Math 110B Midterm 1

Wednesday, April 29, 2015

Name:

Student ID:

Signature:

You must put all your answers in the spaces provided on the page of the problem. You must show a method of solution to obtain credit for a problem.

No calculators authorized
1. Let $\text{GL}_2(\mathbb{Z})$ be the group of invertible 2 by 2 matrices with integer coefficients and let $\text{SL}_2(\mathbb{Z})$ be the set of 2 by 2 matrices with integer coefficients and determinant 1

$$
\text{SL}_2(\mathbb{Z}) = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \mid a, b, c, d \in \mathbb{Z}, \ ad - bc = 1 \right\}.
$$

a. Show that $\text{SL}_2(\mathbb{Z})$ is a subgroup of the group $\text{GL}_2(\mathbb{Z})$.
b. Consider the matrices
\[a = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \quad \text{and} \quad b = \begin{pmatrix} 0 & 1 \\ -1 & -1 \end{pmatrix}. \]
Show that \(a \) and \(b \) have finite order and determine the order of those matrices.

c. Show that \(ab \) has infinite order.
2. Consider the element $\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 5 & 4 & 1 & 2 & 3 \end{pmatrix}$ of S_5.

a. Write σ as a product of cycles with disjoint supports.

b. Determine the elements of the subgroup of S_5 generated by σ.
3. Determine all the generators of the group \mathbb{Z}_{12}.
4. Show that the groups $\mathbb{Z}_2 \times \mathbb{Z}_6$ and $\mathbb{Z}_4 \times \mathbb{Z}_3$ are not isomorphic.
5. Let G be a group and let $g \in G$ be an element of finite order n. Show that there is a unique homomorphism of groups $f : \mathbb{Z}_n \to G$ such that $f(1) = g$.
6. Let G be a group, let H and K be subgroups of G. Let HK be
the set of elements of G of the form hk with $h \in H$ and $k \in K$.

Show that HK is a subgroup of G if and only if $HK = KH$.