Solutions to Exercises 5.9.3 through 5.9.9.

5.9.3. \[S^2 = \sum_{ij} \sum (X_{ij} - \xi - \mu_i - \eta_j)^2 \]
\[= \sum_{ij} [(X_{ij} - \bar{X}_i - \bar{X}_j - \bar{X}_{..}) + (\bar{X}_i - \bar{X}_.. - \mu_i) + (\bar{X}_j - \bar{X}_.. - \eta_j) - (\bar{X}_{..} - \xi)]^2 \]
\[= \sum_{ij} (X_{ij} - \bar{X}_i - \bar{X}_j - \bar{X}_{..})^2 + \sum_{ij} (X_{ij} - \bar{X}_i - \bar{X}_j - \bar{X}_{..})^2 + \sum_{ij} (X_{ij} - \bar{X}_i - \bar{X}_j - \bar{X}_{..})^2 + \sum_{ij} (X_{ij} - \bar{X}_i - \bar{X}_j - \bar{X}_{..})^2 + \sum_{ij} (X_{ij} - \bar{X}_i - \bar{X}_j - \bar{X}_{..})^2 + \sum_{ij} (X_{ij} - \bar{X}_i - \bar{X}_j - \bar{X}_{..})^2 \]
\[+ \text{six cross product terms.} \]

We must show that all cross product terms are zero. This is illustrated for the first term,
\[2 \sum_{ij} (X_{ij} - \bar{X}_i - \bar{X}_j - \bar{X}_{..})(\bar{X}_i - \bar{X}_.. - \mu_i) = \sum_{i=1}^{I} \sum_{j=1}^{J} (X_{ij} - \bar{X}_i - \bar{X}_j - \bar{X}_{..}) = 0 \]

The inside summation over \(j \) is zero for all \(i \) because \(\sum_{j} X_{ij} = J \bar{X}_i \), and \(\sum_{j} \bar{X}_j = J \bar{X}_{..} \).

5.9.4. (a) We expand \(S^2 \) as follows.
\[S^2 = \sum_{ijk} \sum (X_{ijk} - \xi - \mu_i - \eta_j - \delta_{ij})^2 \]
\[= \sum_{ijk} \sum [(X_{ijk} - \bar{X}_{ijk}) - (\bar{X}_{ijk} - \xi - \mu_i - \eta_j - \delta_{ij})]^2 \]
\[= \sum_{ijk} \sum (X_{ijk} - \bar{X}_{ijk})^2 + \sum_{ijk} \sum (\bar{X}_{ijk} - \xi - \mu_i - \eta_j - \delta_{ij})^2 \]
\[+ 2 \sum_{i} \sum_{j} (\bar{X}_{ijk} - \xi - \mu_i - \eta_j - \delta_{ij}) (X_{ijk} - \bar{X}_{ijk}) \]

The last term is zero since \(\sum_{k} X_{ijk} = K \bar{X}_{ijk} \) for all \(i \) and \(j \). The middle term may be expanded into a sum of squares using the identity (5.128) (or Exercise 3) with \(X_{ij} \) replaced by \(\bar{X}_{ij} - \delta_{i,j} \).

(b) Using this identity, we find
\[\min_{H} S^2 = \sum_{ijk} \sum (X_{ijk} - \bar{X}_{ijk})^2. \]

Similarly, putting \(\mu_i = 0 \) in the formula for part (a), we find
\[\min_{H_0} S^2 = \sum_{ijk} \sum (X_{ijk} - \bar{X}_{ijk})^2 + \sum_{i} \sum_{j} (\bar{X}_{..} - \bar{X}_{..})^2. \]

The best invariant test rejects \(H_0 \) if
\[F = \frac{\text{min}_{H_0} S^2 - \text{min}_{H} S^2}{\text{min}_{H} S^2/(n-k)} = \frac{\sum \sum (X_{..} - \bar{X}_{..})^2/(I-1)}{\sum \sum (X_{ijk} - \bar{X}_{ijk})^2/(IJ(K-1))} \]
is too large. Under \(H_0 \), this statistic has an \(F \)-distribution with \(I - 1 \) and \(IJ(K - 1) \) degrees of freedom. Under the general hypothesis, \(H \), it has a noncentral \(F \)-distribution with \(I - 1 \) and \(IJ(K - 1) \) degrees of freedom and noncentrality parameter \(\gamma^2 \), where \(\gamma^2 \) is computed as the numerator sum of squares divided by \(\sigma^2 \), with each \(X_{ijk} \) replaced by its expectation. This results in replacing \(\bar{X}_{i..} \) by \(\mu_i + \xi \) and \(\bar{X}_{..} \) by \(\xi \). We find
\[\gamma^2 = \frac{1}{\sigma^2} \sum \sum \sum \mu_i^2 = \frac{1}{\sigma^2} JK \sum_{i} \mu_i^2. \]

