Problem 1. State and prove the Bolzano-Weirstrass theorem.

Note: it is likely that you will be asked to give a proof of one of the major theorems on the midterm. Here’s the list of major theorems: limit points of a given sequence are exactly limits of all possible subsequences; Bolzano-Weirstrass; addition/multiplication/composition/etc. of continuous functions are continuous; intermediate value theorem; continuous functions attain their max/min on a closed interval; continuous functions are uniformly continuous on closed intervals; continuous functions are Riemann integrable; properties of Riemann integrals (addition, scalar multiplication).

Solution: see book.

Problem 2. Let \(\{a_n\} \) be a bounded sequence. Show that this sequence has a limit if and only if it has exactly one limit point.

Solution: If \(a_n \to a \), then \(a \) is the unique limit point. Indeed, by a theorem in the book \(c \) is a limit point of \(\{a_n\} \) iff some subsequence \(a_{n_k} \to c \). But any subsequence of \(a_n \) converges to \(a \): given \(\varepsilon > 0 \), there is an \(N \) so that if \(n > N \), \(|a_n - a| < \varepsilon \). Thus if we choose \(K \) so that \(n_K > N \), then for any \(k > K \), \(|a_{n_k} - a| < \varepsilon \). Thus any limit point of \(\{a_n\} \) must be \(a \), and \(a \) is a limit point, since \(\{a_n\} \) is its own subsequence, and converges to \(a \).

Conversely, suppose that \(a \) is a limit point of \(\{a_n\} \). We claim that \(a_n \to a \).

If not, there is an \(\varepsilon > 0 \) so that for all \(N \), there is an \(n > N \) for which \(|a_n - a| > \varepsilon \).

We now construct a subsequence \(\{a_{n_k}\} \) of \(\{a_n\} \) inductively. Let \(\varepsilon \) be as above, and apply the above assertion with \(N = 1 \). Then there is an \(n_1 > N \) so that \(|a_{n_1} - a| > \varepsilon \). Having constructed \(n_1, \ldots, n_{k-1} \), apply the assertion above with \(N = n_{k-1} \). Then there is an \(n_k > K \) so that \(|a_{n_k} - a| > \varepsilon \). Since \(n_k > K_k = n_{k-1} \), the indices \(n_k \) are monotone increasing and so \(\{a_{n_k}\} \) is a subsequence.

Since \(\{a_n\} \) is bounded, so is \(\{a_{n_k}\} \). By the Bolzano-Weirstrass theorem, there is a limit point, \(b \), of the sequence \(a_{n_k} \). Thus there is a subsequence, of \(\{a_{n_k}\} \), converging to \(b \). Then, since \(|a_{n_k} - a| > \varepsilon \) for all \(k \), the same is true for our subsequence of \(\{a_{n_k}\} \). It follows that \(|b - a| > \varepsilon \).
A subsequence of \(\{a_{n_k}\} \) is a subsequence of \(\{a_n\} \), so there is a subsequence of \(\{a_n\} \) converging to \(b \). Since \(\{a_n\} \) has only one limit point, it must be that \(b = a \). This is a contradiction, since we proved that \(|b - a| > \varepsilon \).

Problem 3. (a) Give the book’s definition of continuity of a function at a point \(c \).

(b) Let \(f(x) \) be given by

\[
 f(x) = \begin{cases}
 0, & \text{if } x \text{ irrational}; \\
 1, & \text{if } x \text{ rational}.
 \end{cases}
\
\]

Show that \(f(x) \) is discontinuous at every point \(c \) in \(\mathbb{R} \).

(c) [A little harder] Let \(f(x) \) be defined as follows:

\[
 f(x) = \begin{cases}
 0, & \text{if } x \text{ is irrational}; \\
 \frac{1}{m}, & \text{if } x \text{ is rational and } x = \frac{n}{m}, m > 0, \text{ is an irreducible fraction}.
 \end{cases}
\
\]

(we define \(f(0) = 1 \)). Show that \(f \) is continuous at every \(c \) which is irrational, but is not continuous at every \(c \) which is rational.

Solution: (a) see book.

(b) Let \(\varepsilon > 0 \). Choose two sequences so that \(a_n \to c \) and \(b_n \to c \), but \(a_n \) consist of rational numbers, while \(b_n \) consists of irrational numbers. Then \(f(a_n) \to 1 \), while \(f(b_n) \to 0 \). So it is not possible that \(f(x_n) \to f(c) \) for any sequence \(x_n \) so that \(x_n \to c \).

(c) Sketch of proof: if \(a \) is rational, then \(f(a) \neq 0 \) by definition. Choose a sequence \(a_n \to a \), so that \(a_n \) are irrational. Then \(f(a_n) \to 0 \), but \(f(a) \neq 0 \). So \(f \) is not continuous at \(a \).

To prove that \(f \) is continuous at an irrational \(c \) you start by proving the following: given \(M > 0 \) and integer there is a \(\delta > 0 \) so that if \(|c - x| < \delta \) and \(x \) is rational, \(x = n/m \), then \(m > M \).

This can be proved from the fact that there are at most \(\frac{M}{2\varepsilon} \) rational numbers with denominator at most \(M \) in any interval of length \(2\delta \) (in particular, in \((c - \delta, c + \delta) \)).

