Solutions to the Exercises of Section 1.8.

1.8.1. \(E(Z - b)^2 = \text{Var}(Z) + (EZ - b)^2 \) obviously takes on its minimum value of \(\text{Var}(Z) \) when \(b = EZ \).

1.8.2. We say \(b_0 \) is a median of a random variable \(Z \) if \(P(Z \leq b_0) \geq 1/2 \) and \(P(Z \geq b_0) \geq 1/2 \). Let \(b_0 \) be any median of \(Z \). First suppose \(b > b_0 \). Then,

\[
|z - b_0| - |z - b| = \begin{cases}
-(b - b_0) & \text{if } z \leq b_0 \\
2(z - b_0) - (b - b_0) & \text{if } b_0 < z \leq b \\
b - b_0 & \text{if } z > b
\end{cases}
\]

Then, provided \(Z \) has a finite first moment, \(E|Z - b_0| - E|Z - b| \leq (b - b_0)P(Z > b_0) - (b - b_0)P(Z \leq b_0) = (b - b_0)(1 - 2P(Z \leq b_0)) \leq 0 \). Similarly, for \(b < b_0 \), we also have \(E|Z - b_0| - E|Z - b| \leq 0 \). This shows that \(f(b) = E|Z - b| \) is minimized at \(b = b_0 \).

1.8.3. Rule: For the decision problem with \(\Theta = \mathcal{A} = \mathbb{R} \) and loss function,

\[
L(\theta, a) = \begin{cases}
k_1|\theta - a| & \text{if } a \leq \theta, \\
k_2|\theta - a| & \text{if } a > \theta,
\end{cases}
\]

where \(k_1 \) and \(k_2 \) are known positive numbers, a Bayes rule with respect to a given prior distribution is to estimate \(\theta \) as the \(p \)th quantile of the posterior distribution of \(\theta \) given the observations, where \(p = k_1/(k_1 + k_2) \).

A number \(b \) is said to be a \(p \)th quantile of a distribution of a random variable \(\theta \) if \(P(\theta \leq b) \geq p \) and \(P(\theta \geq b) \geq 1 - p \). Suppose \(a > b \). We are to show that \(E(L(\theta, a)) - E(L(\theta, b)) \geq 0 \), where \(b \) is a \(p \)th quantile. Since for all \(\theta \),

\[
L(\theta, a) - L(\theta, b) \geq (a - b)[k_2I(\theta \leq b) - k_1I(\theta > b)],
\]

where \(I(S) \) is the indicator function of the set \(S \), we have,

\[
E(L(\theta, a) - L(\theta, b)) \geq (a - b)[k_2P(\theta \leq b) - k_1P(\theta > b)] \geq (a - b)[k_2p - k_1(1 - p)] = 0,
\]

as was to be shown. A similar method works to show that for \(a < b \), \(EL(\theta, a) \geq EL(\theta, b) \).

1.8.4. In the example with prior distribution (1.27) and distribution of \(X \) given \(\theta \) (1.26), the Bayes estimate of \(\theta \) for absolute error loss is the median of the posterior distribution of \(\theta \), given as \(g(\theta|x) \) at the bottom of page 45. To find the median of this distribution, we solve for the median, \(m \):

\[
1/2 = \int_{m}^{\infty} e^{-(\theta - x)} d\theta = e^{(x - m)}.
\]

Solving for \(m \) gives \(m = x + \log(2) = x + .693 \cdots \) as the Bayes estimate of \(\theta \) using absolute error loss, which is to be compared to the estimate \(d(x) = x + 1 \), the Bayes estimate using squared error loss.

