
Lecture 6

Concentration for the maximum

In this lecture we will establish bounds on the maximum of Gaussian random vari-
ables which will not be based on comparisons but rather on the behavior of the co-
variance kernel. The first result to be proved here is the Borell-Tsirelson-Ibragimov-
Sudakov inequality on concentration of the maximum. Any use of this inequality
will inevitably require controlling the expected maximum, which we do by way of
Fernique’s majorization technique. Once these are stated and proved, we will infer
some standard but useful consequences concerning boundedness and continuity
of centered Gaussian processes.

6.1. Inheritance of Gaussian tails

Much of present day probability hinges on the phenomenon of concentration of mea-
sure. For Gaussian random variables this is actually a very classical subject. The
relevant inequality that comes out of this is the content of:

Theorem 6.1 [Borell-TIS inequality] Let X be a centered Gaussian on Rn and set

s2
X := max

i=1,...,n
E(X2

i ). (6.1)

Then for each t > 0,

P
⇣

�

� max
i=1,...,n

Xi � E( max
i=1,...,n

Xi)
�

� > t
⌘

 2e
� t2

2s2
X . (6.2)

This result can be verbalized as: The tail of the maximum of Gaussian random variables
is no worse than the worst tail seen among these random variables. Of course, the maxi-
mum is no longer centered (cf Exercise 5.11) and so any use of this bound requires
information on the expectation as well.
The original proof of this result was given by Borell using a Gaussian isoperimetric
inequality. We will instead proceed using the ideas of hypercontractivity whose
main output is encapsulated in:
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Lemma 6.2 Let X1, . . . , Xn be i.i.d. copies of N (0, 1) and let f , g 2 C1(Rn) be such
that r f ,rg 2 L2(e�|x|2/2dx). Then

Cov
�

f (X), g(X)
�

=
Z 1

0
dt E

⇣

r f (X) ·rg
�

p

1 � t2X + tY
�

⌘

, (6.3)

where Y law
= X with Y ?? X on the right-hand side.

Proof. Since this is an equality between fairly manageable expressions for two func-
tions, the identity can be proved by checking that it holds for a sufficiently large
class of functions (e.g., x 7! ek·x) and then use extension arguments. We will in-
stead proceed by Gaussian integration by parts.
For X and Y as above, let Zt := tX +

p
1 � t2 Y. By approximation arguments may

assume g 2 C2 with subgaussian tail. Then

Cov
�

f (X), g(X)
�

= E
⇣

f (X)
⇥

g(Z1)� g(Z0)
⇤

⌘

=
Z 1

0
dt E

⇣

f (X)
d
dt

g(Zt)
⌘

=
Z 1

0
dt

n

Â
i=1

E
✓

h

Xi � tp
1 � t2

Yi

i

f (X)
∂g
∂xi

(Zt)

◆

(6.4)

The integration by parts will result in two contributions depending on whether
the derivative hits f or (the partial derivative of) g. In light of the i.i.d. nature of
the random variables, the contribution of the latter option cancels out and we then
readily get the result.

As a side note, we notice that this implies:

Corollary 6.3 [Gaussian Poincaré inequality] For X1, . . . , Xn i.i.d. copies of N (0, 1)
and any f 2 C1(Rn) with r f 2 L2(e�|x|2/2dx),

Var
�

f (X)
�  E

�|r f (X)|2�. (6.5)

An important feature of this bound is that it is completely dimension-less — i.e.,
with no n dependence of the (implicit) constant on the right-hand side.
Moving along with the proof of the Borell-TIS inequality, next we will prove:

Lemma 6.4 [Concentration for Lipschitz functions] Let X1, . . . , Xn be i.i.d. copies
of N (0, 1) and let f : Rn ! R be Lipschitz in the sense that, for some M 2 (0, •),

�

� f (x)� f (y)
�

�  M|x � y|, x, y 2 Rn, (6.6)

where | · | on the right-hand side is the Euclidean norm. Then for each t > 0,

P
�

f (X)� E f (X) > t
�  e�

t2
2M2 (6.7)
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Proof. By approximation we may assume that f 2 C1 with r f having Euclidean
norm at most M. Shifting f appropriately, we may also assume E f (X) = 0. (This
does not effect the bound (6.7).) Chebyshev’s inequality shows

P
�

f (X)� E f (X) > t
�  e�ltE

�

el f (X)� (6.8)

for any l � 0 and so we need to bound the expectation on the right.
Here we note that Lemma 6.2 with g(x) := el f (x) implies

E
�

f (X)el f (X)� =
Z 1

0
dt lE

⇣

r f (X) ·r f (Zt)el f (Zt)
⌘ l�0 lM2E

�

el f (X)� (6.9)

As the left-hand side is the derivative of the expectation on the right-hand side, the
function

h(l) := E
�

el f (X)�, (6.10)

obeys the differential inequality

h0(l)  lM2h(l), l � 0. (6.11)

As h(0) = 1, this is readily solved to give

E
�

el f (X)�  e
1
2 l2 M2

. (6.12)

Inserting this into (6.8) and optimizing over l � 0 then yields the claim.

