Problem 1. (True/False, 1 pt each) Mark your answers by filling in the appropriate box next to each question.

(a) (False) The reduced row echelon form of the matrix
\[
\begin{bmatrix}
2 & 3 & 7 \\
1 & 4 & 8 \\
6 & 5 & 9
\end{bmatrix}
\]
is
\[
\begin{bmatrix}
1 & 0 & -1 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{bmatrix}.
\]
Note: the given matrix is not even in RREF.

(b) (True) If A is an invertible \(n \times n \) matrix, then the rank of A is \(n \).

(c) (True) There exists a matrix \(A \) for which \(\ker A \) is the same as the image of \(A \).

(d) (False) If \(AB = BA \) for two \(n \times n \) matrices \(A, B \), then \(A \) or \(B \) must be the identity matrix.

(e) (True) Assume that the reduced row echelon form of \(A \) is
\[
\begin{bmatrix}
1 & 0 & -1 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{bmatrix}.
\]
Does the system of linear equations \(A\vec{x} = 0 \) have more than one solution?

(f) (True) If \(A \cdot A \cdot A \) is the identity matrix, then \(A \) is invertible. Note: Actually \(A^{-1} = A^2 \) in this case, since \(A \cdot A^2 = A \cdot A \cdot A = I \).

(g) (False) The columns of a matrix \(A \) always form a basis for the image of \(A \). Note: the columns may be linearly dependent, thus not a basis (but they do form a spanning set for the image of \(A \)).

(h) (False) There exists a system of linear equations having exactly 2 distinct solutions.

(i) (False) Every nonzero \(4 \times 4 \) matrix has an inverse.

(j) (False) The set \(\{(x, y) : x^2 + y^2 = 1\} \) is a subspace of \(\mathbb{R}^2 \).
Problem 2. (10 pts) Let \(A = \begin{bmatrix} 1 & 1 & 4 & 7 & 1 \\ 1 & 2 & 5 & 8 & 0 \\ -1 & 3 & 6 & 9 & 1 \end{bmatrix} \). (a) Are the columns of \(A \) linearly independent? (b) Find a basis for the image of \(A \). (c) Find a basis for the kernel of \(A \).

Solution. (a) The columns of \(A \) cannot be linearly independent. If they were, these five columns would form a basis for a five-dimensional linear space, and it would follow that the image of \(A \) is five-dimensional. But the image of \(A \) is contained in \(\mathbb{R}^3 \), all of whose subspaces have dimension at most 3.

OR: We can compute
\[
\text{rref}(A) = \begin{bmatrix} 1 & 0 & 0 & 0 & -1 \\ 0 & 1 & 0 & -1 & -2 \\ 0 & 0 & 1 & 2 & 1 \end{bmatrix}.
\]
From this we see that the last 2 columns are redundant.

(b) Looking at \(\text{rref}(A) \) we see that the first three columns of \(A \) form a basis for the linear span of the image of \(A \). Thus a basis is given by:
\[
\left(\begin{bmatrix} 1 \\ 1 \\ -1 \end{bmatrix}, \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}, \begin{bmatrix} 4 \\ 5 \\ 6 \end{bmatrix} \right).
\]

(c) Solving \(Ax = 0 \) gives us (using \(\text{rref}(A) \) computed above): we have two free variables, \(x_4 = t_1 \) and \(x_5 = t_2 \) and equations
\[
\begin{cases}
 x_1 = t_2 \\
 x_2 = t_1 + 2t_2 \\
 x_3 = -2t_1 - t_2
\end{cases}
\]
\[
\begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \end{bmatrix} = t_1 \begin{bmatrix} 0 \\ 1 \\ -2 \\ 1 \\ 0 \end{bmatrix} + t_2 \begin{bmatrix} 1 \\ 2 \\ -1 \\ 1 \\ 0 \end{bmatrix}.
\]
From this we see that a basis is given by the vectors
\[
\left(\begin{bmatrix} 0 \\ 1 \\ -2 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ 2 \\ -1 \\ 0 \\ 1 \end{bmatrix} \right).
\]
Problem 3. (10 pts) Let P be the plane $x + 2y + 3z = 0$ in \mathbb{R}^3. (a) Find a matrix A so that P is the kernel of A. (b) Find a matrix B so that P is the image of B. (c) Find a basis for P (you may wish to use your results from either (a) or (b)).

