The basic problem is to show that the set of functions from the integers to the set \(\{1, 2\} \) is uncountable.

Solution: To define \(f \) from the integers to \(\{1, 2\} \)

\[
f: \{1, 2, \ldots, n, \ldots\} \rightarrow \{1, 2\}
\]

you must first decide what set of integers will be mapped onto 1. Then the complement will be mapped onto 2.

So, defining the function is equivalent to selecting a (possibly infinite) subset of \(\{1, 2, \ldots, n, \ldots\} \). Suppose we select a subset \(A \), letting \(a_n = 1 \) if \(n \) is in \(A \) and \(a_n = 0 \) if \(n \) is not in \(A \). Thus, selecting a subset of \(\{1, 2, \ldots, n, \ldots\} \) is equivalent to selecting a sequence of 0s and 1s.

But the set of all sequences \(a = \{a_1, a_2, \ldots, a_n, \ldots\} \) where each \(a_n \) is a 0 or 1 is uncountable:

Suppose the set were countable. Then we could write

\[
A = \{b_n, n = 1, 2, \ldots\}
\]

where each

\[
b_n = \{b_{n1}, b_{n2}, \ldots, b_{nn}, \ldots\}
\]

is a sequence of 0s and 1's. In addition every sequence of 0s and 1s is a \(b_n \) for some \(n \).

Construct a new sequence \(c = \{c_1, c_2, \ldots, c_n, \ldots\} \) 0s and 1s by setting

\[
c_n = 1 \text{ if } b_{nn} = 0
\]

\[
c_n = 0 \text{ if } b_{nn} = 1
\]

Then \(c \) is not equal to \(b_n \) for any \(n \), a contradiction.

Defining \(f \) from the integers to any finite set is the same problem because you must first define set of integers that map onto 1 and, by the above argument, this can be done in an uncountable number of ways.