

tvA(∀xϕ) = T ⇔ for all s, tvsA(ϕ) = T

⇔ for all c ∈ C∗, for all s with s(x) = [c], tvsA(ϕ) = T

⇔ for all c ∈ C∗, tvsA(ϕ(x; c)) = T

⇔ for all c ∈ C∗, ϕ(x; c) ∈ Σ∗

⇔ ∀xϕ ∈ Σ∗

These biconditionals imply that tvA(∀xϕ) = T if and only if ∀xϕ ∈ Σ∗.
The first biconditional is true by the definition of tvA(σ) and the fact
that no variable besides x occurs free in ϕ. The second biconditional
is true by the fact that no variable besides x occurs free in ϕ and the
fact that A = {[c] | c ∈ C∗}. The third biconditional is true by the
fact that cA = [c] for each c ∈ C∗. The fourth biconditional is true
by the fact that the sentences ϕ(x; c) are shorter than σ and so have
property P .

To see that the ⇐ part of the last biconditional holds, assume that
∀xϕ ∈ Σ∗ and let c ∈ C∗. Notice that the sentence

∀xϕ→ ϕ(x; c)

is an instance of the Quantifier Axiom Schema. Thus Σ∗ ` ϕ(x; c). By
deductive closure, ϕ(x; c) ∈ Σ∗.

The ⇒ part of the last biconditional true by (4).
Our proof that all sentences of L∗ have property P is complete.

Since, in particular, tvA(σ) = T for every member σ of Σ∗, we have
shown that Σ∗ is satisfiable in L∗. �

Theorem 4.6. Let Σ be a consistent set of sentences of L. Then Σ is
satisfiable, i.e., true in a model for L.

33

Proof. Let Σ∗ be given by Lemma 4.3. By Lemma 4.5, Σ∗ is true
in a model A∗ for L∗. Since Σ ⊆ Σ∗, Σ is true in A∗. Let A be the
reduct to L of A∗, i.e., the model gotten by discarding functions cA∗ for
constants c that are not constants of L. Then Σ is true in A. �

Theorem 4.7 (Completeness). For each L, our deductive system
for L is complete.

Proof. This follows from Exercise 4.3 and Theorem 4.6.

Theorem 4.8 (Compactness). Let Σ be a set of sentences and let ϕ
be a formula. If Σ |= ϕ, then there is a finite subset ∆ of Σ such that
∆ |= ϕ.

Proof. Assume that Σ |= ϕ. By Completeness, Σ ` ϕ. Let D be a
deduction of ϕ from Σ. Let ∆ be the set of sentences in Σ that are
lines of D. Then ∆ is finite and ∆ ` ϕ. By Soundness, ∆ |= ϕ. �

Exercise 4.5 (Compactness, Second Form). Use Theorem 4.8 to
show that if every finite subset of a set of sentences is satisfiable then
the whole set is satisfiable.

Hint. If Σ is not satisfiable, then Σ |= (τ ∧ ¬τ) for any sentence τ .

Exercise 4.6. By the size of a model A, we mean the size of the do-
main A. Assume that Σ is a set of sentences and that there are arbi-
trarily large finite models in which Σ is true. Prove that Σ is true in
some infinite model.

Hint. For each n, describe a sentence that is true in all and only those
models that have size ≥ n. This sentence should be in the language of
identity, ∅. Use these sentences and Exercise 4.5.

Theorem 4.9 (Löwenheim-Skolem Theorem). Every satisfiable set
of sentences in a countable language is true in a countable model, a
model A such that A is countable.

Proof. The model A constructed in the proof of Lemma 4.5 is count-
able, since C∗ is countable.

34

Exercise 4.7. In the proof of Lemma 4.5, clause (v) of the definition
of the model A says that

fA([c1], . . . , [cn])) = [c] iff fc1 . . . cn = c ∈ Σ∗.

Show, in the special case n = 2, that this definition does not depend on
the choice of elements of equivalence classes. In other words, assume
that

(1) [c1] = [c′1] and [c2] = [c′2];

(2) fc1c2 = c ∈ Σ∗ and fc′1c
′
2 = c′ ∈ Σ∗,

and prove that
[c] = [c′].

Hint. Use Lemma 4.4, in the way that Lemma was used in the proof
that clause (iii) does not depend on the choice of elements of equivalence
classes.

Exercise 4.8. Suppose that we had made ∧ an additional official sym-
bol in our languages, with the definition of tvsA augmented by the clause:

tvsA(ϕ ∧ ψ) = T ↔ (tvsA(ϕ) = T and tvsA(ψ) = T).

In the proof of Lemma 4.5, there would have been an extra case in the
proof that all formulas have property P . Give the proof for this extra
case.

35

5 Peano Arithmetic and a Subtheory of it

Two minor changes made for minor reasons:

(a) We add v0 to our list of variables.

(b) We make {0,S,<,+, ·} the language LA of arithmetic.

What (b) amounts to is that <, not ≤, is officially a symbol in LA.
We will informally use≤ as an abbreviation. Thus “t1≤t2” abbreviates
“(t1<t2 ∨ t1 = t2).”

Recall that we use boldface for the non-logical symbols of LA in
order to distinguish these symbols from the number 0, the functions S,
+, and ·, and the relation ≤

Let N = (N, 0, S,<,+, ·). (S is the successor function.) N is the
standard model of arithmetic.

Let Th(N) = {τ | tvN(τ) = T}. A central question for the rest of
the course is whether Th(N) is axiomatizable, whether there is a set Σ
of sentences of LA with the following properties:

(i) For every sentence σ of LA, Σ ` σ ⇔ σ ∈ Th(N).

(ii) Σ is computable: there is an algorithm for deciding whether any
given sentence of LA is a member of Σ.

Requirement (ii) is a bit vague. We’ll consider a precise version of it
later.

Peano Arithmetic (PA) is the natural attempt to axiomatize N.

Axioms of PA.

(a) Universal closures of the following eight formulas (where employ
some obvious abbreviations, conventions, and extra parentheses):

(1) 0 6= Sv0 (2) Sv0 = Sv1 → v0 = v1
(3) v0 6<0 (4) v0<Sv1 ↔ v0≤v1
(5) v0+0 = v0 (6) v0+Sv1 = S(v0+v1)
(7) v0·0 = 0 (8) v0·Sv1 = (v0·v1)+v0

(b) The Schema of Induction, consisting of the universal closures of all
formulas of the form:

(ϕ(x;0) ∧ ∀x(ϕ→ ϕ(x;Sx)))→ ∀xϕ.

36

In presenting the axioms of PA, we have used the notion of univer-
sal closure. The universal closure of a formula ϕ is the sentence gotten
from ϕ by preceding it with universal quantifiers for all variables occur-
ring free in ϕ, in increasing order by subscripts. For example, the uni-
versal closure of v0+Sv1 = S((v0+v1)) is ∀v0∀v1 v0+Sv1 = S(v0+v1).

Note that our imprecise requirement (ii) on an axiomatization of
Th(N) is clearly satisfied if we take as Σ the set of all the axioms of
PA. Note that this also satisfies the ⇒ direction of requirement (i).