1.8.5. An interval of length \(2c \), say \((b - c, b + c) \), is said to be a modal interval of length \(2c \) for the distribution of a random variable \(\theta \), if \(P(b - c \leq \theta \leq b + c) \) takes on its maximum value out of all such intervals. For the loss function

\[
L(\theta, a) = \begin{cases}
0 & \text{if } |\theta - a| \leq c \\
1 & \text{if } |\theta - a| > c,
\end{cases}
\]

\(EL(\theta, a) = P(|\theta - a| > c) = 1 - P(a - c \leq \theta \leq a + c) \) is minimized if \(a \) is chosen to be the midpoint of the modal interval of length \(2c \). **Rule:** In the problem of estimating a real parameter \(\theta \) with the above loss function, a Bayes decision rule with respect to a given prior is to estimate \(\theta \) as the midpoint of the modal interval of length \(2c \) of the posterior distribution of \(\theta \) given the observations.

1.8.6. If \(\tau \) is a prior distribution for \(\theta \) with density \(g(\theta) \), and if \(c = EW(\theta) = \int w(\theta)g(\theta) d\theta < \infty \), then \(g^*(x) = (1/c)w(\theta)g(\theta) \) is a density of a prior distribution, call it \(\tau^* \), for \(\theta \). If \(d \) is Bayes with respect to \(\tau \)
for loss $L(\theta, a) = (\theta - a)^2 w(\theta)$, then d is Bayes with respect to τ^* for loss $L^*(\theta, a) = (\theta - a)^2$, because in either case d minimizes $\int (\theta - d)^2 f(x|\theta)w(\theta)g(\theta)\,d\theta$. Hence, d cannot be unbiased unless $r^*(\tau^*, d)$, which is equal to $r(\tau, d) = \int \int (\theta - d(x))^2 f(x|\theta)w(\theta)g(\theta)\,d\theta\,dx$, is zero.

1.8.7. (a) The joint density of θ and X is

$$h(\theta, x) = f_X(x|\theta)g(\theta) = e^{-\theta x^2} x! \cdot (\Gamma(\alpha)\beta^\alpha)^{-1} e^{-\theta \beta^\alpha + x^2}$$

for $x = 0, 1, \ldots$ and $\theta > 0$. Hence $g(\theta|x)$ is proportional to $e^{-(\beta+1)/\beta \theta \beta^\alpha + x^2}$ for $\theta > 0$, which makes $g(\theta|x)$ the gamma distribution $G(\alpha + x, \beta/(\beta + 1))$.

(b) Since the loss is squared error, we have $d_{\alpha, \beta}(x) = E(\theta|x) = (\alpha + x)\beta/(\beta + 1)$.

(c) If $d(x)$ is Bayes with respect to τ, then $r(\tau, d) = 0$. On the other hand, $r(\tau, d) = E(\theta - X)^2 = E(E[(\theta - X)^2|\theta]) = E(\theta)$. If $\Theta = (0, \infty)$, then $E(\theta) > 0$, since $\theta > 0$. But if $\Theta = [0, \infty)$, then $E(\theta)$ can be zero, and in fact, d or any rule d such that $d(0) = 0$, is Bayes with respect to the distribution degenerate at 0. (For $\theta = 0$, $\mathbb{P}(\theta)$ is defined to be degenerate at 0.)

(d) $d_{\alpha, \beta}(x) = (\alpha + x)\beta/(\beta + 1) \rightarrow d(x) = x$ as $\alpha \rightarrow 0$ and $\beta \rightarrow \infty$.

(e) We want to find d to minimize

$$\int_0^\infty (\theta - d)^2 e^{-\theta x^2} (1/\theta)\,d\theta.$$

If $x = 0$, then this integral is $+\infty$ unless $d = 0$. Hence, $d(0) = 0$. If $x > 0$, then minimizing this integral is equivalent to finding d to minimize $E(\theta - d)^2$ when θ has the distribution $G(x, 1)$, and so $d(x) = x$.

