second printing: typos and minor changes

p.4, l.-10: Change “f(∂∆)” to “∂f(∆)”
p.4, l.-2: Change “are” to “is”
p.7, l.3: Change “wn” to “w0”

pp.9-10: Change the first sentence in Section 3 to read: “It was P. Montel (1911) who first formulated the notion of a normal family of meromorphic functions and proved the criterion that bears his name.” Montel’s original proof was based on Schottky’s theorem, not on Picard’s modular function.

p.13, l.-4: Change “the the” to “the”
p.14, l.6: Change “2.1” to “3.1”
p.16, Fig.3: Add horizontal bars to the fractions \(\frac{\pi}{2}\) and \(\frac{\arg \mu(z)}{2}\)
p.19, l.-7: Insert “has nonvanishing Jacobian” after “If \(f \in QC^1(k, R)\)”
p.20, l.-9: Change “||U_\mu||” to “||U_\mu||_p” (insert subscript \(p\))
p.20, l.-7: Change “||(I - U_\mu)^{-1}||” to “||(I - U_\mu)^{-1}||_p” (insert subscript \(p\))
p.22, l.-5: Change “the smoothness of \(f\)” to “\(f \in QC^1(k, R)\)”
p.22, l.-2: Change “If \(f\) were \(C^1\) we would” to “If \(f\) were \(C^1\) and \(f_z \neq 0\), we would”
p.30, l.-8: Change “due in this form” to “due essentially in this form”
p.33, l.-13: Change “For \(|z|\) small there is” to “Choose”
p.33, l.-12: Change “\(C|z|^p\)” to “\(C|z|^p\) for \(|z| \leq 1/C\). Then \(|f(z)| \leq |z|\) for \(|z| \leq 1/C\)”
p.33, l.-10: Change “\(\delta\)” to “\(1/C\)”
p.33, lines 1 to 2: Delete “at the origin”
p.34, l.-7: Delete “\(c < \)” so that it reads “\(|z| \leq 1/C\)”
p.36, l.-1: Change comma to period after the last estimate, and add the line: “where the estimate is uniform for \(z\) belonging to a compact set.”
p.39, l.9: Change “to to” to “to”
p.41, l.-14: Change “let” to “suppose \(z_0 = 0\) is a fixed point of \(f(z)\), with multiplier”
p.71, l.-13: Change “inside” to “on the bounded components of”

p.71, l.-3: Change “2d − 1” to “2d + 1”

p.71, l.-2: Change “2d − 1” to “2d + 1”

p.74, l.-1: Change “an isometry” to “a local isometry”

p.75, l.3: Change “an isometry” to “a local isometry”

p.75, l.4: Change “z, w ∈ U. In particular for any” to “z, w ∈ U, z ≠ w. Further, for any”

p.75, l.18: Change “an isometry” to “a local isometry”

p.75, l.-5: Change “By an isometry, we mean at the local level, so that the lift” to “Since f is a local isometry, the lift”

p.76, l.10: After the first sentence, insert “We claim that either (1) or (2) holds. For this, suppose that (2) fails.”

p.77, l.15: Change “(2)” to “(1)”

p.87, l.2: Change “λn−1” to “λn”

p.91, l.14: Change “had been” to “is”

p.91, l.15-16: Delete the sentence “Recently . . . z16 + c.”

p.100, l.3: Change “through” to “around”

p.101, l.10: Change “conjugate to” to “conjugate on U1 to”

p.128, l.15: Change “are dense in M” to “are dense in ∂M”

p.149, format: Insert space at end of example, between lines -5 and -6

p.154, l.-2: Insert “= f(z, c)” after “P_{c}^{\ell}(z)”

p.157, format: Insert space at end of statement of theorem, between lines 16 and 17

p.173, Index: Change “repulsive cycle, ??” to “repulsive cycle, 172”
The very last assertion of the proof requires justification. To do this, we follow the proof given, except that we take ψ to be the universal covering map of the upper half-plane \(\mathbb{H} \) over \(\mathbb{C} \setminus \{0, 1\} \) constructed in the proof of Theorem 3.1, with fundamental domain \(E \) from that proof, and we choose the lifts \(\tilde{f} \) of functions \(f \in F \) so that \(\tilde{f}(0) \in E \). The functions \(\tilde{f} \) still form a normal family. Let \(\{f_n\} \) be a sequence in \(F \). Passing to a subsequence, we can assume that \(\tilde{f}_n \) converges normally to \(g \) on \(\mathbb{H} \). We must show that \(f_n \) converges normally.

If \(\tilde{f}_n(0) \) converges to a point of \(\mathbb{H} \), then the image of \(g \) is in \(\mathbb{H} \), and we can use the local inverses of \(\psi \) to see that \(f_n \) converges normally to the analytic function \(\psi \circ g \). Our problem is to determine what happens when the limit of \(\tilde{f}_n(0) \) does not belong to \(\mathbb{H} \).

If the limit of \(\tilde{f}_n(0) \) is not in \(\mathbb{H} \), then since \(\tilde{f}_n(0) \in E \), either \(\text{Re} \tilde{f}_n(0) \to +\infty \), or \(\tilde{f}_n(0) \) converges to one of the corners 0 or 1 of \(\partial E \). By composing the functions in the family \(F \) with a fractional linear transformation that permutes the points \(0, 1, \infty \), we can assume that \(\text{Re} \tilde{f}_n(0) \to +\infty \). Then by Harnack’s theorem, \(\text{Re} \tilde{f}_n(z) \to +\infty \) uniformly on compacta.