Non-Standard Models. Neither PA nor any other set of axioms—
computable or not—can characterize the model N up to isomorphism,
as the following consequence of Compactness shows.

Theorem 5.1. There is a model A for LA such that Th(A) = Th(N)
and such that there is an a ∈ A with denA(Sn0)<Aa for all n. (Here
Sn is a string of n S’s.)

Proof. We get a language L by adding a new constant c to LA. Let

Σ = Th(N) ∪ {Sn0<c | n ∈ N}.

To show that every finite subset of Σ is satisfiable, let ∆ be a finite
subset of Σ. Let m be greater than every n such that Sn0<c belongs
to ∆. Make N into a model B for L by setting cB = m. ∆ is true in
B.

By the second form of Compactness, Σ is satisfiable. Let A∗ be a
model in which Σ is true. Let A be the reduct of A∗ to LA. Let a = cA∗ .

�

We are going to study a particular finitely axiomatizable subtheory
Q of PA.

Axioms of Q. The axioms of Q are Axioms (1)–(8) above.

Remarks. Often “Peano Arithmetic” is used to refer to a set of axioms
in the language {0,S,+, ·}, namely, our Axioms (1), (2), (5)-(8), and
the Schema of Induction. What is usually called “Q” is the finite set
consisting of (1), (2), (5)-(8), and an additional axiom, the universal
closure of (v0 = 0 ∨ ∃v1(v0 = Sv1). Our version of PA is that of
Herbert Enderton’s A Mathematical Introduction to Logic, and our Q
is Enderton’s theory A with one axiom removed.

37

We will show, using coding based on Gödel numbering, that many
truths about the language LA and deduction from the axioms of PA
can be coded by sentences of LA itself. We will see that many of these
sentences can be proved from PA, or even from the weak theory Q. We
will use our ability to prove coded facts about PA from the axioms of
PA—or from just the axioms of Q—to show that there are sentences
of LA that are neither provable or refutable from PA.

Remark. By Completeness and Soundness, ` and |= are equivalent.
We will usually write |=, even when we are mainly thinking about
provability.

Lemma 5.2. For all k,

Q |= (x<Sk+10 ↔ (x = 0 ∨ . . . ∨ x = Sk0)) .

Proof. We proceed by mathematical induction on k. By Axiom (4),

Q |= (x<Sk+10↔ (x<Sk0 ∨ x = Sk0)) .

If k = 0, our conclusion follows by Axiom (3). If k > 0, it follows by
induction. �

An abbreviation. For models A, variable assignments s, and terms t,
we use tsA (tA if t has no variables) as an abbreviation for densA(t).

Lemma 5.3. If t is a term without variables and k = tN, then

Q |= t = Sk0 .

Proof. We prove the lemma by induction on the length of t. The case
that t is the symbol 0 is immediate.

Assume that t is Su (for some term u without variables). By in-
duction, Q |= u = SuN0. Hence Q |= Su = SuN+10, i.e., Q |= t = StN0.

Assume next that t is u1 + u2. Let j1 = (u1)N and let j2 = (u2)N.
By induction, Q |= u1 = Sj10 and Q |= u2 = Sj20. Axiom (5) and j2
applications of Axiom (6) give that

Q |= Sj10+Sj20 = Sj1+j20 .

Applications of Axioms (7) and (8) give that Q |= Sj10·Sj20 =
Sj1·j20, for any j1 and j2. This allows us to handle the case that t is
u1·u2. �

38

Notational Conventions. If ϕ is a formula and x1 . . . , xn are vari-
ables, then we write ϕ(x1, . . . , xn) to denote the formula ϕ and also
to indicate that no variables besides x1, . . . , xn occur free in ϕ. We
then may write ϕ(t1, . . . , tn), where t1, . . . , tn are terms, as an abbre-
viation for ϕ(x1; t1) · · · (xn; tn). If A is a model, then we may write
“A satisfies ϕ[a1, . . . , an]” to mean that tvsA(ϕ) = T if s(xi) = ai for
1 ≤ i ≤ n.

Representing relations. Let T be a theory (a set of sentences) in a
language L containing 0 and S. A formula ϕ(v1, . . . , vn) of L represents
R ⊆ Nn in T if, for all elements a1, . . . , an of N,

R(a1, . . . , an) ⇒ T |= ϕ(Sa10, . . . ,San0) ;

¬R(a1, . . . , an) ⇒ T |= ¬ϕ(Sa10, . . . ,San0) .

Here we write R(a1, . . . , an) to mean that (a1, . . . , an) ∈ R.
If some formula represents R in T , then we say that R is repre-

sentable in T .
Representability is related to definability. If A is a model for L and

R ⊆ An, then R is definable in A if there is a formula ϕ(v1, . . . , vn) of
L such that, for any members a1, . . . , an of A,

R(a1, . . . , an) ⇔ A satisfies ϕ[a1, . . . , an] .

For such a ϕ, we say that ϕ defines R in A. One relation between
representability and definability is the following. Suppose that A is
a model of a theory T (a model in which T is true) in a language
containing 0 and S. Suppose also that A = N, that 0A = 0, and that
SA = S. Then any formula that represents a relation in T also defines
that relation in A. The converse is not in general true.

We will define representability of functions as well as of relations.
A natural definition would be: “ϕ(v1, . . . , vn+1) represents f in T if
and only if ϕ represents the graph of f in T ,” where the graph of f
is the (n + 1)-place relation that holds of (a1, . . . , an+1) if and only if
f(a1, . . . , an) = an+1. For technical reasons, we will define a stronger
notion, though it will turn out that the two notions are equivalent for
any T containing Axioms (1)–(4).

If f : Nn → N and T is a theory in a language containing 0 and S,
then a formula ϕ(v1, . . . , vn+1) represents f in T if, for all a1, . . . , an,

T |= ∀vn+1(ϕ(Sa10, . . . ,San0, vn+1) ↔ vn+1 = Sf(a1,...,an)0).

39

Say that f is representable in T if some formula represents f in T .
Note that if T contains Axioms (1) and (2) and ϕ represents f in

T then ϕ represents the graph of f in T . We will say that T proves
ϕ(v1, . . . , vn+1) functional if

T |= ∀v1 · · · ∀vn∃vn+1∀vn+2(ϕ(v1, . . . , vn, vn+2) ↔ vn+2 = vn+1) .

If T proves ϕ(v1, . . . , vn+1) functional and ϕ represents the graph of f
in T , then ϕ represents f in T . The converse does not hold in general.

Exercise 5.1. Show that, for every sentence σ of LA that is atomic or
negation of atomic,

Q |= σ ⇔ σ is true in N.

Exercise 5.2. A formula ϕ of LA is ∆0 if ϕ belongs to the smallest
set containing the atomic formulas and closed under negation, forming
conditionals, and bounded quantification. Closure of ∆0 under forming
conditionals means that if ϕ and ψ are ∆0 then so is (ϕ→ ψ). Closure
of ∆0 under bounded quantification means that

ψ is ∆0 ⇒
{
∀x(x<t → ψ) is ∆0 ;
∀x(x≤t → ψ) is ∆0 ,

for any term t not containing x. The Σ1 formulas of LA are those of
the form ∃x1 · · · ∃xn ψ, where ψ is ∆0.