We are now ready to prove the Borell-TIS inequality, we will also need:

Exercise 6.5 Denote f (x) := maxi=1,...,n xi. Prove that for any n ⇥ n-matrix A,
�

� f (Ax)� f (Ay)
�

� 
r

max
i=1,...,n

(ATA)ii |x � y|, x, y 2 Rn, (6.13)

with |x � y| denoting the Euclidean norm of x � y on the right-hand side.

Proof of Theorem 6.1. Let X be the centered Gaussian on Rn from the statement
and let C denote its covariance matrix. In light of positive semi-definiteness of C,
there is an n ⇥ n-matrix A such that C = AT A. If Z = (Z1, . . . , Zn) are i.i.d. copies
of N (0, 1), then

X law
= AZ. (6.14)

Denoting f (x) := maxi=1,...,n xi, Exercise 6.5 implies that x 7! f (Ax) is Lipschitz
with Lipschitz constant s2

X. Using this in combination with (6.14), the claim follows
from (6.7) and a union bound.

6.2. Fernique majorization

Our next task will be to introduce a method for estimating the expected maximum
of Gaussian random variables. We will actually do this for the supremum over a
countable family of such variables as that requires no additional effort. A principal
notion here is that of the canonical (pseudo)metric rX associated with the Gaussian
process {Xt : t 2 T} on any set T. Our principal result here is:
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Theorem 6.6 [Fernique majorization] There is K 2 (0, •) such that the following
holds for any Gaussian process {Xt : t 2 T} over a countable set T for which (T, rX) is
totally bounded: For any probability measure µ on T, we have

E
�

sup
t2T

Xt
�  K sup

t2T

Z •

0
dr

s

log
1

µ(B(t, r))
(6.15)

where B(t, r) := {s 2 T : rX(t, s) < r}.

The integral exists in Riemann sense as the integrand is non-increasing and left-
continuous while the domain of integration is bounded because µ(B(t, r)) = 1
whenever r exceeds the rX-diameter of T.
The above theorem takes its origin in:

Theorem 6.7 [Dudley’s inequality] For the same setting as in the previous theorem,
there is a universal constant K 2 (0, •) such that

E
�

sup
t2T

Xt
�  K

Z •

0
dr
q

log NX(r) , (6.16)

where NX(r) is the minimal number of rX-balls of radius r that are needed to cover T.

The advantage of Fernique’s bound over Dudley’s inequality is that it allows op-
timizing over the probability measure µ. By a celebrated result due to Talagrand,
the optimal choice of µ in fact leads to an sharp bound on the expected maximum;
i.e., one where the integral bounds the expectation from below modulo a univer-
sal multiplicative constant. One way to think of the optimizers (although this has
not been made rigorous) of the above integral is as the distribution of t where the
maximum is achieved.
As we will expound on later, the setting of the above theorems is so general that
they fairly seamlessly connect boundedness of Gaussian processes to sample-path
continuity. Here is an exercise in this vain:

Exercise 6.8 Apply Dudley’s inequality to the process Xt,s := Xt � Xs to prove

E
⇣

sup
t,s2T

rX(t,s)R

|Xt � Xs|
⌘

 K0
Z R

0
dr
q

log NX(r) , (6.17)

where K0 is again a universal constants. Conclude that if r 7! p

log NX(r) is integrable
at zero, then t 7! Xt has a version with (uniformly) rX-continuous sample paths a.s.

To see this exercise in action, it is instructive to solve:

Exercise 6.9 Use Dudley’s inequality to prove the existence of a rX-continuous version
for the following Gaussian processes:

(1) the standard Brownian motion, i.e., a centered Gaussian process {Bt : t 2 [0, 1]} with
E(BtBs) = t ^ s,
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(2) the Brownian sheet, i.e., a centered Gaussian process {Wt : t 2 [0, 1]d}

E(WtWs) =
d

’
i=1

(ti ^ si) (6.18)

(3) any centered Gaussian process {Xt : t 2 [0, 1]} such that

E
�

[Xt � Xs]
2�  c[log(1/|t � s|)]�1�d (6.19)

for some d > 0 and c > 0 and |t � s| sufficiently small.

