Your name and signature

Student ID #

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>10</td>
</tr>
<tr>
<td>2</td>
<td>10</td>
</tr>
<tr>
<td>3</td>
<td>20</td>
</tr>
<tr>
<td>4</td>
<td>20</td>
</tr>
<tr>
<td>5</td>
<td>15</td>
</tr>
<tr>
<td>Total</td>
<td>75</td>
</tr>
</tbody>
</table>

Notes (please read carefully before starting the exam):

- Keep your desktop clean. Put your textbooks and notebooks in your bag and keep them closed.

- One handwritten 5x7 index card or one half of A4 paper (one side) are allowed. Calculators are NOT allowed.

- In order to receive credit, you must show all of your work; to obtain full credit, you must provide mathematical justifications. If you do not indicate the way in which you solved a problem, you may get little or no credit for it, even if your answer is correct.

- Read the questions carefully. Make sure you answer the questions asked in the problems.

- You may use the back side of the exam papers, as well as the last blank page.

- You have 50 minutes to complete the midterm.
Problem 1. (10 points) Find an explicit formula for the analytic function $f(z)$ that has the Maclaurin expansion $\sum_{k=0}^{\infty} k z^k$.
Problem 2. (10 points) Find the Taylor series and radius of convergence for $f(z) = \sin(\pi z)$ around $z = 1$.
Problem 3. (a) (10 points) Find the Taylor series and radius of convergence for \(g(z) = (z^2 - 2z) \sin(\pi z) \) around \(z = 1 \).

(b) (5 points) Find \(g^{(4)}(1) \) with \(g \) as in (a).

(c) (5 points) Compute

\[
\int_{|z-2|=3} \frac{g(z)}{(z-1)^2} \, dz
\]
Problem 4. (20 points) Find the Laurent series centered around $z = 4$ of

$$\frac{z + 2}{z(z - 4)^3}$$

in the following regions:

(a) $0 < |z - 4| < 4$.
(b) $|z - 4| > 4$.
Problem 5. (a) (10 points) Compute
\[\oint_{|z-4|=3} \frac{z+2}{z(z-4)^3} \, dz. \]

(b) (5 points) Compute
\[\oint_{|z|=3} \frac{z+2}{z(z-4)^3} \, dz. \]