(a) Prove that, for any ∆0 sentence σ, Q |= σ ↔ σ is true in N.
(b) Prove that, for any Σ1 sentence σ, Q |= σ ↔ σ is true in N.

Hints for Exercises 5.1 and 5.2.

For every atomic sentence σ, there are terms t1 and t2 such that σ
is either t1 = t2 or t1 < t2. In doing Exercise 5.1 for the case t1 = t2,
use Lemma 5.3. For the case t1 < t2, use Lemma 5.3 and then use
Lemma 5.2.

To do Exercise 5.2, use induction on length, but counting atomic
formulas as having length 1.

Primitive recursive functions. For n ≥ 0, a function f : Nn → N is
primitive recursive just in case (I)-(III) below require it to be. (I.e.,
the primitive recursive functions form the smallest set of functions con-
taining the functions of (I) and closed under the operations of (II)
and (III).)

40

(I) The following are primitive recursive.

(a) S : N→ N ;

(b) Ini : Nn → N, for 1 ≤ i ≤ n ∈ N, where Ini (a1, . . . , an) = ai ;

(c) All constant functions f : Nn → N .

(II) (Composition) If f : Nm → N and g1, . . . , gm : Nn → N are
primitive recursive, then so is h : Nn → N, where

h(a1, . . . , an) = f(g1(a1, . . . , an), . . . , gm(a1, . . . , an)) .

(III) (Primitive Recursion) If f : Nn → N and g : Nn+2 → N are
primitive recursive, then so is h : Nn+1 → N, where

h(a1, . . . , an, 0) = f(a1, . . . , an) ;

h(a1, . . . , an, S(b)) = g(a1, . . . , an, b, h(a1, . . . , an, b)) .

We allow functions of zero arguments. For example, if n = 0 the f
of (III) has 0 arguments. All 0-arguments functions are are primitive
recursive by (I)(c).

Recursive functions. A function is called recursive or computable just in
case it is required to be by (I)-(III), with “primitive recursive” replaced
by “recursive,” plus (IV) below.

(IV) (µ-Operator) If g : Nn+1 → N is recursive and

(∀a1 ∈ N) · · · (∀an ∈ N)(∃b ∈ N) g(a1, . . . , an, b) = 0,

then f : Nn → N is recursive, where

f(a1, . . . , an) = µb g(a1, . . . , an, b) = 0 ,

and where “µb” means “the least b.”

Lemma 5.4. The relations and functions representable in Q are closed
under complement, intersection, union, and bounded quantification.
Intersection and union we construe as operations acting on pairs of
relations that are subsets of the same Nn. Bounded quantification con-
sists of the two operations (f,R) 7→ R′ and (f,R) 7→ R′′, where

R′(a1, . . . , an)⇔ (∀an+1)(an+1 < f(a1, . . . , an) ⇒ R(a1, . . . , an+1));
R′′(a1, . . . , an)⇔ (∃an+1)(an+1 < f(a1, . . . , an) &R(a1, . . . , an+1)).

41

Proof. If ϕ represents R, then ¬ϕ represents the complement of R; if ϕ
and ψ represent R and R∗ respectively, then (ϕ∧ψ) represents R∩R∗;
if ϕ and ψ represent R and R∗ respectively, then (ϕ ∨ ψ) represents
R ∪R∗.

We do the R′′ case for closure under bounded quantification. The
R′ case is similar. Let ϕ(v1, . . . , vn+1) and ψ(v1, . . . , vn+1) represent f
and R respectively.

Let χ(v1, . . . , vn) be, for some appropriate variable z,

∃vn+1∃z(ϕ(v1, . . . , vn, z) ∧ vn+1<z ∧ ψ(v1, . . . , vn, vn+1)) .

To see that χ represents R′′ in Q, fix numbers a1, . . . , an. Since ϕ
represents f , we have that

Q |= ∀z(ϕ(Sa10, . . . ,San0, z)↔ z = Sf(a1,...,an)0) .

Thus χ(Sa10, . . . ,San0) is equivalent in Q to

∃vn+1(vn+1<Sf(a1,...,an)0 ∧ ψ(Sa10, . . . ,San0, vn+1)) .

By Lemma 5.2, χ(Sa10, . . . ,San0) is equivalent in Q to

ψ(Sa10, . . . ,San0,0) ∨ . . . ∨ ψ(Sa10, . . . ,San0,Sf(a1,...,an)−10) ,

(or to, say, 0 6= 0 if f(a1, . . . , an) = 0). Since ψ represents R, this
formula is provable or refutable in Q according to whether or not
R′′(a1, . . . , an) holds. �

Lemma 5.5. All the functions under clause (I) (in the definition of
the primitive recursive functions) are representable in Q.

Proof. They are represented by atomic formulas. For example, Ini is
represented by vn+1 = vi, because

Q |= ∀vn+1(vn+1 = Sai0↔ vn+1 = SI
n
i (a1,...an)0),

since Ini (a1, . . . , an) = ai. Indeed, ∅ |= the displayed sentence. �

Lemma 5.6. The functions representable in Q are closed under com-
position (II).

42

Proof. Given representable f and g1, . . . , gm, as in the statement of
(II), let ψ1(v1, . . . , vn+1), . . . , ψm(v1, . . . , vn+1) represent g1, . . . , gm re-
spectively and let χ(v1, . . . , vm+1) represent f . Let ϕ(v1, . . . , vn+1) be,
for appropriate variables x1, . . . , xm,

∃x1 · · · ∃xm(ψ1(v1, . . . , vn, x1) ∧ . . .
∧ψm(v1, . . . , vn, xm) ∧ χ(x1, . . . , xm, vn+1)) .

Let a1, . . . , an ∈ N. For each j,

Q |= ∀xj
(
ψj(S

a10, . . . ,San0, xj)↔ xj = Sgj(a1,...,an)0
)
.

Thus Q |=

ϕ(Sa10, . . . ,San0, vn+1)↔ χ(Sg1(a1,...,an)0, . . . ,Sgm(a1,...an)0, vn+1) .

But Q |=

χ(Sg1(a1,...,an)0, . . . ,Sgm(a1,...,an)0, vn+1)
↔ vn+1 = Sf(g1(a1,...,an),...,gm(a1,...an))0 .

Therefore Q |=

∀vn+1(ϕ(Sa10, . . . ,San0, vn+1) ↔ vn+1 = Sf(g1(a1,...,an),...,gm(a1,...an))0 .

�

Exercise 5.3. The part of the proof of Lemma 5.3 for the case that t
is of the form u1·u2 is only hinted at in these notes. Give the proof for
that case.

Exercise 5.4. Prove that addition, multiplication, and the factorial
function are primitive recursive. The factorial function is defined by

f(n) = n! = the product of the numbers 1, . . . n,

for n ≥ 1, and 0! = 1.

Lemma 5.7. A relation R is representable in Q if and only if its char-
acteristic function KR is representable in Q, where

KR(a1, . . . , an) =

{
1 if R(a1, . . . , an) ;
0 if ¬R(a1, . . . , an) .

43

Exercise 5.5. Prove Lemma 5.7.