(c) If we put \(\delta_{ij} = 0 \) in the identity of part (a), we find \(\min_{H_0} S^2 = \sum \sum (X_{ijk} - \bar{X}_{ijk})^2 + \sum \sum (X_{ij} - \bar{X}_i - \bar{X}_j + \bar{X}_{..})^2 \) so the best invariant test of no interaction effect rejects \(H_0 \) if
\[F = \frac{\sum \sum (X_{ijk} - \bar{X}_{ijk} + \bar{X}_{..})^2/(IJ(K-1))}{\sum \sum (X_{ijk} - \bar{X}_{ijk})^2/(IJ(K-1))} \]
is too large. Under the general hypothesis, this has a noncentral F-distribution with $(I - 1)(J - 1)$ and $IJ(K - 1)$ degrees of freedom and noncentrality parameter

$$\gamma^2 = \frac{1}{\sigma^2} \sum \sum \delta_{ij}^2.$$

5.9.5. (a) $S^2 = \sum (X_i - \beta_0 - \beta_1 z_i)^2$. We may find the least squares estimates of β_0 and β_1 by equating the partial derivatives of S^2 to zero.

$$\frac{\partial S^2}{\partial \beta_0} = -2 \sum (X_i - \beta_0 - \beta_1 z_i) = -2 \sum X_i - n\beta_0 = 0$$

since $\sum z_i = 0$, and

$$\frac{\partial S^2}{\partial \beta_1} = -2 \sum (X_i - \beta_0 - \beta_1 z_i)z_i = -2 \sum X_i z_i - \beta_1 \sum z_i^2 = 0.$$

This gives $\hat{\beta}_0 = (1/n) \sum X_i$ and $\hat{\beta}_1 = \sum X_i z_i / \sum z_i^2$ as the least squares estimates.

(b) Under H_0, $S^2 = \sum (X_i - \beta_0)^2$ is minimized at $\hat{\beta}_0 = (1/n) \sum X_i = \bar{x}$.

(c) The UMP invariant test rejects H_0 if

$$F = \frac{\sum (\hat{\beta}_0 - \beta_0 - \hat{\beta}_1 z_i)^2/1}{\sum (X_i - \beta_0 - \beta_1 z_i)^2/(n - 2)} = \frac{(n - 2)\hat{\beta}_1^2}{\sum (X_i - \beta_0 - \beta_1 z_i)^2}$$

is too large. Under H, F has a noncentral F-distribution with 1 and $n - 2$ degrees of freedom and noncentrality parameter, $\gamma^2 = (1/\sigma^2)(\sum (\beta_0 + \beta_1 z_i)z_i / \sum z_i^2)^2 = (1/\sigma^2)\beta_1^2$.

5.9.6. (a) The least squares estimates are the values of α, β and η_i that minimize $S^2 = \sum \sum (X_{ij} - \alpha - \beta z_i - \eta_j)^2$ subject to $\sum_j \eta_j = 0$. We use Lagrange multipliers. The Lagrangian is $L = S^2 + \lambda \sum \eta_j$.

$$\frac{\partial L}{\partial \alpha} = -2 \sum \sum (X_{ij} - \alpha - \beta z_i - \eta_j) = -2 \sum \sum X_{ij} - IJ\alpha = 0$$

using $\sum z_i = 0$ and $\eta_j = 0$. This gives $\hat{\alpha} = \bar{X}_z$.

$$\frac{\partial L}{\partial \beta} = -2 \sum \sum (X_{ij} - \alpha - \beta z_i - \eta_j)z_i = -2 \sum \sum X_{ij}z_i - IJ\beta = 0$$

using $\sum z_i^2 = 1$. This gives $\hat{\beta} = (1/I) \sum z_i \bar{X}_z$.

$$\frac{\partial L}{\partial \eta_j} = -2 \sum_{i=1}^I (X_{ij} - \alpha - \beta z_i - \eta_j) + \lambda = -2I(\bar{X}_{.j} - \alpha - \eta_j) + \lambda = 0.$$

