Exercises, Section 9, Pearson’s Chi-Square.

1. A die was tossed 300 times and the uppermost face was recorded. The data are

<table>
<thead>
<tr>
<th>face</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>frequency</td>
<td>46</td>
<td>58</td>
<td>59</td>
<td>35</td>
<td>45</td>
<td>57</td>
</tr>
</tbody>
</table>

It is desired to test the hypothesis that the die is fair, \(H_0 : p_i = 1/6 \) for \(i = 1, \ldots, 6 \). Compute (a) Pearson’s \(\chi^2 \), (b) the Neyman \(\chi^2 \), (c) the Hellinger \(\chi^2 \), for testing \(H_0 \) with this data, and compare with the 5% cut-off point of the appropriate distribution.

2. Find the transformed \(\chi^2 \) where each cell is transformed by the reciprocal transformation. What is the modified transformed \(\chi^2 \) for this transformation?

3. (a) One measure of the homogeneity of a multinomial population with \(k \) cells and probabilities, \(p = (p_1, \ldots, p_k) \), is the sum of the squares of the probabilities, \(S(p) = \sum_1^k p_i^2 \). Note that \(1/k \leq S(p) \leq 1 \), with higher values indicating greater heterogeneity. Given a sample of size \(n \) from this population (with replacement), we may estimate \(S(p) \) by \(S(\hat{p}) \), where \(\hat{p} = (\hat{p}_1, \ldots, \hat{p}_k) \) and \(\hat{p}_i \) is the proportion of the observations that fall in cell \(i \). What is the asymptotic distribution of \(S(\hat{p}) \)?

(b) Another measure of homogeneity often used is Shannon entropy, defined as \(H(p) = -\sum_1^k p_i \log p_i \), with \(0 \leq H(p) \leq \log k \), and with higher values indicating greater homogeneity. What is the asymptotic distribution of \(H(\hat{p}) \)?

4. Consider a multinomial experiment with 4 cells, sample size \(n \), and vector of probabilities \(p = (p_1, p_2, p_3, p_4) \). Let \(n_i \) denote the number of observations falling in cell \(i \) for \(i = 1, \ldots, 4 \), where \(n_1 + n_2 + n_3 + n_4 = n \). Let \(X_n = n_1 + n_2 \) and \(Y_n = n_1 + n_3 \). Find the joint asymptotic distribution of \(X_n \) and \(Y_n \).

5. Modification of Pearson’s chi-square, \(\chi^2_M = (1/n) \sum_1^k (\hat{p}_i - p_i)^2 / P_i \), may be achieved by replacing the \(p_i \) in the denominator by any estimate, \(\hat{p}_i = f(p_i, \hat{p}_i) \), such \(\hat{p}_i \xrightarrow{P} p_i \) for all \(i \) as \(n \to \infty \). The resulting modified chisquare, \(\chi^2_M = (1/n) \sum_1^k (\hat{p}_i - p_i)^2 / f(p_i, \hat{p}_i) \), still has an asymptotic \(\chi^2_{n-1} \) distribution. Show that Hellinger’s \(\chi^2 \), in addition to being a transformed \(\chi^2 \), is also a modified \(\chi^2 \). In particular, find \(f(p_i, \hat{p}_i) \) such that \(f(p_i, \hat{p}_i) \xrightarrow{P} p_i \) and \(\chi^2_M = \chi^2_H \).

6. Let \(X \) and \(Y \) be 2-valued random variables taking on values 1 and 2, and let \(p_{ij} = P(X = i, Y = j) \) for \(i = 1, 2 \) and \(j = 1, 2 \), where \(\sum_i \sum_j p_{ij} = 1 \). The parameter \(\theta = \frac{p_{11}p_{22}}{p_{12}p_{21}} \) is called the odds-ratio and may be used as a measure of association between \(X \) and \(Y \). \(X \) and \(Y \) are independent if \(\theta = 1 \) (Show this), positively associated if \(\theta > 1 \), and negatively associated if \(\theta < 1 \).

Suppose a sample of size \(n \) is taken from the distribution of \((X, Y) \), with \(n_{ij} \) observations falling in “cell” \((i, j) \), where \(\sum_i \sum_j n_{ij} = n \).
(a) The sample estimate of θ is $\hat{\theta}_n = \frac{\hat{p}_{11}\hat{p}_{22}}{\hat{p}_{12}\hat{p}_{21}}$, where $\hat{p}_{ij} = n_{ij}/n$. What is the asymptotic distribution of $\hat{\theta}_n$ as $n \to \infty$?

(b) Let $\vartheta = \log(\theta)$ be the log odds-ratio. Find the asymptotic distribution of $\hat{\vartheta}_n = \log(\hat{\theta}_n)$ as an estimate of ϑ.