Our next goal is to show that the functions representable in Q are
closed under the µ-operator (IV). This would be easy if the sentence
∀v1∀v2(v1 < v2 ∨ v1 = v2 ∨ v2 < v1) were provable in Q. We could have
made this sentence an axiom of a strengthening of Q, as does Enderton
in the book cited earlier. But we did not do this, so our argument will
be a little complicated.

Let WC(v1) be the following formula:

(0≤v1 ∧ ∀v2(v2<v1 → Sv2≤v1)) .

Think of WC as “weakly comparable.”

Lemma 5.8. For every natural number k,

(a) Q |= WC(Sk0) ;

(b) Q |= ∀v1(WC(v1)→ (v1<Sk0 ∨ v1 = Sk0 ∨ Sk0<v1)) .

Proof. That Q |= WC(0) follows from Axiom (3). Fix k > 0. By
Exercise 5.1 (or by Lemma 5.2), we know that Q |= 0≤Sk0. An
application of Lemma 5.2 gives that

Q |= v2<Sk0→ (v2 = 0 ∨ . . . ∨ v2 = Sk−10) .

But then

Q |= v2<Sk0→ (Sv2 = S10 ∨ . . . ∨ Sv2 = Sk0) .

(a) follows by Lemma 5.2.
We prove (b) by induction on k. The case k = 0 comes from the

first conjunct of WC(v1). For the induction step note that, by Ax-
iom (4), Q |= (v1≤Sk0→ v1<SSk0) and that, by the second conjunct
of WC(v1),

Q |= (Sk0<v1 ∧WC(v1)) → SSk0≤v1 . �

Lemma 5.9. The functions representable in Q are closed under the
µ-operator (IV).

44

Proof. Suppose that ϕ(v1, . . . , vn+2) represents g in Q and suppose
that

(∀a1 ∈ N) · · · (∀an ∈ N)(∃b ∈ N) g(a1, . . . , an, b) = 0 .

Let f be given by

f(a1, . . . , an) = µb g(a1, . . . , an, b) = 0 .

Let ψ(v1, . . . , vn+1) be, for an appropriate z,

WC(vn+1) ∧ ϕ(v1, . . . , vn+1,0) ∧ ∀z(z<vn+1 → ¬ϕ(v1, . . . , vn, z,0)) .

To see that ψ represents f in Q, fix a1, . . . , an. Using part (a) of
Lemma 5.8 and the fact that ϕ represents g in Q, we deduce that

Q |= WC(Sf(a1,...,an)0) ∧ ϕ(Sa10, . . . ,San0,Sf(a1,...,an)0,0) .

Using the fact that ϕ represents g in Q and using Lemma 5.2, we get
that

Q |= ∀z(z<Sf(a1...,an)0→ ¬ϕ(Sa10, . . . ,San0, z,0)) .

Combining these two facts we get that

Q |= ψ(Sa10, . . . ,San0,Sf(a1,...,an)0) .

Moreover, the second of the two facts and part (b) of Lemma 5.8 give
that

Q |= (∀z)((WC(z) ∧ ϕ(Sa10, . . . ,San0, z,0)) → Sf(a1...,an)0≤z) .

Since WC(z) and ϕ(Sa10, . . . ,San0, z,0) are conjuncts of the formula
ψ(Sa10, . . . ,San0, z),

Q |= (∀z)(ψ(Sa10, . . . ,San0, z)→ Sf(a1...,an)0≤z) .

Since Q |= ϕ(Sa10, . . . ,San0,Sf(a1,...,an)0,0), consideration of the last
conjunct of ψ(Sa10, . . . ,San0, z) shows us that

Q |= (∀z)(ψ(Sa10, . . . ,San0, z) → Sf(a1,...,an)0 6<z) .

Thus

Q |= (∀z)(ψ(Sa10, . . . ,San0, z) → z = Sf(a1,...,an)0) . �

45

Remark. Suppose that we had added Enderton’s axiom ∀v1∀v2(v1 <
v2 ∨ v1 = v2 ∨ v2 < v1) to our axioms for Q. For the resulting version
of Q, we could prove Lemma 5.9 without using WC. To show how to
do this, we let ψ be

ϕ(v1, . . . , vn+1,0) ∧ ∀z(z<vn+1 → ¬ϕ(v1, . . . , vn, z,0)) .

The proofs that

Q |= ∀z(z<Sf(a1...,an)0→ ¬ϕ(Sa10, . . . ,San0, z,0))

and
Q |= (∀z)(ψ(Sa10, . . . ,San0, z)→ Sf(a1...,an)0≤z) .

are pretty much as before, with conjuncts involving WC and the refer-
ence to Lemma 5.8 deleted and the second one replaced by a reference
to Enderton’s axiom.

The second conjunct of ψ(Sa10, . . . ,San0, z) shows us that

Q |= (∀z)(ψ(Sa10, . . . ,San0, z) → Sf(a1,...,an)0 6<z) .

This finishes the proof, as before.

Corollary 5.10. A function is representable in Q if its graph is rep-
resentable in Q.

Proof. Let R be the graph of f : Nn → N.

f(a1, . . . , an) = µbK¬R(a1, . . . , an, b) = 0 . �

Lemma 5.11. The relation < and the functions + and · are repre-
sentable in Q.

Proof. By Exercise 5.1, < and the graphs of + and ·, are represented
by v1<v2, v1+v2 = v3, and v1·v2 = v3 respectively. Use Corollary 5.10
or the fact that every theory proves the last two formulas functional.

�

Exercise 5.6. Prove that if f : N2 → N is primitive recursive so is
g : N2 → N, where g is defined by g(a, b) = f(b, a).

Lemma 5.12. {(a, b) | a divides b} is representable in Q.

46

Proof. For any a and b belonging to N,

a divides b ↔ (∃c≤ b) a · c = b . �

Lemma 5.13. (a) The set of all prime numbers is representable in Q.
(b) The set of all pairs of adjacent primes is representable in Q,

where (a, b) is a pair of adjacent primes if and only if a < b, both a
and b are prime, and there is no prime c such that a < c < b.

Exercise 5.7. Prove Lemma 5.13.

Our next goal is to prove that exponentiation is representable in Q.
By exponentiation, we mean the functionE defined by settingE(a1, a2) =
aa21 . We will use the following number-theoretic theorem.

Lemma 5.14 (Chinese Remainder Theorem). Let the positive in-
tegers d0, . . . , dn be relatively prime. Let ai < di for each i ≤ n. Then
there is a c such that, for each i ≤ n, ai is the remainder when c is
divided by di.

Proof. For any c ∈ N, let F(c) = (r0, . . . , rn), where each ri is the
remainder when c is divided by di.

Suppose c1 and c2 are distinct numbers smaller than
∏

i≤n di
(= d0 · . . . · dn). If F(c1) = F(c2), then each di divides |c1 − c2| and
so, since the di are relatively prime,

∏
i≤n di divides |c1 − c2|. This

contradiction shows that F(c1) 6= F(c2).
Thus F(c) takes on

∏
i≤n di distinct values for c <

∏
i≤n di. But each

of these values is of the form (r0, . . . , rn) with each ri < di. There are
only

∏
i≤n di such (r0, . . . , rn), so one of the F(c) must be (a0, . . . , an).