A proof of continuity of these processes is just as well provided by the Komogorov-
Čenstov condition. As can be also checked, both techniques give a way to prove
uniform Hölder continuity of these processes as well.

6.3. Proof of Fernique’s estimate

Here we will give the proof of Fernique’s bound but before we set out to do so,
let us outline its main idea. The basic strategy is simple: we identify an auxiliary
centered Gaussian process {Yt : t 2 T} whose intrinsic distance function rY domi-
nates rX. The Sudakov-Fernique inequality then bounds the expected supremum
of X by that of Y.
For the reduction to be useful, the Y-process must be constructed with a lot of
independence built in from the start. This is achieved by a method called chaining.
First we organize points in T in a kind of tree structure by defining, for each n 2 N,
a map pn : T ! T whose image is a finite set such that the rX-distance between t
and pn(t) is well controlled and tending to zero exponentially fast with n ! •,
uniformly in t. A Borel-Cantelli estimate then allows us to write

Xt � Xs =
•

Â
n=1

⇣

⇥

Xpn(t) � Xpn�1(t)
⇤� ⇥

Xpn(s) � Xpn�1(s)
⇤

⌘

, (6.20)

with the sum converging a.s. To define Y we may for instance replace the in-
crements Xpn(t) � Xpn�1(t) by independent random variables with a similar vari-
ance. A key point to note is that the n-th summand above will be non-zero only
if pk(t) 6= pk(s) for at least one of k = n, n � 1. Matters will be arranged in such a
way that this forces n to be (roughly) log 1/rX(t, s).
We will now begin with the actual proof:

Proof of Theorem 6.6. Assume the setting of the theorem and fix a probability mea-
sure µ on T. The proof (which follows the corresponding proof in a book by
R. Adler) comes in five steps.

STEP 1: Reduction to unit diameter. As the case D := diam(T) vanishes is that of a
single random variable for which the statement holds trivially, we may assume that
D > 0. One can then check that the process eXt := D�1/2Xt has a unit diameter.
In light of r

eX(s, t) = D�1/2rX(s, t) the r
eX-ball of radius r centered at t coincides
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with B(t, D�1/2r). One can then check that, passing from X to eX in (6.15), both
sides scale by factor

p
D.

STEP 2: Construction of the tree structure. Next we will define the aforementioned
maps pn subject to properties that will be needed later. This is the content of:

Lemma 6.10 For each n 2 N there is pn : T ! T such that

(1) pn(T) is finite,

(2) for each t 2 T, r(t, pn(t)) < 2�n,

(3) for each t 2 T,
µ
�

B(pn(t), 2�n�2)
� � µ

�

B(t, 2�n�3)
�

. (6.21)

(4) the sets in {B(t, 2�n�2) : t 2 pn(T)} are (pairwise) disjoint.

Proof. Fix n 2 N and, using the assumption of total boundedness, let t1, . . . , trn be
point such that

rn
[

i=1
B(ti, 2�n�3) = T. (6.22)

Assume that the points were ordered in such a way that

i 7! µ
�

B(ti, 2�n�2)
�

is non-increasing. (6.23)

We will now identify a disjoint subcollection {Ck} ⇢ {B(ti, 2�n�3) : i = 1, . . . , rn}
by progressively dropping balls that have non-empty intersection with one of the
previous ones. To give a formal definition, set

C1 := B(t1, 2�n�2) (6.24)

and, assuming that C1, . . . , Ci have already been defined, let

Ci+1 :=

8

>

>

<

>

>

:

B(ti+1, 2�n�2), if B(ti+1, 2�n�2) \
i
[

j=1
Cj = ∆,

∆, else.