Using the periodicity of \(\psi \), we see that \(|\psi(w)| \to \infty \) uniformly as \(\text{Re} w \to +\infty \). Hence \(f_n = \psi \circ \tilde{f}_n \) converges to \(\infty \) uniformly on compacta, and in particular it converges normally, as required.

A variant of the proof, which avoids Harnack’s theorem, proceeds in outline as follows. Replacing the family of functions \(F \) by the family of their square roots, one assumes that the family omits four points \(\{-1, 0, 1, \infty\} \) in the extended plane. Then one proceeds as above, to the case where \(\tilde{f}_n(0) \) converges to a vertex of \(E \). In this case one considers the compositions \(g_n = \varphi \circ f_n \), where \(\varphi \) is the fractional linear transformation that maps \(-1 \) to that vertex and leaves the other two vertices of \(E \) fixed. Now \(\tilde{g}_n(0) = \varphi(\tilde{f}_n(0)) \) converges to a point of \(\mathbb{H} \). We conclude as before that \(g_n \) converges normally, as does \(f_n \).

Theorem 1.1 requires some justification to the effect that a neutral fixed point in the Fatou set belongs to a Siegel disk as defined. The following lemma clarifies the definition of a Siegel disk, and Theorem 1.1 follows immediately.

Lemma. Let 0 be a neutral fixed point for a rational function \(R \), with multiplier \(\lambda \). If \(0 \in F \), and if \(U \) is the component of the Fatou set containing 0, then Schröder’s equation \(\varphi(R(z)) = \lambda \varphi(z) \), with side conditions \(\varphi(0) = 0, \varphi'(0) = 1 \), has a (unique) solution \(\varphi(z) \) defined on \(U \) and mapping \(U \) conformally onto a disk.

Proof. We can assume that \(\infty \in F \). Note that \(R(U) \subseteq U \). Since the iterates \(R^n \) form a normal family on \(U \), they are uniformly bounded on compact subsets of \(U \). As in the proof of Theorem II.6.2, the functions \(\varphi_n(z) = (1/n) \sum_{j=0}^{n-1} \lambda^{-j} R^j(z) \) are uniformly bounded on compact subsets of \(U \), and any limit \(\varphi(z) \) of the \(\varphi_n \)'s has the required properties. \(\Box \)
To see that one of the alternatives (1), (4), or (5) holds, proceed as follows.

Suppose that U is a punctured disk, say $U = \Delta \setminus \{0\}$, with covering map $\psi(\zeta) = e^{2\pi i \zeta}$ from the upper half-plane \mathbb{H} to U. If f is a local hyperbolic isometry of U, and F is the lift of f to \mathbb{H}, then $F(\zeta + 1) \equiv F(\zeta)$, so there is an integer m such that $F(\zeta + 1) = F(\zeta) + m$. Thus F fixes ∞, and F is affine. Evidently $F(\zeta) = m\zeta + b$ where $m \geq 1$ and b is real. Thus $f(z) = e^{2\pi ib}z^m$. If $m > 1$, then (1) holds. If $m = 1$, then since Γ is discrete, b is irrational, and (5) holds.

A similar argument shows that if U is an annulus, then (4) holds.

In this proof, the a and c do not come directly from the statement of Lemma 2.1. They come from an open neighborhood V of J, as follows. Let V be an ε-neighborhood of J with respect to the hyperbolic metric of $D = \mathbb{C} \setminus CL$. Then $R^{-1}(V) \subset V$. For $\varepsilon > 0$ small, there is $A > 1$ such that (2.1) holds for $z \in V$. Set $c = 1/A$ and $a = (\sup \sigma)/(\inf \sigma)$, where the sup and the inf are taken over V. Then $|(R^k)'(z)| \geq a/c^k$ for all $z \in V$ such that $R^k(z) \in V$, as in the proof of Lemma 2.1.

There is a gap in the proof, which requires substantial work to fill. The problem is to show that if P_a has a parabolic cycle, then θ has odd denominator. The gap is filled, and in a more general setting, in the Doctoral Dissertation of Gustav Ryd, “Iterations of one parameter families of complex polynomials,” Department of Mathematics, KTH, Stockholm (1997), ISBN 91-7170-210-5. The relevant statement is Proposition 5.8, whose proof covers pages 38-43.

Ryd’s thesis contains much more. In particular, it contains (Dissertation Section 3) theorems on the landing of external rays at parabolic and repelling periodic points of the Julia set of a rational function. It also carries out (Dissertation Section 7 and Theorem 8.1) the “main deformation construction” sketched at the end of Section VIII.7, again in a more general setting.

Ryd devotes special attention to one-parameter families of polynomials that have the form

$$P_c(z) = z^d + \alpha_{d-1}(c)z^{d-1} + \ldots + \alpha_0(c), \quad P_c'(z) = d \prod_{j=1}^{d-1} (z - p_j(c)),$$

where $\alpha_0(c), \ldots, \alpha_{d-1}(c)$ and $p_1(c), \ldots, p_{d-1}(c)$ are polynomials in c. This includes such one-parameter families such as $z^d + c$, and more generally $p(z) + c$, where p is a polynomial. Thus each critical point has polynomial dependence on c, and one can define a “Mandelbrot set” \mathcal{M}_j for each critical point. Ryd investigates the behavior of P_c as $c \to a \in \mathcal{M}_j$.