Solution. The equation for P can be written as $[\begin{array}{ccc} 1 & 2 & 3 \end{array}] \cdot \begin{bmatrix} x \\ y \\ z \end{bmatrix} = 0$. (a) If we let $A = [\begin{array}{ccc} 1 & 2 & 3 \end{array}]$ then we precisely get that $P = \ker A$. (c) Since $\dim P = 2$ (e.g. by the rank-nullity theorem: clearly the image of A is 1-dimensional and so its kernel P is 2-dimensional), a basis would consist of any two linearly independent vectors in P. By inspection, the vectors

$$\begin{bmatrix} 2 \\ -1 \\ 0 \end{bmatrix}, \begin{bmatrix} 3 \\ 0 \\ -1 \end{bmatrix}$$

belong to P. Moreover, they are linearly independent (since they are not proportional and are nonzero), and so they must be a basis for P. (b) We can now use our vectors from part (c):

$$B = \begin{bmatrix} 2 & 3 \\ -1 & 0 \\ 0 & -1 \end{bmatrix}.$$

Notes: There are many choices for A in part (a) and B in part (b). In fact, A need not be 1×3; for instance, the following A would also work:

$$\begin{bmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \\ 1 & 2 & 3 \end{bmatrix}.$$

Similarly, we could add arbitrary vectors from P as extra columns to B and still have that P is the image of B. We could also use another basis for P in constructing B.
Problem 4. (10 pts) Find a 2×2 matrix A with entries real numbers so that $A^2 = -I$ (here I denotes the identity matrix).

Solution. Thinking of A as a linear transformation, we need to find a linear transformation of the plane whose square is $-I$, i.e

$$A^2 = \text{rotation by } 180^\circ.$$

Clearly, rotation by 90° would work. So we could take

$$A = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}.$$

Notes: A lot of students found their A by brute force, taking a general $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$ and determining which conditions on a, bc, d would give $A^2 = -I$. This is also fine, but is harder to work out.
Problem 5. (10 pts) Let \(A \) be an \(n \times m \) matrix, and let \(B \) be an invertible \(m \times m \) matrix. (a) Show that the kernel of \(A \) is the same as the kernel of \(AB \). (b) Determine the rank of \(AB \) in terms of the rank of \(A \).

Solution. There was a typo in part (a) of the problem: the problem should have said: “show that the dimension of the kernel of \(A \) is the same as the dimension of the kernel of \(AB \).” Everybody was given 5 points for part (a), regardless of what they wrote.

As stated, part (a) is incorrect. Consider for example \(A = \begin{bmatrix} 1 & 0 \\ \end{bmatrix} \) and \(B = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \).

Then \(\ker A \) consists of all vectors of the form \(\begin{bmatrix} t \\ 0 \end{bmatrix} \), while \(AB = \begin{bmatrix} 0 & 1 \\ \end{bmatrix} \) has as kernel the set of vectors of the form \(\begin{bmatrix} t \\ 0 \end{bmatrix} \). So, in general, \(\ker AB \) is not the same as \(\ker A \). Surprisingly, nobody pointed this out during the exam.

The correct solution to parts (a) and (b) would have been to note that since \(B \) is onto, the image of \(A \) is the same as that of \(AB \). Indeed, if \(z \) is in the image of \(A \), then \(z = Ax \) for some \(x \). But then

\[
z = Ax = ABB^{-1}x = ABy, \quad \text{where } y = B^{-1}x,
\]

so \(y \) is in the image of \(AB \) as well. Conversely, if \(z \) is in the image of \(AB \), then \(z = ABx = Ay \) where \(y = Bx \), so that also \(z \) is in the image of \(A \). Thus \(\text{image} A = \text{image} B \). This also proves that

\[
\text{rank} A = \dim \text{image} A = \dim \text{image} AB = \text{rank} AB
\]

answering part (b).

From this we get, using rank-nullity,

\[
\dim \ker A = n - \dim \text{image} A = n - \dim \text{image} AB = \dim \ker AB.
\]

We gave full credit to those students that deduced (b) from knowing that \(\dim \ker A = \dim \ker AB \) and then using the rank-nullity to deduce that

\[
\text{rank} A = n - \dim \ker A = n - \dim \ker AB = \text{rank} AB.
\]

Notes. A few incorrect solutions ought to be mentioned. Some students wrote statements like “because \(B \) is invertible, (pre)composition with \(B \) does not reduce rank”. While this is correct, it needs to be justified [this is the point of the problem!]

Other students wrote because \(\text{rref} (B) = I \), one can conclude that \(\text{rref} (A) = \text{rref} (AB) \). But this equality is not always true (if it were, we would get that \(\ker A = \ker AB \) which does not always hold).

Other students thought that \(\text{rref} (AB) \) were always \(\text{rref} (A) \cdot \text{rref} (B) \). But this is also not true (take e.g. \(A = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \), \(B = \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix} \); then \(AB = 0 \) but \(\text{rref} (A) = \text{rref} (B) = A \) and so \(\text{rref} (A) \text{rref} (B) = A^2 \neq 0 = \text{rref} (AB) \).