(6.25)

Now we define pn as the composition of two maps described, somewhat infor-
mally, as follows: Using the ordering of t1, . . . , trn as induced by (6.23), first assign t
to the smallest point ti such that t 2 B(ti, 2�n�3). Then assign this ti to the largest tj
from t1, . . . , ti such that B(ti, 2�n�2) \ Cj 6= ∆. Formally, let

i = i(t) := min
�

i = 1, . . . , rn : t 2 B(ti, 2�n�3)
 

j = j(t) := max
�

j = 1, . . . , i(t) : B(ti(t), 2�n�2) \ Cj 6= ∆
 

,
(6.26)

where we notice that, by the construction of {Ck}, the set in the second line is
always non-empty. We then define

pn(t) := tj for j = j(t). (6.27)
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This means pn(T) ✓ {t1, . . . , trn} and so pn(T) is indeed finite, proving (1). For (2),
using i and j for the given t as above, the construction implies

rX(t, pn(t)) = rX(t, tj)

 rX(t, ti) + rX(ti, tj)

 2�n�3 + 2 2�n�2 < 2�n.

(6.28)

For (3) we note that
B(t, 2�n�3) ✓ B(ti, 2�n�2) (6.29)

and, by (6.23),
µ
�

B(ti, 2�n�2)
�  µ

�

B(tj, 2�n�2)
�

. (6.30)

Finally, t 2 pn(T) only if Cj 6= ∆ at which point Cj = B(tj, 2�n�2). The construction
ensures that the Cj’s are disjoint from each other thus proving (4).

STEP 3: Auxiliary process. We are now ready to defined the aforementioned pro-
cess {Yt : t 2 T}. For this, consider a collection {Zn(t) : n 2 N, t 2 pn(T)} of i.i.d.
standard normals and set

Yt := Â
n�1

2�nZn
�

pn(t)
�

. (6.31)

The sum converges a.s. for each t due to the fact that the maximum of the first n
terms in a sequence of i.i.d. standard normals grows at most like a constant times
p

log n. We now state:

Lemma 6.11 For any t, s 2 T,

E
�

[Xt � Xs]
2�  6E

�

[Yt � Ys]
2� (6.32)

In particular,
E
�

sup
t2T

Xt
� 

p
6 E

�

sup
t2T

Yt
�

. (6.33)

Proof. We may assume rX(t, s) > 0 as otherwise there is nothing to prove. Since
we know that diam(T) = 1, there is N 2 N such that 2�N < rX(t, s)  2�N+1.
Lemma 6.10(2) and the triangle inequality then show

pn(t) 6= pn(s), n � N + 1. (6.34)

This is quite relevant because the independence built into Yt yields

E
�

[Yt � Ys]
2� = Â

n�1
2�2nE

�⇥

Zn(pn(t))� Zn(pn(s))
⇤2� (6.35)

and the expectation on the right vanishes unless pn(t) 6= pn(s). As the expectation
is either zero or 2, this shows

E
�

[Yt � Ys]
2� � 2 Â

n�N+1
2�2n = 2

4�(N+1

3/4
=

1
6

4�N+1 � 1
6

E
�

[Xt � Xs]
2� , (6.36)
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where the last inequality follows from the definition of N. This is (6.32); the second
conclusion then follows from the Sudakov-Fernique inequality.

STEP 4: Majorizing E(supt2T Yt). For the following argument it will be conve-
nient to have a random variable t, taking values in T, that identifies the maximizer
of t 7! Yt. Such a random variable can certainly be defined when T is finite. For T
infinite, one has to work with approximate maximizers only. To this end we pose:

Exercise 6.12 Suppose that there is M 2 (0, •) such that E(Yt)  M holds for any T-
valued random variable measurable with respect to {Yt : t 2 T}. Prove that then also
E(supt2T Yt)  M.

It thus suffices to estimate E(Yt) for any T-valued random variable t. For this we
first partition the expectation according to the values of pn(t) as

E(Yt) = Â
n�1

2�n Â
t2pn(T)

E
�

Zn(t)1{pn(t)=t}
�

. (6.37)

We now estimate the expectation on the right as follows: Set g(a) :=
p

2 log(1/a)
and note that, for Z = N (0, 1) and any a > 0,

E
�

Z1{Z>g(a)}
�

=
1p
2p

Z •

g(a)
x e

1
2 x2

dx =
1p
2p

e�
1
2 g(a)2

=
ap
2p

. (6.38)

Therefore, using the notation from the proof of Lemma 6.10,

E
�

Zn(t)1{pn(t)=t}
�  E

�

Zn(t)1{Zn(t)>g(a)}
�

+ g(a)P
�

pn(t) = t
�

=
ap
2p

+ g(a)P
�

pn(t) = t
�

.
(6.39)

Now set a := µ(B(t, 2�n�2)) in this term and perform the sum over t and n. In the
first term we use the disjointness claim from Lemma 6.10(4) to get