�

Lemma 5.15. For any positive integer m, the numbers 1+(i+1) ·m!,
i ≤ m, are relatively prime.

Proof. Let i and j be distinct numbers ≤ m. Suppose that some
prime p divides both 1 + (i + 1) ·m! and 1 + (j + 1) ·m!, with i and
j ≤ m. Then p divides |i− j| ·m!. Since p cannot divide m!, it follows
that p must divide |i − j|. But |i − j| ≤ m, and thus we have the
contradiction that p divides m!. �

47

For elements c, d, and i of N, let r(c, d, i) be the remainder when c
is divided by 1 + (i+ 1) · d.

Order the set of all pairs (a, b) of natural numbers first by max{a, b}
and then lexicographically. For pairs (a, b), let n(a, b) be the number
of pairs preceding (a, b) in this ordering. Define q1 : N → N and
q2 : N→ N by setting q1(n(a, b)) = a and q2(n(a, b)) = b.

Lemma 5.16. The functions r, n, q1, and q2 are representable in Q.

Exercise 5.8. Prove Lemma 5.16.

Hint. Find a relation R representable in Q such that r(c, d, i) =
µbR(c, d, i, b), and apply the trick used in the proof of Lemma 5.10.
Next show that max is representable in Q. Next compute n(a, b) us-
ing max{a, b}, a, b, and K≤(b, a) Finally, use closure under bounded
quantification and the µ operator to compute q1 and q2.

Lemma 5.17. For any natural numbers n and a0, . . . , an, there are c
and d such that

(∀i≤ n) r(c, d, i) = ai .

Proof. Given n and a0, . . . an, let m = max{n, a0, . . . , an}. Let d =
m! . Since the 1 + (i+ 1) · d are relatively prime, let c be given by the
Chinese Remainder Theorem. (Note that each ai < 1 + (i+ 1) · d.) �

Lemma 5.18. Exponentiation is representable in Q.

Proof. Define functions f : N2 → N and E∗ : N2 → N by

f(m, i) = r(q1(m), q2(m), i) ;

E∗(a, b) = µm (f(m, 0) = 1 ∧ (∀i≤ b) f(m, i+ 1) = f(m, i) · a) .

To see that E∗(a, b) is defined, let c and d be given by Lemma 5.17
with n = b and ai = ai for i ≤ b; then let m = n(c, d). f and E∗ are
representable in Q (E∗ by closure under the µ-operator). Moreover,

(∀a ∈ N)(∀b ∈ N)(∀i≤ b) f(E∗(a, b), i) = ai .

Thus ab = f(E∗(a, b), b) for all a and b. �

Lemma 5.19. The function a 7→ pa is representable in Q, where pa is
the a+ 1st prime.

48

Proof. We shall show that, for any a and b belonging to N, pa = b if
and only if b is prime and there is a c ≤ ba

2
such that

(i) 2 does not divide c;

(ii) For all q < b and all r ≤ b, if (q, r) is a pair of adjacent primes,
then

(∀j < c)(qj divides c ↔ rj+1 divides c) .

(iii) ba divides c and ba+1 does not.

To see this, fix a and b and first note that if pa = b and

c = p0
0 · p11 · . . . · paa ,

then c ≤ ba
2

and c satisfies (i)–(iii).
Suppose that b is prime and that c satisfies (i)–(iii).
By induction we show that

(∀i ∈ N)(pi ≤ b → (pi
i divides c ∧ pi

i+1 does not divide c)) .

For i = 0 this is given by (i). Suppose that i = j + 1 and that pj
j

divides c but pj
j+1 does not. The desired conclusion follows from (ii)

with q = pj and r = pi, since j < pj
j ≤ c.

Now b is prime, and so b = pj for some j. Thus bj divides c and
bj+1 does not. By (iii), it follows that j = a. �

For natural numbers a0, . . . , am, let

-〈a0, . . . , am〉- = p0
a0+1 · . . . · pmam+1 .

For m = −1, let -〈 〉- = 1. Let Seq be the set of all a such that
a = -〈a0, . . . , am〉- for some m ≥ −1 and some a0, . . . , am. For elements
a and b of N, let

(a)b = µn (pb
n+2 does not divide a) .

Lemma 5.20. (a) For each m ∈ N, the function

(a0, . . . , am−1) 7→ -〈a0, . . . , am−1〉-

is representable in Q. (b) The function (a, b) 7→ (a)b is representable
in Q. (c) Seq is representable in Q.

49

Proof. (a) holds by closure under composition. For (b), apply the
µ-operator to the characteristic function of the relation

pb
n+2 divides a .

For (c), note that

a ∈ Seq ↔ a > 0 ∧ (∀i ≤ a)(pi+1 divides a → pi divides a) . �

For a ∈ N, let

lh(a) = µn (a = 0 ∨ pn does not divide a) .

For a and b elements of N, let

adb = µn (a = 0∨ (n 6= 0∧ (∀j<b)(∀k<a)(pj
k divides a→ pj

k divides n))) .

The following lemma follows easily from the definitions and earlier re-
sults.

Lemma 5.21. The functions lh and (a, b) 7→ (adb) are representable
in Q. For all m ≥ −1 and all a0, . . . , am,

(i) lh(-〈a0, . . . , am〉-) = m+ 1 ;

(ii) -〈a0, . . . , am〉-db = -〈a0, . . . , ab−1〉- if b ≤ m+ 1 .

For n ∈ N and h : Nn+1 → N, let h̄ : Nn+1 → N be given by

h̄(a1, . . . , an, b) = -〈h(a1, . . . , an, 0), . . . , h(a1, . . . , an, b− 1)〉- .

Lemma 5.22. The set of functions representable in Q is closed under
primitive recursion (III).

Proof. Let h : Nn+1 → N be defined from f : nN→ N and g : n+2N→
N as in the statement of (III). Assume that f and g are representable
in Q. We first show that h̄ is representable:

h̄(a1, . . . , an, b) = µm (m ∈ Seq ∧ lh(m) = b ∧
(∀i < b)((i = 0 ∧ (m)i = f(a1, . . . , an)) ∨

(∃j < i)(i = j + 1 ∧ (m)i = g(a1, . . . , an, j, (m)j)))) .

Now we note that

h(a1, . . . , an, b) = (h̄(a1, . . . , an, b+ 1))b . �

Theorem 5.23. Every recursive function is representable in Q.

Proof. This follows from Lemmas 5.5, 5.6, 5.22, and 5.9. �

50

6 Incompleteness

Our next goal is to show that various functions coding syntactical re-
lations in languages such as LA are primitive recursive.

Lemma 6.1. If t(v1, . . . , vn) is a term of LA, then the function valt(v1,...,vn)
defined by

valt(v1,...,vn)(a1, . . . , an) = (t(Sa10, . . . ,San0))N

is primitive recursive.

