1. Find the (absolute) maximum and minimum of

\[f(x) = \frac{\sin x + \cos x}{2} \]

on the interval \([0, \pi]\), showing your work.

\[f'(x) = \frac{1}{2} (\cos 2x - \sin x) = 0 \]

\[\cos 2x = \sin x \quad \Rightarrow \quad 2x = \frac{\pi}{4} \]

\[f\left(\frac{\pi}{4}\right) = \frac{\sin \left(\frac{\pi}{4}\right) + \cos \left(\frac{\pi}{4}\right)}{2} = \frac{\frac{\sqrt{2}}{2} + \frac{\sqrt{2}}{2}}{2} = \frac{\sqrt{2}}{2} \max \]

\[f(0) = \frac{0 + 1}{2} = \frac{1}{2} \]

\[f(\pi) = \frac{0 + (-1)}{2} = -\frac{1}{2} \min \]
2. Use the Mean Value Theorem to prove that if \(f(1) = 3 \) and \(f'(x) < -1 \) for all \(x \geq 0 \), then \(f(4) \) is negative.

By the MVT

\[
\frac{f(4) - f(1)}{4 - 1} = f'(c) < -1
\]

for some \(c \) in \([1, 4]\)

\[
\frac{f(4) - 3}{3} < -1 \Rightarrow f(4) - 3 < -3 \Rightarrow f(4) < 0
\]
3. A function is defined by

\[f(x) = \frac{x}{\sqrt{2x^2 + 1}}. \]

(a) Find the horizontal asymptotes of \(f(x) \), if it has any.

(b) Given that

\[f'(x) = \frac{1}{\sqrt{(2x^2 + 1)^3}}, \]

determine the intervals on which \(f(x) \) is concave up and the intervals on which \(f(x) \) is concave down.

\[
(\text{a}) \quad \lim_{x \to \infty} \frac{x}{\sqrt{2x^2 + 1}} \cdot \frac{1}{x} = \lim_{x \to \infty} \frac{1}{\sqrt{2 + \frac{1}{x^2}}} = \frac{1}{\sqrt{2}}.
\]

\[
\lim_{x \to -\infty} \frac{x}{\sqrt{2x^2 + 1}} = \lim_{x \to \infty} \frac{-x}{\sqrt{2(-x)^2 + 1}} = -\lim_{x \to \infty} \frac{x}{\sqrt{2x^2 + 1}} = -\frac{1}{\sqrt{2}}.
\]

(\text{b}) \quad f'(x) = (2x^2 + 1)^{-3/2}

\[
f''(x) = -\frac{3}{2} (2x^2 + 1)^{-5/2} (4x) = \frac{-6x}{(2x^2 + 1)^{5/2}}.
\]

Concave up on \((-\infty, 0)\)

Concave down on \((0, \infty)\)
4. Given that \(f''(x) = \sin x + 6x, \)
\(f'(\pi) = 1 \) and \(f(\pi) = 0, \) find \(f(x). \)

\[
f'(x) = \int \sin x + 6x \, dx \]
\[
= -\cos x + 3x^2 + C
\]
\[
f'(\pi) = -\cos (\pi) + 3\pi^2 + C = 1
\]
\[
-(-1) + 3\pi^2 + C = 1 \quad \Rightarrow \quad C = -3\pi^2
\]

\[
f(x) = \int -\cos x + 3x^2 - 3\pi^2 \, dx \]
\[
= -\sin x + x^3 - 3\pi^2 x + D
\]
\[
f(\pi) = -\sin (\pi) + \pi^3 - 3\pi^2 (\pi) + D = 0
\]
\[
0 + \pi^3 - 3\pi^3 + D = 0 \quad \Rightarrow \quad D = 2\pi^3
\]

\[
f(x) = -\sin x + x^3 - 3\pi^2 x + 2\pi^3
\]
5. A kite 100 feet above the ground moves horizontally at a rate of 8 feet per second. At what rate is the angle \(\theta \) between the kite string and the (horizontal) ground changing when the length of the string is 200 feet? (Note: Think of the kite string as a straight line from a point on the ground to the kite.)

\[
\begin{align*}
100 & \quad \frac{dx}{dt} = 8 \quad \frac{d\theta}{dt} = ? \\
\tan \theta & = \frac{100}{x} = 100x^{-1} \\
\sec^2 \theta \frac{d\theta}{dt} & = -100x^{-2} \frac{dx}{dt} \\
\sec^2 \theta \frac{d\theta}{dt} & = -\frac{800}{x^2} \\
\frac{d\theta}{dt} & = -\frac{800}{x^2} \cos^2 \theta \\
\end{align*}
\]

If \(\frac{200}{\sqrt{100}} \), then \(\cos \theta = \frac{x}{200} \)

\[
\frac{d\theta}{dt} = -\frac{800}{x^2} \left(\frac{x}{200} \right)^2 = -\frac{800}{(200)^2} = -\frac{1}{50}
\]