Â
t2pn(T)

µ(B(t, 2�n�2))  1 (6.40)

while in the second term we note that

g
�

µ(B(pn(t), 2�n�2)
�  g

�

µ(B(t, 2�n�3)
�

(6.41)

by Lemma 6.10(3) and the fact that g is non-increasing. Hence

Â
n�1

2�n Â
t2pn(T)

g
�

µ(B(t, 2�n�2)
�

P
�

pn(t) = t
�

= E


Â
n�1

2�ng
�

µ(B(pn(t), 2�n�2)
�

�

 E


Â
n�1

2�ng
�

µ(B(t, 2�n�3)
�

�

 sup
t2T

Â
n�1

2�ng
�

µ(B(t, 2�n�3)
�

.

(6.42)
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Using the monotonicity of g,

2�ng
�

µ(B(t, 2�n�3)
�  16

Z 2�n�3

2�n�4
g
�

µ(B(t, r)
�

dr, (6.43)

and so the last sum in (6.42) can now be dominated by 16-times the integral in the
statement of the theorem. Putting the contribution of both terms on the right of
(6.39) together, we thus conclude

E(Yt)  1p
2p

+ 16 sup
t2T

Z 1

0
g
�

µ(B(t, r)
�

dr. (6.44)

STEP 5: A final touch. In order to finish the proof, we need to show that the
term 1/

p
2p is dominated by, and can thus be absorbed into, the integral. Here we

use the fact that, since diam(T) = 1, there is t 2 T such that µ(B(t, 1/2))  1/2.
The supremum on the right of (6.44) is then at least 1

2
p

log 2. The claim follows
with, e.g., K := 17

p
6.

6.4. Consequences for continuity

As already alluded to after the statement of Dudley’s inequality, the generality of
the setting in which Fernique’s inequality was proved permits a rather easy exten-
sion to a criterion for continuity. The relevant statement is as follows:

Theorem 6.13 There is a universal constant K0 2 (0, •) such that the following holds
for every Gaussian process {Xt : t 2 T} on a countable set T such that (T, rX) is totally
bounded: For any probability measure µ on T and any R > 0,

E
⇣

sup
t,s2T

rX(t,s)R

|Xt � Xs|
⌘

 K0 sup
t2T

Z R

0
dr

s

log
1

µ(B(t, r))
(6.45)

Proof. We will reduce this to Theorem 6.6 but that requires some preparations. Let

U ⇢ �

(t, s) 2 T ⇥ T : rX(t, s)  R
 

(6.46)

be a finite and symmetric set. Denote Ys,t := Xt � Xs and notice that

rY
�

(s, t), (s0, t0)
�

:=
q

E
�

[Ys,t � Ys0,t0 ]2
�

(6.47)

obeys

rY
�

(s, t), (s0, t0)
� 

(

r(s, s0) + r(t, t0),
r(s, t) + r(s0, t0).

(6.48)

Writing BY for the balls (in T ⇥ T) in the rY-metric and BX for the balls (in T) in rX-
metric, the first line then implies

BY
�

(s, t), r
� ◆ BX(s, r/2)⇥ BX(t, r/2) (6.49)
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while the second line shows

diamrY(U)  2R. (6.50)

Now define f : T ⇥ T ! U by

f (y) :=

(

y, if y 2 U,
argminU rY(y, ·), else,

(6.51)

where the minimizer in the second line is chosen minimal in some prior ordering
of U. This f is clearly measurable (this is where it helps to have U finite) and so,
given a probability measure µ on T ⇥ T

n(A) := µ ⌦ µ
�

f�1(A)
�

. (6.52)

defines a probability measure on U. Theorem 6.6 then yields

E
⇣

sup
(s,t)2U

Ys,t

⌘

 K sup
(s,t)2U

Z 2R

0

s

log
1

n(BY((t, s), r))
dr . (6.53)

Our task is now to bring the integral on the right to the form in the statement.
First observe that if x 2 U and y 2 B(x, r), then

rY
�

x, f (y)
�  rY(x, y) + rY

�

y, f (y)
�

x2U 2rY(x, y) . (6.54)

Hence we get
BY(x, r) ✓ f�1�BY(x, 2r)

�

, x 2 U, (6.55)

and so, in light of (6.49),

n
�

B((s, t), 2r)
�

= µ ⌦ µ
�

f�1�B((s, t), 2r)
��

� µ ⌦ µ
�

B((s, t), r)
�

� µ
�

B(s, r/2)
�

µ
�

B(t, r/2)
�

.

