Solutions to the Exercises of Section 5.1.

5.1.1. Let us use the notation, \(\alpha_0(\phi) = R(\theta_0, \phi) = E_{\theta_0}(\phi(X)) \) and \(\alpha_1(\phi) = R(\theta_1, \phi) = 1 - E_{\theta_1}(\phi(X)) \). We are given that \(\phi \) is not admissible. This means that there is a test \(\phi' \) better than \(\phi \), which means that both \(\alpha_0(\phi') \leq \alpha_0(\phi) \) and \(\alpha_1(\phi') \leq \alpha_1(\phi) \) with at least one a strict inequality. But since \(\phi \) is best of size \(\alpha_0 \) and \(\alpha_0(\phi') \leq \alpha_0(\phi) \), we must have \(\alpha_1(\phi') \geq \alpha_1(\phi) \). Hence, \(\alpha_1(\phi') = \alpha_1(\phi) \), and therefore, \(\alpha_0(\phi') < \alpha_0(\phi) \). We are to show that \(\alpha_1(\phi) \) cannot be positive.

If \(\alpha_1(\phi) > 0 \), define a new test \(\phi'' = \lambda \phi' + 1 - \lambda \), where \(\lambda \) is chosen so that \(\alpha_0(\phi'') = \alpha_0(\phi) \) i.e. \(\lambda \alpha_0(\phi') + 1 - \lambda = \alpha_0(\phi) \). This gives \(\lambda = (1 - \alpha_0(\phi)) / (\alpha_0(\phi) - \alpha_0(\phi')) \), so that \(0 \leq \lambda < 1 \). But then

\[
\alpha_1(\phi'') = 1 - E_{\theta_0}(\phi'(X)) - 1 + \lambda = \lambda \alpha_1(\phi') = \lambda \alpha_1(\phi) < \alpha_1(\phi).
\]

Thus, if \(\alpha_1(\phi) > 0 \) we have \(\alpha_1(\phi'') < \alpha_1(\phi) \) which contradicts the assumption that \(\phi \) is a best test of size \(\alpha_0 \).

5.1.2. Let \(\phi_0 \) be of the given form and let \(0 \leq \phi \leq 1 \) be any other function. Then,

\[
\int (\phi_0(x) - \phi(x))(f_0(x) - \sum_{j=1}^{n} k_j f_j(x)) \, dx \geq 0,
\]

since the integrand is nonnegative from the definition of \(\phi_0 \). Hence,

\[
0 \leq \int \phi_0(x)f_0(x) \, dx - \int \phi(x)f_0(x) \, dx - \sum_{j=1}^{n} k_j \int (\phi_0(x) - \phi(x))f_j(x) \, dx.
\]

If

\[
\int \phi(x)f_j(x) \, dx = \int \phi_0(x)f_j(x) \, dx \quad \text{for} \quad j = 1, \ldots, n,
\]

then each term of the summation in (1) is zero so that

\[
\int \phi(x)f_j(x) \, dx \leq \int \phi_0(x)f_j(x) \, dx \quad \text{as was to be shown. If} \quad k_j \geq 0 \quad \text{for all} \quad j,
\]

and if

\[
\int \phi(x)f_j(x) \, dx \leq \int \phi_0(x)f_j(x) \, dx \quad \text{for} \quad j = 1, \ldots, n,
\]

then each term of the summation in (1) is nonnegative, so we still have (2).

5.1.3. The likelihood ratio, \(f_1(x)/f_0(x) \) takes on three values 0, 1 and \(\infty \), with probabilities 1/2, 1/2 and 0 under \(H_0 \) and probabilities 0, 1/2, and 1/2 under \(H_1 \). Rejecting \(H_0 \) if \(X > 1 \) gives the point \((0,1/2) \) in the risk set. Rejecting \(H_0 \) if \(1/2 < X < 1 \) gives the point \((1/2,0) \) in the risk set. This gives the lower boundary of the risk set \(S \) to be the lines from \((0,1/2) \) to \((1/2,0) \). The risk set is given in Figure 1.

5.1.4. The likelihood ratio, \(f_1(x)/f_0(x) \) takes on the three values 4/9, 8/9 and 16/9, with probabilities 1/4, 1/2 and 1/4 under \(H_0 \) and probabilities 1/9, 4/9, and 4/9 under \(H_1 \). Rejecting \(H_0 \) if \(X = 2 \) gives the risk point \((1/4,5/9) \), and rejecting \(H_0 \) if \(X \geq 1 \) gives the point \((3/4,1/9) \) in the risk set. The complete risk set is given in Figure 2.

