5. A countable set is said to have cardinality \aleph_0 and the set of real numbers has cardinality \aleph. Furthermore, since a set of cardinality \aleph_0 is "smaller" than a set of cardinality \aleph we say that $\aleph_0 < \aleph$. Now for the question: Is there a cardinal number that is greater than \aleph? Why?

Proof: Let $I = \{x : 0 < x < 1\}$ and let $F = \{f : f : I \to I\}$. Suppose that F has the same cardinality as I. Then there is a mapping

$$\alpha : I \to F
\quad x \to f_x$$

that is is one-to-one and onto. Each f_x is a map of I to I and any map from I to I is an f_x for some x.

We construct a map g from I to I that is not a f_x for any x. To construct g we must define g at x, $g(x)$ for all x in I. Do this by defining

$$g(x) = xf_x(x) \text{ for all } x \text{ in } I.$$

Then, since $0 < x < 1$, $g(x) \neq f_x(x)$, so $g \neq f_x$ for all x. A contradiction.