(6.56)

Using
p

a + b  p
a +

p
b and some elementary calculus, we conclude

E
⇣

sup
(s,t)2U

Xt,s

⌘

 4K sup
t2T

Z R

0

s

log
1

µ(BX(t, r))
dr . (6.57)

Increasing U to UR := {(s, t) 2 T ⇥ T : rX(s, t)  R} and invoking the Monotone
Convergence Theorem, the bound holds for U := UR as well. Noting that

E
⇣

sup
t,s2T

rX(t,s)R

|Xt � Xs|
⌘

= E
⇣

sup
(s,t)2UR

Ys,t

⌘

, (6.58)

the claim follows with K0 := 4K, where K is as in Theorem 6.6.

The above criterion gives continuity with respect to the intrinsic metric. However,
more often than not, T has its own private metric structure and continuity is desired
in the topology thereof. Here the following exercise helps:
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Exercise 6.14 Suppose (T, r) is a metric space, {Xt : t 2 T} a Gaussian process and rX
the intrinsic metric on T induced thereby. Assume

(1) (T, r) is totally bounded, and

(2) s, t 7! rX(s, t) is uniformly r-continuous on T ⇥ T.

Prove that, if there is a probability measure µ on T such that

lim
R#0

sup
t2T

Z R

0

s

log
1

µ(B(t, r))
dr = 0, (6.59)

then X admits (uniformly) r-continuous sample paths on T, a.s.

We note that condition (2) is necessary for sample path continuity, but definitely
not sufficient (and that not even for Gaussian processes). To see this, solve:

Exercise 6.15 Given a measure space (X ,F , n) with n finite, consider the (centered)
Gaussian white-noise process {W(A) : A 2 F} defined by

E
�

W(A)W(B)
�

= n(A \ B). (6.60)

This corresponds to the intrinsic metric rW(A, B) =
p

n(A4B). Give a (simple) example
of (X ,F , n) for which A 7! W(A) does not admit rW-continuous sample paths.

As our last item of concern in this lecture, we return to the problem of uniform
continuity of the binding field for the DGFF and its (resulting) coupling to the its
continuum counterpart. The relevant bounds are stated in:

Lemma 6.16 Let eD, D 2 D obey eD ⇢ D with Leb(D r eD) = 0. For d > 0, denote
eDd := {x 2 D : dist(x, Dc) > d}. Then for each e, d > 0,

lim
r#0

P
✓

sup
x,y2 eDd

|x�y|<r

�

�FD, eD(x)� FD, eD(y)
�

� > e

◆

= 0. (6.61)

Similarly, given an admissible sequence {DN : N � 1} of approximating domains and
denoting eDd

N := {x 2 eDN : dist(x, eDc
N) > dN}, for each e, d > 0,

lim
r#0

lim sup
N!•

P
✓

sup
x,y2 eDd

N
|x�y|<rN

�

�jDN , eDN
x � jDN , eDN

y
�

� > e

◆

= 0. (6.62)

Proof of (6.61). Consider the set eDd
1 := {x 2 C : dist(x, eDd) < d/2}. The intrinsic

metric associated with {FD, eD(x) : x 2 eDd
1} is given by

rF(x, y) =
q

CD, eD(x, x) + CD, eD(y, y)� 2CD, eD(x, y) (6.63)
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Since x 7! CD, eD(x, y) is harmonic on eD, it is continuously differentiable and thus
uniformly Lipschitz on eDd

1. It follows that, for some constant L = L(d) < •,

rF(x, y)  L
q

|x � y|, x, y 2 eDd
1. (6.64)

Let B(x, r) := {y 2 C : |x � y| < r} and denote BF(x, r) := {y 2 eDd
1 : rF(x, y) < r}

and let µ be the normalized Lebesgue measure on eDd
1. Then

BF(x, L
p

r) ◆ B(x, r), x 2 eDd
1 (6.65)

while (by the choice of eDd
1),

µ
�

B(x, r)
� � cr2, x 2 eDd

1, (6.66)

for some c = c(d) > 0. Hence, µ(BF(x, r)) � cL�2r4. As r 7! log(1/r4) is integrable
at zero, (6.61) follows from Theorem 6.13, Exercise 6.14 and Markov inequality.

Exercise 6.17 Using an analogous argument with the normalized counting measure re-
placing the Lebesgue measure, prove (6.62).
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