(f) Given $\epsilon > 0$, let τ_ϵ be the gamma distribution $G(1, \epsilon)$. Then,

$$r(\tau_\epsilon, d) = E(\theta - d(X))^2 = E(E[(\theta - X)^2|\theta]) = E(\text{Var}(X|\theta)) = E(\theta) = \epsilon.$$

Since the minimum Bayes risk cannot be negative, d certainly comes within ϵ of minimizing the Bayes risk. Since ϵ is arbitrary, d is extended Bayes. (The same must be true of any rule d such that $d(0) = 0$.)

1.8.8. (a) Writing the joint density $h(\theta, x) = g(\theta)f(x|\theta)$, and neglecting factors that do not involve θ, we have $g(\theta|x) \propto \theta^{\alpha+x-1} \cdot (1 - \theta)^{\beta+n-x-1}$, which is the beta distribution, $\mathcal{B}(\alpha + x, \beta + n - x)$.

(b) Since the loss is squared error, we have $d_{\alpha, \beta}(x) = E(\theta|x) = (\alpha + x)/(\alpha + \beta + n)$.

(c) $d(x) = x/n$ is an unbiased estimate of θ; so if d were also a Bayes rule with respect to τ, we would have $r(\tau, d) = 0$. But $r(\tau, d) = E(\theta - X/n)^2 = E(E[(\theta - X)^2|\theta]) = E(\theta(1 - \theta))/n$, which is greater than zero because $\theta(1 - \theta) > 0$ for $\theta \in \Theta$. This shows that d is not Bayes.

(d) $d_{\alpha, \beta}(x) = (\alpha + x)/(\alpha + \beta + n) \rightarrow d(x)$ as $\alpha \rightarrow 0$ and $\beta \rightarrow 0$.

(e) Consider the measure τ on $(0,1)$ such that $d\tau(\theta) = d\theta/\theta(1 - \theta)$. We want to minimize

$$I = \int_0^1 (\theta - a)^2 \theta^{x-1} (1 - \theta)^{n-x-1} \,d\theta.$$

If $x = 0$, then $I = \infty$ unless $a = 0$. Hence, $d(0) = 0$. If $x = n$, then $I = \infty$ unless $a = 1$. Hence, $d(n) = 1$. If $0 < x < n$, then I is minimized by the mean of the $\mathcal{B}(x, n - x)$ distribution, $d(x) = x/n$. Thus $d(x) = a = x/n$ minimizes I.

(f) Let $\epsilon > 0$, and consider the prior distribution $\tau = \mathcal{B}(\epsilon, 1)$.

$$r(\tau, d) = E(\theta(1 - \theta))/n \leq E(\theta)/n = (\epsilon/(\epsilon + 1))/n \leq \epsilon.$$

2
This must come within ϵ of the minimum Bayes risk for this τ.

1.8.9. For loss $L(\theta, a) = (\theta - a)^2/(\theta(1 - \theta))$ and uniform prior distribution $g(\theta) = 1$, the Bayes rule will minimize the integral I of 1.8.8(e). Hence the Bayes rule is as found there: $d(x) = x/n$. Even though d is an unbiased estimate of θ, this does not contradict Exercise 1.8.6 because $E(w(\theta)) = E(1/(\theta(1 - \theta))) = \infty$.

1.8.10. Since the prior distribution of p_1, p_2 is $g(p_1, p_2) = 1$ on the unit square, the joint density of p_1, p_2, X, Y is proportional to $h(p_1, p_2, x, y) = f_{X,Y}(x, y|p_1, p_2)$. Hence,

$$g(p_1, p_2) \propto p_1^x(1 - p_1)^{n-x}p_2^y(1 - p_2)^{n-y},$$

so that the posterior distribution of p_1 and p_2 are as independent random variables with $p_1 \in \text{Be}(x + 1, n - x + 1)$ and $p_2 \in \text{Be}(y + 1, n - y + 1)$. The Bayes estimate of $p_1 - p_2$ is therefore

$$d(x, y) = E(p_1 - p_2|x, y) = (x + 1)/(n + 2) - (y + 1)/(n + 2).$$