Proof. We use induction on length of t.
Case 0. t is a variable vi. Then valt(v1,...,vn) is Ini .
Case 1. t is 0. Then valt(v1,...,vn) is the constantly 0 function, which is

primitive recursive by clause (I) in the definition of primitive recursive.
Case 2. t is Su. By our induction hypothesis, valu(v1,...,vn) is primi-

tive recursive; valt(v1,...,vn) is the composition of S and valu(v1,...,vn). Since
S is primitive recursive by (I), valt(v1,...,vn) is primitive recursive by (II).

Case 3. t is u1+u2 or u1·u2. By our induction hypothesis, valu1(v1,...,vn)
and valu2(v1,...,vn) are primitive recursive; valt(v1,...,vn) is the composition
of either addition or multiplication with valu1(v1,...,vn) and valu2(v1,...,vn).
Since addition and multiplication are primitive recursive by Exercise 5.4,
valt(v1,...,vn) is primitive recursive by (II). �

Lemma 6.2. Exponentiation is primitive recursive. The functions pred,
.−, sg, and sg are primitive recursive, where

pred(a) =

{
a− 1 if a > 0 ;
0 if a = 0 ;

a .− b =

{
a− b if a ≥ b ;
0 if a < b ;

sg(a) =

{
1 if a > 0 ;
0 if a = 0 ;

sg(a) =

{
0 if a > 0 ;
1 if a = 0 .

Exercise 6.1. Prove Lemma 6.2.

Hint. Use primitive recursion.

51

Call a relation primitive recursive or recursive if its characteristic
function is primitive recursive or recursive.

Lemma 6.3. The set of all primitive recursive relations is closed un-
der complement, intersection, and union. The relation < is primitive
recursive.

Proof. Note thatK¬R(a1, . . . , an) = 1 .− KR(a1, . . . an), thatKR∩S(a1, . . . , an)
= KR(a1, . . . , an)·KS(a1, . . . , an), thatKR∪S(a1, . . . , an) = sg(KR(a1, . . . , an)
+ KS(a1, . . . , an)), and that K<(a, b) = sg(b .− a). �

Lemma 6.4. The set of primitive recursive functions is closed under
the two operations f 7→ g given by

g(a1, . . . , an, b) =
∑
b′<b

f(a1, . . . , an, b
′) ;

g(a1, . . . , an, b) =
∏
b′<b

f(a1, . . . , an, b
′) .

(We consider the empty product to have value 1.)

Proof. We consider only the case of
∑

. That of
∏

is similar. We
have

g(a1, . . . , an, 0) = 0 ;

g(a1, . . . , an, S(b)) = g(a1, . . . , an, b) + f(a1, . . . , an, b) .

Thus g comes by primitive recursion from functions that are primitive
recursive if f is. �

Lemma 6.5. The set of primitive recursive relations and functions is
closed under bounded quantification.

Proof. Let R′(a1, . . . , an) ⇔ (∃b < f(a1, . . . , an))R(a1, . . . , an, b).
Then

KR′(a1, . . . , an) = sg

 ∑
b<f(a1,...,an)

KR(a1, . . . , an, b)

 .

Let R′′(a1, . . . , an)⇔ (∀b < f(a1, . . . , an))R(a1, . . . , an, b). Then

52

KR′′(a1, . . . , an) = sg

 ∏
b<f(a1,...,an)

KR(a1, . . . , an, b)

 . �

Lemma 6.6. The set of primitive recursive functions is closed under
the bounded µ-operator, i.e., under (f, g) 7→ h, where

h(a1, . . . , an) = µb (b = f(a1, . . . , an) ∨ g(a1, . . . , an, b) = 0) .

Exercise 6.2. Prove Lemma 6.6.

Lemma 6.7. The relations and functions representable in Q by Lem-
mas 5.12, 5.13, 5.19, 5.20, and 5.21 are primitive recursive.

Proof. Except for the case of Lemma 5.19, the proofs of representabil-
ity, with minor modifications, yield proofs of primitive recursiveness.
The main thing to note is that the uses of the µ-operator in defining
(a)b, adb, and lh(a), are equivalent to the corresponding uses of the
bounded µ-operator, since a bound in each case is the function with
value a.

For Lemma 5.19, Euclid’s proof that there are infinitely many primes
shows that

pS(a) = µb

(
b ≤ 1 +

∏
i<a

pi ∧ pa < b ∧ b is prime

)

for each n ∈ N. Using this fact, we can define a 7→
∏

i<a pi by primitive
recursion from functions we can show to be primitive recursive. Using
the fact again, we get that a 7→ pa is primitive recursive. �

Exercise 6.3. Explain why the (a)b, lh(a), and adb) are ≤ a for every
a. Explain why the proof of Lemma 5.19 in the notes does not show
that a 7→ pa is primitive recursive.

Define ∗ : N2 → N by

a ∗ b = a ·
∏

i<lh(b)

plh(a)+i
(b)i+1 .

The following lemma is evident.

53

Lemma 6.8. The function ∗ is primitive recursive. For m and n ≥ −1
and for any elements a0, . . . , am, b0, . . . , bn of N,

-〈a0, . . . , am〉- ∗ -〈b0, . . . , bn〉- = -〈a0, . . . , am, b0, . . . , bn〉- .

For any n ∈ N and any f : Nn+1 → N, define a function (a1, . . . , an, b) 7→
∗i<bf(a1, . . . , an, i) by

∗i<0f(a1, . . . , an, i) = 1 ;

∗i<b+1f(a1, . . . , an, i) = (∗i<bf(a1, . . . , an, i)) ∗ f(a1, . . . , an, b) .

The following lemma is also evident.

Lemma 6.9. The function (a1, . . . , an, b) 7→ ∗i<bf(a1, . . . , an, i) is prim-
itive recursive if f is primitive recursive.

We next assign symbol numbers to all the symbols of LA. To each
variable vi, we assign the symbol number 2i. The symbol numbers of
the remaining symbols are given as follows.

¬ 1
→ 3
(5
) 7
= 9
∀ 11

0 13
S 15
+ 17
· 19
< 21

We want what we say to apply to other languages. Fix a language
L. Assume that symbol numbers have been assigned to the non-logical
symbols of L so that the following relations are primitive recursive:

{(k,m) | k is the symbol number of an m-place relation symbol} ;
{(k,m) | k is the symbol number of an m-place function symbol} .

Note that this is true for LA.
We next assign numbers to finite sequences of symbols of L (to

expressions of L) by setting

#(s0, . . . , sn) = -〈sn(s0), . . . , sn(sn)〉- ,

where sn(s) is the symbol number of s. When we talk of the # of
a symbol s, we mean #(s), i.e., -〈sn(s)〉-, which is 2sn(s)+1. We assign
numbers to sequences of expressions (for example, to deductions) by

#(ψ0, . . . , ψn) = -〈#ψ0, . . . ,#ψn〉- .

54

Lemma 6.10. The following are primitive recursive:

(1) the set of all #’s of variables;

(2) the set of all #’s of terms;

(3) the set of all #’s of atomic formulas;

(4) the set of all #’s of formulas.

Proof. (1) For a ∈ N, a is the # of a variable iff and only if

a ∈ Seq ∧ lh(a) = 1 ∧ 2 divides (a)0 .