5.1.5. The likelihood ratio is \(f_1(x)/f_0(x) = e^{x^2/2}/2 \). The best tests reject \(H_0 \) when this ratio is greater than some constant, or equivalently, when \(X \) is greater than some constant, say \(X > c \). The probability of error type I is \(\alpha_0 = P_0(X > c) = e^{-c} \). The probability of error type II is \(\alpha_1 = P_1(X < c) = 1 - e^{-c}/2 \). The lower boundary of the risk set therefore satisfies \(\alpha_1 = 1 - \sqrt{\alpha_0} \). The complete risk set is given in Figure 3.
5.1.6. Since \(f(x) > 0 \) for all \(x \), the best tests have the form: \(\phi(x) \) is 1, is arbitrary, or is 0 according as the likelihood ratio \(\lambda(x) = f_1(x)/f_0(x) \) is greater than \(k \), equal to \(k \), or less than \(k \). In the case where \(X \) is \(\mathcal{C}(\theta, 1) \) and \(\theta_0 = 0 \) and \(\theta_1 = 1 \), the likelihood ratio is

\[
\lambda(x) = \frac{(1 + x^2)}{(1 + (x - 1)^2)}
\]

By evaluating the derivative \(\lambda' \), it may be seen that \(\lambda(x) \) starts at 1 at \(x = -\infty \), decreases to a minimum at \(x = (1 - \sqrt{5})/2 = -0.618 \ldots \), increases to a maximum at \(x = (1 + \sqrt{5})/2 = 1.618 \ldots \), and then decreases to 1 as \(x \) tends to \(\infty \). Hence, since \(\lambda(1) = \lambda(3) = 2 \), the interval \((1, 3)\) is a best test of its size, corresponding to \(k = 2 \). The power function is \(\beta(\theta) = P_0(1 < X < 3) \), is symmetric in \(\theta \) about \(\theta = 2 \), attains its maximum value of 1/2 at \(\theta = 2 \), and decreases to 0 as \(\theta \to \infty \). Other values are \(\beta(1) = .352 \ldots \), \(\beta(0) = .148 \ldots \), and \(\beta(-1) = .070 \ldots \).

5.1.7. If \(\phi \) is a best test of size \(\alpha \) and \(E_{\theta_i}\phi(X) = \alpha \), then \(\phi_1(x) \equiv \alpha \) is also a best test of size \(\alpha \) since it has the same power as \(\phi \). But from the unicity part of the Neyman-Pearson Lemma with \(\alpha > 0 \), \(\phi_1 \) must have the form (5.7). But since 0 < \(\alpha < 1 \), this implies \(f_1(x) = k f_0(x) \) a.s. for some \(k \geq 0 \). And since both \(f_1 \) and \(f_0 \) are densities, \(k \) must be equal to 1. This implies \(P_{\theta_0} = P_{\theta_1} \).

5.1.8. The best tests of the form (5.7) become

\[
\phi(z) = \begin{cases}
1 & \text{if } \prod \frac{\theta_i^{x_i}}{\theta_i^{0x_i}} > k \prod \frac{\theta_i^{0x_i}}{\theta_i^{x_i}} \\
\gamma(x) & \text{if } \prod \frac{\theta_i^{x_i}}{\theta_i^{0x_i}} = k \prod \frac{\theta_i^{0x_i}}{\theta_i^{x_i}} \\
0 & \text{if } \prod \frac{\theta_i^{x_i}}{\theta_i^{0x_i}} < k \prod \frac{\theta_i^{0x_i}}{\theta_i^{x_i}}
\end{cases}
\]

where \(r_i = \theta_i^x/\theta_i^0 \) and \(k' = \log k \). The test of the form (5.8) becomes

\[
\phi(z) = \begin{cases}
1 & \text{if } z_i > 0 \text{ for some } \theta_i^0 = 0 \\
0 & \text{otherwise.}
\end{cases}
\]

In the special case \(k = 4 \), \(r_1 = .10/1.55 \), \(r_2 = .40/2.0 \), \(r_3 = .30/1.5 \), and \(r_4 = .20/1.0 \), the tests reject \(H_0 \) for large values of \(Z_1 \log(2/11) + (Z_2 + Z_3 + Z_4) \log 2 \). But since \(Z_1 = n - (Z_2 + Z_3 + Z_4) \), the tests reject \(H_0 \) for large values of \(Z_2 + Z_3 + Z_4 \). Under \(H_0 \), \(Z_2 + Z_3 + Z_4 \in \mathcal{B}(n, .45) \), and under \(H_1 \), \(Z_2 + Z_3 + Z_4 \in \mathcal{B}(n, .90) \). The error probabilities may be computed from this.

5.1.9. Note that \(\int \phi_0(x) f_0(x) \, dx = \int f_0(x)^+ \, dx \). The only functions \(\phi(x) \), \(0 \leq \phi(x) \leq 1 \), that satisfy \(\int \phi(x) f_0(x) \, dx = \int f_0(x)^+ \, dx \) are the functions

\[
\phi(x) = \begin{cases}
1 & \text{if } f_0(x) > 0 \\
\gamma(x) & \text{if } f_0(x) = 0 \\
0 & \text{if } f_0(x) < 0
\end{cases}
\]

Therefore to maximize \(\int \phi(x) f_1(x) \, dx \) out of this class, we may take \(\gamma(x) \) to be of the form

\[
\gamma(x) = \begin{cases}
1 & \text{if } f_0(x) = 0 \text{ and } f_1(x) > 0 \\
\text{any} & \text{if } f_0(x) = 0 \text{ and } f_1(x) = 0 \\
0 & \text{if } f_0(x) = 0 \text{ and } f_1(x) < 0
\end{cases}
\]

The given \(\phi_0(x) \) has \(\gamma(x) \) of this form.