We may find the Lagrange multiplier, λ, by summing over j. This gives $\lambda = 2I(\bar{X}_z)$. Substituting this value into the equation gives $\hat{\eta}_j = \bar{X}_{.j} - \bar{X}_z$ as the least squares estimate of η_j. Under H_0 the least squares estimates are easily found to be $\hat{\alpha} = \bar{X}_z$, $\hat{\beta} = (1/I) \sum z_i \bar{X}_z$, $\hat{\beta} = \bar{\beta}$. The UMP invariant test of H_0 rejects H_0 if

$$F = \frac{\sum \sum \hat{\eta}_j^2/(J - 1)}{\sum \sum (X_{ij} - \hat{\alpha} - \hat{\beta} z_i - \eta_j)^2/(IJ - J - 1)}$$

is too large.

(b) Under the general hypothesis, F has a noncentral F-distribution with $J - 1$ and $IJ - J - 1$ degrees of freedom and noncentrality parameter, $\gamma^2 = (1/\sigma^2) \sum \sum \eta_j^2$.

2
5.9.7. Under the general linear hypothesis, (5.115), the log likelihood function of θ and σ is

$$\log f(x|\theta, \sigma) = -n \log(\sqrt{2\pi\sigma}) - \frac{1}{2\sigma^2}(x - A\theta)^T(x - A\theta).$$

For each fixed σ, the maximum of $\log f$ over θ occurs at any value of θ that minimizes $(x - A\theta)^T(x - A\theta) = (x - \xi)^T(x - \xi)$. Since such values are independent of σ, any maximum likelihood estimate of θ is also a least squares estimate of θ and conversely. Therefore, if $\hat{\theta}$ denotes a maximum likelihood estimate, $\hat{\xi} = A\hat{\theta}$ is both the maximum likelihood estimate and the least squares estimate of ξ.

5.9.8. We have $r = I - 1$, $k = I$ and $n = n_1 + \cdots + n_J$. The distribution of the F-statistic under the general hypothesis is noncentral F-distribution, $F_{r,n-k}(\gamma^2) = F_{I-1,n-I}(\gamma^2)$. To find γ^2, we use (5.126). The numerator sum of squares is

$$\sum_i \sum_j (\bar{X}_{i.} - \bar{X}_{..})^2 = \sum_i n_i(\bar{X}_{i.} - \bar{X}_{..})^2.$$

Replacing each X_{ij} in this by its expectation $\bar{X}_{i.}$, we obtain

$$\gamma^2 = (1/\sigma^2) \sum_i n_i(\bar{X}_{i.} - \bar{\theta})^2.$$

5.9.9. (a) $S^2 = \sum \sum \sum (X_{ijk} - \xi - \lambda_i - \mu_j - \eta_k)^2 = \sum \sum \sum (X_{ijk} - \bar{X}_{..} - \bar{X}_{.j} - \bar{X}_{.k} + 2\bar{X}_{..})^2 + \sum \sum \sum (\bar{X}_{i..} - \bar{X}_{..} - \lambda_i)^2 + \sum \sum \sum (\bar{X}_{.j} - \bar{X}_{..} - \mu_j)^2 + \sum \sum \sum (\bar{X}_{.k} - \bar{X}_{..} - \eta_k)^2 + \sum \sum \sum (\bar{X}_{..} - \xi)^2.$

(b) Under H, the least squares estimates are $\hat{\xi} = \bar{X}_{..}$, $\hat{\lambda}_i = \bar{X}_{i..} - \bar{X}_{..}$, $\hat{\mu}_j = \bar{X}_{.j} - \bar{X}_{..}$, and $\hat{\eta}_k = \bar{X}_{.k} - \bar{X}_{..}$. Under H_0, they are the same except that $\hat{\lambda}_i = 0$. So the best invariant test of H_0 rejects H_0 when

$$F = \frac{\sum \sum \sum (\bar{X}_{i..} - \bar{X}_{..})^2 / (I - 1)}{\sum \sum \sum (X_{ijk} - \bar{X}_{i..} - \bar{X}_{.j} - \bar{X}_{.k} + 2\bar{X}_{..})^2 / (IJK - I - J - K + 2)}$$

is too large. Under H, this has a noncentral F-distribution with $I - 1$ and $IJK - I - J - K + 2$ degrees of freedom and noncentrality parameter $\gamma^2 = (1/\sigma^2) \sum \sum \sum \lambda_i^2$.

3