(2) Let f be the characteristic function of the set of all #’s of terms.
We will show that f̄ is primitive recursive, from which it follows that
f is primitive recursive. Note first that f̄(0) = 1. For any number a,
a is the # of a term if and only if either a is the # of a variable or
constant or

(∃b)(∃c)(b < a ∧ c < pa
a·lh(a) ∧ c ∈ Seq ∧

b is the # of a lh(c)-place function symbol ∧
(∀i < lh(c))((c)i < a ∧ (c)i is the # of a term) ∧
a = b ∗ (∗i<lh(c)(c)i)) .

Because of the condition (c)i < a, we can replace “(c)i is the number of
a term” by “(f̄(a))(c)i = 1.” Hence we can express f(a) and so f̄(a+1)
as a primitive recursive function of a and f̄(a). By (III), f̄ is primitive
recursive.

(3) is easy using (2).
The proof of (4) is similar in structure to that of (2). �

Lemma 6.11. The set of all #’s of tautologies is primitive recursive.

Proof. If ψ is a proper subformula of a formula ϕ, then #ψ < #ϕ.
Using this fact, we can see that, for any a ∈ N, a is the # of a tautology
if and only if a is the # of a formula and, for all e < pa

2(a+1), if

e ∈ Seq ∧ lh(e) = a+ 1 ∧
(∀i≤ a) (e)i ≤ 1 ∧
(∀i≤ a)(∀j < i)(i = #¬ ∗ j → (e)i = 1 .− (e)j) ∧
(∀i≤ a)(∀j < i)(∀k < i)(i = #(∗ j ∗#→ ∗ k ∗#)

→ (e)i = sg((1 .− (e)j) + (e)k)) ,

then (e)a = 1. �

55

Lemma 6.12. (1) There is a primitive recursive function Sb such that,
if ϕ is a formula or a term, x is a variable, and t is a term, then

Sb(#ϕ,#x,#t) = #ϕ(t)

where ϕ(t) is the result of substituting t for the free occurrences of x in
ϕ.

(2) There is a primitive recursive relation Fr such that, if ϕ is a
formula and x is a variable, then

Fr(#ϕ,#x)↔ x occurs free in ϕ .

(3) The set of all #’s of sentences is primitive recursive.
(4) There is a primitive recursive relation Sbl such that, if ϕ is a

formula or a term and x, t, and ϕ(t) are as in (1), then

Sbl(#ϕ,#x,#t)↔
no occurrence of a variable in t becomes bound in ϕ(t).

Exercise 6.4. Prove Lemma 6.12

Hint. (1) Let Sb′(b, c, a) = Sb(a, b, c). Define Sb′ by primitive
recursion. (See the proof of part (2) of Lemma 6.10 for an illustration
of the method.)

(2) What happens if you substitute 0 for a variable in a formula or
term in which the variable does not occur free?

(4) Use part (2), and use primitive recursion as in part (1).

Lemma 6.13. (a) The set of all #’s of logical axioms is primitive
recursive.

(b) The set of all (#ϕ,#ψ,#χ) such that χ follows from ϕ and ψ
by Modus Ponens is primitive recursive.

(c) The set of all (#ϕ,#ψ) such that ψ follows from ϕ by the Quan-
tifier Rule is primitive recursive.

Proof. (a) We have already dealt with tautologies in Lemma 6.11.
Identity axioms (a)are handled using part (2) of Lemma 6.10. Identity
Axioms (b) and Quantifier Axioms are handled using parts (2) and (4)
of Lemma 6.10, together with the relation Sbl and the function Sb.

(b) and (c) are easily proved using part (4) of Lemma 6.10 and—for
(c)—part (2) of that Lemma.

56

Exercise 6.5. Prove part (b) of Lemma 6.13.

Lemma 6.14. Suppose that L extends LA . The set of #’s of axioms
of PA, enlarged to allow all formulas of L in the induction schema, is
primitive recursive.

Proof. There are finitely many axioms plus the induction schema.
Instances of the latter are easily characterized using Sb. �

A theory T in L is recursively axiomatizable if there is a set Σ of
sentences such that

(i) {#σ | σ ∈ Σ} is recursive;

(ii) {τ | T |= τ} = {τ | Σ |= τ} .

The notion of a primitively recursively axiomatizable theory is similarly
defined, with “primitive recursive” replacing “recursive” in clause (i).

Remark. In fact, the class of recursively axiomatizable theories turns
out to be the same as the class of primitively recursively axiomatizable
theories.

Lemma 6.15. Suppose that T is a primitively recursively axiomatiz-
able theory in L extending LA. Let Σ witness this fact. Then there is a
primitive recursive relation Pr such that, for all a and b ∈ N, Pr(a, b)
holds if and only if a is the # of a sentence τ and b is the # of a
deduction of τ from Σ.

Proof. The lemma follows easily from Lemma 6.13. �

Theorem 6.16. The functions representable in Q are exactly the re-
cursive functions.

Proof. By Theorem 5.23, we need only show that every function
representable in Q is recursive. Suppose ϕ(v1, . . . , vn+1) represents f :
Nn → N in Q. Let Pr be given by Lemma 6.15 for T = Q and for Σ
our set of axioms for Q. Note that the function

(a1, . . . , an+1) 7→ #ϕ(Sa10, . . . ,San+10)

is primitive recursive, since the # of ϕ(Sa10, . . . ,San+10) is

Sb(. . . (Sb(#ϕ,#v1,#Sa10), . . .),#vn+1,#San+10) ,

57

and since the function a 7→ #Sa0 is easily seen to be primitive recur-
sive. Define a recursive function g : Nn → N by

g(a1, . . . , an) = µbPr(#ϕ(Sa10, . . . ,San0,S(b)00), (b)1) .

For all (a1, . . . , an),

f(a1, . . . , an) = (g(a1, . . . , an))0 . �

We now know that the recursive functions have all the closure prop-
erties of those representable in Q. (We could have directly proved those
closure properties that we directly proved for the primitive recursive
functions.) Thus we get the following lemma.

Lemma 6.17. Lemma 6.15 continues to hold when the words “primi-
tively” and “primitive” are deleted from its statement.

Remark. By Lemma 6.17 and the proof of Lemma 6.16, any function
representable in any recursively axiomatizable theory is recursive.

Lemma 6.18 (Fixed Point Lemma). Let ϕ(v1) be a formula of LA.
There is a sentence σ such that

Q |= (σ ↔ ϕ(S#σ0)) .

Proof. Let ψ(v1, v2, v3) represent in Q the primitive recursive function

(a, n) 7→ Sb(a,#v1,#Sn0) .

Note that, for any formula χ(v1) and any n ∈ N, this function sends
(#χ, n) to #χ(Sn0).

Let χ(v1) be the following formula:

∀v3(ψ(v1, v1, v3)→ ϕ(v3)) .

Let q = #χ(v1).
Now let σ be the sentence

∀v3(ψ(Sq0,Sq0, v3)→ ϕ(v3)) .

Note that σ is the result of replacing v1 by Sq0 in the formula χ(v1).
In other words, #σ is the value of the function represented by ψ on
the argument (q, q). Hence

Q |= ∀v3(ψ(Sq0,Sq0, v3) ↔ v3 = S#σ0) .