Now, given \(\varepsilon > 0 \), choose \(M \) so that \(\varepsilon > \frac{1}{M} \). For that \(M \), choose \(\delta \) as above. Then if \(|c - x| < \delta \), then either \(x \) is rational and \(x = n/m \) with \(m \geq M \), or \(x \) is irrational. In the former case, \(|f(x)| \leq \frac{1}{M} < \varepsilon \); in the latter case, \(|f(x)| = 0 < \varepsilon \). Thus in any case \(|f(x) - f(c)| < \varepsilon \), since \(f(c) = 0 \).

Using a theorem in the book, it follows that \(f \) is continuous at \(c \).

Problem 4. Give an example of a function that is continuous on the open interval \((0, 1)\), but is not uniformly continuous on \((0, 1)\). Prove that your example works.
Solution: let $f(x) = \frac{1}{2}$. Let $\varepsilon = 1$. Then for any $\delta > 0$, there are $x, y \in (0, 1)$ so that $|x - y| < \delta$ but $\frac{1}{x} - \frac{1}{y} > 1 = \varepsilon$. Indeed, just take $y = \min(1/2, \delta)$ and $x = y/2$. Then $|x - y| < \delta$, and
\[
\frac{1}{x} - \frac{1}{y} = \frac{2}{y} - \frac{1}{y} = \frac{1}{y} \geq 2 \geq 1.
\]

Problem 5. Let $f(x)$ be a polynomial in x of odd degree. Show that $f(c) = 0$ for some $c \in \mathbb{R}$ (hint: use the intermediate value theorem).

Solution: Let $f(x) = ax^p + q(x)$, where p is odd, and $q(x)$ is a polynomial of order strictly less than n. By replacing $f(x)$ with $\frac{1}{n}f(x)$ (which has the same roots as $f(x)$) we may as well assume that $a = 1$. Then
\[
\frac{f(n)}{n^p} = 1 + \frac{q(n)}{n^p} \rightarrow 1
\]
as $n \rightarrow \infty$. If we let $\varepsilon = \frac{1}{2}$, this means that for some N and all $n > N$,
\[
\left|\frac{f(n)}{n^p} - 1\right| < \frac{1}{2}.
\]

But this means that $f(n)/n^p$ is positive for some n; thus $f(n)$ is positive for some n. Denote this n by n_+.

Applying a similar reasoning to the sequence $f(-n)/(-n)^p$, which also converges to 1, we find that for some n, $f(-n)/(-n)^p$ is also positive. Since p is odd, this means that $f(-n)$ is negative for some n. Denote this n by n_-. Consider now f on the interval $I = [-n_-, n_+]$. Since f is continuous on all of \mathbb{R}, it is continuous on I. We have that f is positive and negative at the two endpoints of the interval. By the intermediate value theorem, it follows that f must be zero somewhere on I.

Problem 6. Let $f(x)$ be a function so that $f(x) \geq 0$ on $[a, b]$. (a) Prove that if f is continuous and $\int_a^b f(x) \, dx = 0$, then $f(x) = 0$ for all $x \in [a, b]$.

(b) Give an example of an intergrable function f, which is not continuous, $f(x) \geq 0$ for all $x \in [a, b]$ and $\int_a^b f(x) \, dx = 0$, but so that $f(x)$ is not constantly zero on $[a, b]$.

Solution. (a) We'll prove that if f is continuous, $f \geq 0$ and $f \neq 0$, then $\int_a^b f(x) \, dx \neq 0$. This will prove that if $\int_a^b f(x) \, dx = 0$, then f is constantly zero.

We claim that if $f \neq 0$, then there is an interval $[c, d] \subset [a, b], c \neq d$, and a constant $C > 0$, so that $f(x) \geq C$ for all $x \in [c, d]$. Indeed, since
\(f \neq 0 \), there is an \(x_0 \in [a, b] \), so that \(f(x_0) > 0 \). Let \(\varepsilon = \frac{f(x_0)}{2} > 0 \).

We now apply the \(\varepsilon, \delta \)-criterion of continuity of \(f \) with this \(\varepsilon \). Then there is a \(\delta > 0 \) so that \(|f(x) - f(x_0)| \leq \varepsilon \) if \(|x - x_0| \leq \delta \). Let \(c = x_0 - \delta, \ d = x_0 + \delta \) and \(C = f(x_0)/2 \). Then for any \(x \in [c, d] \), we have \(|x - x_0| \leq \delta \), so that \(|f(x) - f(x_0)| \leq \varepsilon = f(x_0)/2 \). But then \(f(x) \geq f(x_0)/2 = C \), as claimed.

Now consider the partition \(P = (c, d) \) of the interval \([a, b]\). We have

\[
L_P(f) = m_1(c - a) + m_2(d - c) + m_3(b - d),
\]

where \(m_1 \) the the infimum of \(f \) on \([a, c]\), \(m_2 \) is the infimum of \(f \) on \([c, d]\) and \(m_3 \) is the infimum of \(f \) on \([d, b]\). But by construction \(m_2 \geq C > 0 \), and \(m_1, m_2 \geq 0 \), since \(f \geq 0 \). Thus

\[
L_P(f) \geq m_2(d - c) \geq C(d - c) > 0.
\]

Thus

\[
\int_a^b f(x)dx \geq L_P(f) > 0.
\]

(b) (Sketch) Let \(f(x) = 0 \) for \(x \in (0, 1] \), and \(f(0) = 1 \). Then \(f \) is not zero, but \(\int_0^1 f(x)dx = 0 \) (prove this yourself!).