Let \(A \) be the set of positive integers and \(S \) be the set of all finite subsets of \(A \). Prove that \(S \) is countable. Hint: a set of \(k \) positive integers means a set of \(k \) distinct integers. Furthermore, order is not considered: \(\{1,2,3\} = \{3,2,1\} = \{2,3,1\} \) etc.

Solution: Let \(k \) be fixed and \(S_k \) be the set of all subsets having exactly \(k \) elements.

Let \(\{n_1, n_2, \ldots, n_k\} \) be a typical set of \(k \) positive integers. Since there are \(k! \) ways of writing out this set we choose the one that has \(n_1 < n_2 < \ldots < n_k \).

Next we set up the map from \(S \) to \(N_k \), where \(N_k \) is the cartesian product of \(k \) copies of the positive integers, by

\[
\{n_1, n_2, \ldots, n_k\} \to (n_1, n_2, \ldots, n_k)
\]

This is a one-to-one map of \(S_k \) into \(N_k \). Since \(N_k \) is countable and the image of \(S_k \) is an infinite subset of \(N_k \), \(S_k \) is countable.

Since \(S \), the set of all finite subsets of \(A \), is the union of a countable number of countable sets it follows that \(S \) is countable.