58

In particular,
Q |= ψ(Sq0,Sq0,S#σ0) .

Thus
Q |= (σ → ϕ(S#σ0) .

But also
Q |= ∀v3(ψ(Sq0,Sq0, v3) → v3 = S#σ0) .

Therefore

Q |= (ϕ(S#σ0)→ σ) . �

It is worth recording the following fact: Suppose ψ(v1, . . . , vn) rep-
resents in Q a relation R. Since Q is true in N, we have that

(∀a1 ∈ N) · · · (∀an ∈ N)(R(a1, . . . , an)↔ N satisfies ψ[a1, . . . , an]) .

Completeness of theories. A theory T in a Language L is complete if,
for each sentence σ of L, T |= σ or T |= ¬σ.

Theorem 6.19. Let T be a recursively axiomatizable theory in LA such
that T is true in N. Then T is not complete.

Proof. Let Pr be given by Lemma 6.17. Let ψ witness that Pr is
representable in Q. Let ϕ(v1) be the formula

∀v2¬ψ(v1, v2) .

Let σ be given be the Fixed Point Lemma.
One can think of σ as expressing its own unprovability in T . Indeed,

by the observation preceding the theorem,

T 6|= σ ↔ σ is true in N .

Thus if T |= σ then σ is false in N, contradicting the hypothesis that
T is true in N. If T |= ¬σ the fact that T is true in N implies that σ
is false in N, and this implies that the contradiction that T |= σ. �

Theorem 6.20. Let T be any theory in LA such that T ∪Q is consis-
tent. Then {#τ | T |= τ} is not recursive.

59

Proof. Suppose for a contradiction that {#τ | T |= τ} is recursive.
Let

T ′ = {τ | T ∪Q |= τ} .
Let ρ be the conjunction of the finitely many axioms of Q. Then

τ ∈ T ′ ↔ (ρ→ τ) ∈ T ,

so {#τ | τ ∈ T ′} is recursive.
By Theorem 5.23, let ψ(v1) represent {#τ | τ ∈ T ′} in Q. Let σ be

given by the Fixed Point Lemma with ¬ψ as ϕ.
Suppose first that σ /∈ T ′. Then

Q |= ¬ψ(S#σ0) .

But this implies that
Q |= σ ,

which in turn implies that σ ∈ T ′.
Suppose then that σ ∈ T ′. We successively get that Q |= ψ(S#σ0),

that Q |= ¬σ, and that ¬σ ∈ T ′. �

Corollary 6.21 (Church’s Theorem). The set of all #’s of valid
sentences in LA is not recursive.

Corollary 6.22. If T be a recursively axiomatizable theory in LA such
that T ∪Q is consistent, then T is not complete.

Proof. It suffices to prove that if Σ is a set of sentences such that
{#σ | σ ∈ Σ} is recursive and the theory T = {τ | Σ |= τ} is complete,
then {#τ | τ ∈ T} is recursive. For this, fix Σ and let Pr be given
by Lemma 6.17. Assume that T is is complete. Define g : N → N by
setting g(a) = 0 if a is not the # of a sentence and otherwise setting

g(a) = µb (Pr(a, b) ∨ Pr(#(¬) ∗ a, b)) .

Since T is complete, g is a recursive function. Moreover, for any a ∈ N,

a ∈ {#τ | τ ∈ T} ↔ (g(a) 6= 0 ∧ Pr(a, g(a))) . �

A theory T in L is recursively decidable if {#τ | T |= τ} is recur-
sive. Otherwise T is recursively undecidable. Thus Church’s Theorem

60

shows that the set of valid sentences of LA is not recursively decidable.
(Church’s Theorem is actually more general, holding for, say, any lan-
guage with a two-place relation symbol.) According to the Church-
Turing Thesis, the recursive functions are exactly the effectively com-
putable functions. Granted the Church-Turing Thesis, decidability and
recursive decidability are the same.

Theorem 6.23. PA is incomplete and recursively undecidable. More-
over all recursively axiomatizable extensions of PA are incomplete, and
all consistent extensions of PA are recursively undecidable.

Proof. This follows from Theorem 6.19 or Corollary 6.22, and Theo-
rem 6.20. �

Theorem 6.19, Theorem 6.20, Corollary 6.22, and Theorem 6.23
are all versions of Gödel’s First Incompleteness Theorem. We end this
section with a brief sketch of Gödel’s Second Incompleteness Theorem.

Let Pr be given by Lemma 6.17 for some recursively axiomatizable
T in LA such that Q ⊆ T . Let ψ witness that Pr is representable in
Q. Let σ be given by the Fixed Point Lemma, with (∀v2)¬ψ(v1, v2) as
ϕ(v1). Thus T 6|= σ if and only if σ is true in N.

Suppose that σ is false in N, i.e., suppose that T |= σ. Then there
is a b ∈ N such that Pr(#σ, b). For any such b,

Q |= ψ(S#σ0,Sb0) .

Hence
Q |= (∃v2)ψ(S#σ0, v2) .

In other words,
Q |= ¬ϕ(S#σ0) .

But then Q |= ¬σ, and so T |= ¬σ. Therefore T is inconsistent.
The argument of the last paragraph shows that if T is consistent

then σ is true in N. The converse of this fact also holds: If σ is true,
then T 6|= σ, and so T is consistent. Thus σ is true in N if and only if
T is consistent.

Using the formula ψ and formulas representing the set of all #’s of
sentences and the function a 7→ #(¬) ∗ a, we can construct a sentence

61

pCon Tq of LPA that we may think of as expressing the consistency of
T . Our argument then establishes the truth of

σ ↔ pCon Tq .

Now comes the sketchy part of our discussion. If we have chosen
natural representing formulas, then we can show that

PA |= σ ↔ pCon Tq .

This is essentially because our basic tool in our (presumably set theo-
retic) proof of (the set theoretic version of) this sentence was induction.

Now suppose that T is PA. Since PA is consistent, PA 6|= σ. But
then

PA 6|= pCon PAq .

In other words, the consistency of PA implies that the number theoretic
version of the consistency of PA is not provable in PA.

The argument establishes that any consisent, recursively axioma-
tizable extension of PA cannot prove the number-theoretic sentence
expressing its own consistency. This result can easily be extended to
theories in which PA is interpretable. For example, one cannot prove
in ZFC, if ZFC is consistent, the set-theoretic formulation of the con-
sistency of ZFC.

Exercise 6.6. Suppose we dropped the restriction that the variable x
is does not occur free in ϕ from the Quantifier Rule. Would the mod-
ified deductive system be sound? Would it be complete? Prove your
answers.

Exercise 6.7. Let L = {∼}. Let A be a model in which ∼A is an
equivalence relation which has one equivalence class of size n for each
natural number n > 0. Prove that there is a model B such that
Th(A) = Th(B) and such that B has an infinite equivalence class.
(Recall that Th(A) is the set of all sentences true in A.)

Exercise 6.8. Let L be a language. Let Σ be a set of sentences of L
and let τ be a sentence of L. P be a one-place relation symbol of L
that does not occur in Σ or in τ . Assume that Σ ` τ . Prove that there
is a deduction in L of τ from Σ in which P does not occur.

62

